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Optically induced nonreciprocity by a plasmonic pump in semiconductor wires
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In most studies on all-optical diodes, spatial asymmetry has been by necessity applied to break Lorentz
reciprocity. Here we suggest a paradigm for optically induced nonreciprocity in semiconductor wires which are
spatially asymmetry-free and provide a very simple and efficient platform for plasmonic devices. An azimuthal
magnetic field induced by a plasmonic pump in the semiconductor wire alters the material parameters and thus
results in a cross-nonlinear modulation of the plasmonic signal. Peculiarly, the nonlinear wave-number shift
has opposite signs for forward and backward signals whereas Kerr or Kerr-like nonlinearity does not break
Lorentz reciprocity in spatially symmetric structures. This principle may open an avenue toward highly integrated
all-optical nonreciprocal devices.
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I. INTRODUCTION

Surface waves and plasmonics offer the ability to manip-
ulate light on the nanoscale and achieve enhanced nonlinear
interactions [1] because they enable local field enhancement
and inhomogeneity on the nanoscale [2,3]. Plasmonic waveg-
uides find applications as optical interconnects in highly
integrated optoelectronic devices [4] and also have been used
for significantly enhancing nonlinear optical effects by a deep-
subwavelength mode confinement combined with a mode
propagation length much longer than the wavelength. In par-
ticular, plasmonic wires provide a highly efficient platform for
plasmonics, metamaterials [5,6], and nonlinear optics [7–9].
The inverse Faraday effect (IFE) has attracted much attention
due to its great potential for ultrafast all-optical switching
of magnetization [10]. It is widely accepted that magneto-
plasmonic structures provide a great potential for enhancing
magneto-optical effects [11–15]. This method has been suc-
cessfully demonstrated to enhance the IFE and downscale the
region of the optically induced magnetization to nanometer
scale [16–20]. Recently, we reported the IFE induced by
surface plasmon polaritons (SPPs) in planar plasmonic waveg-
uides and its reaction to the SPPs manifested by a different
type of third-order nonlinearity [21–24].

Optical nonreciprocity has become a topic of strong
scientific interest for nanophotonic, quantum-optical, and
optoelectronic applications [25]. The mechanisms to break
Lorentz reciprocity are magneto-optical phenomena [26–30],
including topological quantum-Hall effect [26,27]. An alter-
native approach is to break time-reversal symmetry in the
system [31,32]. To build all-optical diodes, nonlinear effects
including opto-mechanical interactions have been exploited
[33–41]. In most studies on optically induced nonreciprocity,
spatial asymmetry has been by necessity introduced to break
Lorentz reciprocity.

In this paper, we suggest a paradigm for optically induced
nonreciprocity in a spatially asymmetry-free, cavity-free, and
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very simple waveguide structure: semiconductor wires. We
note that electrically controlled nonreciprocal propagation in
plasmonic wire structures has been suggested [42,43], while
our case is promising for all-optical applications. We also note
that it has been suggested that second-harmonic generations
can also be supported in centrosymmetric particle chains via
optically induced magnetic effects, alleviating the need for
nonsymmetric structures [44]. An azimuthal magnetic field
induced by a plasmonic pump in the semiconductor wire
alters the material parameters, resulting in a cross-nonlinear
modulation of the plasmonic signal. The nonlinear wave-
number shift has opposite signs for forward and backward
signals whereas Kerr-like nonlinearity does not break Lorentz
reciprocity in spatially symmetric structures. This principle
may provide a promising route for the development of highly
integrated all-optical diode.

II. OPTICALLY INDUCED NONRECIPROCITY IN
SEMICONDUCTOR WIRES

We consider a semiconductor wire in a conventional di-
electric background as shown in Fig. 1(a). We assumed that
the semiconductor permittivity has a negative value Re(ε1) <

0 which is justified at a frequency lower than the plasma
frequency of the semiconductor. The effect of an external
magnetic field on surface plasmon in semiconductors has
been studied theoretically [45] and experimentally [46] in the
1970s. The electric displacement of the semiconductor under
an external magnetic field �H IFE is expressed as

�D = ε0ε̂ �E = ε0(ε1 �E + iα �E × �H IFE), (1)

where ε1 = ε∞[1 − ω2
pl/(ω(ω + iγs))] and α(ω) ≈ eμ0ε∞ωpl

2

/(meffω
3). ε0 and μ0 are the vacuum permittivity and

permeability, respectively, and α is the magneto-optical sus-
ceptibility. ωpl is the plasma angular frequency, e and meff are
the charge and effective mass of electrons, respectively, ε∞ is
the background permittivity, which depends on the properties
of the bound electrons in the material. γs is the effective
electron collision frequency, responsible for the material
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FIG. 1. (a) Scheme of a nonreciprocal semiconductor wire. (b) Distributions of the ẑ-axis electric field component E p
z (the red curve) and

the ρ̂-axis electric field component E p
ρ (the blue curve) of the plasmonic pump in the semiconductor wire. (c) Phase difference between E p

z and
E p

ρ . (d) Strength of optically induced magnetic field versus the wire radius. (e) Strength of optically induced magnetic field versus the pump
frequency. Here we assumed a wire radius of 1 μm in (b), (c), and (e), a pump frequency of ωp = 0.63ωpl in (b)–(d), and a pump power of
P = 1 W in (b)–(e). For calculations, we assumed parameters of ε∞ = 15.68, ωpl = 3.14 × 1013s−1, meff = 0.022me where me is electron’s
mass which corresponds to those of the n-type InSb [46].

absorption. Here, we assumed that the cyclotron frequency
ωc = eμ0H IFE/meff is far smaller than the considering angular
frequency ω.

A plasmonic pump field is carried by the fundamental
plasmonic mode of the semiconductor wire. The fundamen-
tal plasmonic mode is strongly confined at the surface of
the semiconductor wire, as shown in Fig. 1(b). The funda-
mental plasmonic mode has a rotating electric field vector
which is manifested by π difference in phase between the
ρ̂-axis electric field component Ep

ρ and the ẑ-axis electric field
component Ep

z as shown in Fig. 1(c). The rotating electric
field vector of the high-power pump acts as a static mag-
netic field along the azimuthal direction by the IFE which is
described as

�H IFE = iα(ωp)ε0/μ0
(
Ep

ρ Ep
z
∗ − Ep

z Ep
ρ

∗)
ϕ̂, (2)

where the superscript p represents the pump. Strength of the
optically induced magnetic field decreases with increasing the
wire radius as shown in Fig. 1(d) and increases with increasing
the pump frequency as shown in Fig. 1(e), while keeping a
pump power of P = 1 W.

From Eqs. (1) and (2), we can get the dielectric permittivity
tensor:

⎛
⎝

Dρρ̂

Dϕϕ̂

Dzẑ

⎞
⎠ = ε0

⎛
⎜⎝

ε1 0 iαH IFE
ϕ

0 ε1 0

−iαH IFE
ϕ 0 ε1

⎞
⎟⎠

⎛
⎝

Eρρ̂

Eϕϕ̂

Ezẑ

⎞
⎠. (3)

Here αH IFE
ϕ of the off-diagonal component of the dielectric

permittivity tensor is proportional to the azimuthal magnetic
field induced by the plasmonic pump field. The optically in-
duced azimuthal magnetic field alters the material parameters
and thus the plasmonic signal, which can be considered as a
type of third-order nonlinear optical effect. Now we consider
plasmonic signal propagation under the optically induced az-
imuthal magnetic field. To obtain the third-order nonlinear
susceptibility, we start from a general form of the Lorentz
reciprocity theorem (the detailed derivation can be seen in
Appendix A),

∂

∂z

∫
[ �E1(�r) × �H2(�r) − �E2(�r) × �H1(�r)] · ẑdσ

= iω
∫

( �E1(�r) · �D2(�r) − �E2(�r) · �D1(�r))dσ, (4)

where ( �E1, �H1) and ( �E2, �H2) are two arbitrary guided modes.
The integration according to σ denotes the integration on
the two-dimensional area (ρ, ϕ) perpendicular to the ẑ axis.
The integration domain is the mode confined area. Now we
substitute for ( �E1, �H1) and ( �E2, �H2) counterpropagating
unperturbed fundamental mode and perturbed fundamental
mode under the optically induced azimuthal magnetic field
H IFE

ϕ , respectively. In the first order of perturbation by the
optically induced azimuthal magnetic field H IFE

ϕ , the opti-
cally induced wave-number shift �k and the cross-nonlinear
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FIG. 2. All-optically controlled dispersion relation of the plasmonic signal at several characteristic regimes of the mode power and
operation frequency of the plasmonic pump. (a) The dispersion relation for the mode power P = 0.05 W and operation frequency ωp = 0.63ωpl

of the pump. (b) is for P = 0.5 W and ωp = 0.63ωpl, (c) is for P = 1 W and ωp = 0.63ωpl, (d) is for P = 0.05 W and ωp = 0.73ωpl and (e)
is for P = 0.5 W and ωp = 0.73ωpl. (f) The dispersion relation for P = 1 W and ωp = 0.63ωpl for counterpropagating forward pump and
backward signal. (a)–(e) are for forward pump and forward signal. Blue and red solid curves denote the dispersion relation in the absence and
presence of the plasmonic pump field, respectively. Red solid curves have been calculated by using Eq. (6) where the fundamental plasmonic
mode has been obtained by numerically solving the dispersion relation in cylindrical coordinates [42,43] in the absence of the plasmonic pump
field. Red circles are obtained by numerically mode solving the Maxwell equations in the presence of the plasmonic pump field. Here we
neglected the loss in the wire to display the concept.

susceptibility γ are given by

�k = − ik0α(ωs)
∫

E s
ρ E s

z H IFE
ϕ ds

η0
∫

E s
ρH s

ϕds
, (5)

γ = �k

P

= 2k0α(ωs)α(ωP)
∫

E s
ρ E s

z

(
Ep

ρ Ep
z
∗ − Ep

z Ep
ρ

∗)ds

η0
3
∫

E s
ρH s

ϕds
∣∣∫ Re

(
Ep

ρ Hp
ϕ

∗)ds
∣∣ . (6)

Here k0 = ωs/c is the vacuum wave number of the sig-
nal, η0 ≈ 377 is the vacuum wave impedance, and P =
1/2| ∫ Re(Ep

ρ Hp
ϕ

∗)ds| is the mode power of the pump. The
detailed derivations of Eqs. (5) and (6) can be seen in
Appendix B. From Eqs. (5) and (6), it is predicted that the
optically induced wave-number shift has opposite signs for
forward and backward pump flows. Consequently, it is pre-
dicted that for a forward pump flow, forward and backward
signals present opposite signs of wave-number shift manifest-
ing optically induced nonreciprocity.

Figure 2 shows dispersion relation of the fundamental
plasmonic mode in the semiconductor wire carrying a plas-
monic pump field. In the absence of the plasmonic pump
field, the fundamental plasmonic mode has been obtained
by numerically solving the dispersion relation in cylindrical
coordinates [42,43] (the blue curves). In the presence of plas-
monic pump field, the wave-number shift has been calculated
by using Eq. (6) (the red curves). The red curves show that

the wave-number shift has opposite signs for forward signal
(positive values of ks) and backward signal (negative values
of ks), manifesting the nonreciprocal property as predicted in
Eq. (6), while the blue curves present the reciprocal property.
With increasing the pump power, the nonreciprocity becomes
stronger. The results by Eq. (6) (the red curves) deviate from
the full simulation results (the red circles) near the SPP
resonances where the wave numbers have very large values
because here an effect of the optically induced azimuthal mag-
netic field H IFE

ϕ cannot be treated as a small perturbation. For
ωp = 0.73ωpl [Fig. 2(e)], the nonreciprocity is stronger than
that for ωp = 0.63ωpl [Fig. 2(b)] in spite of the same pump
power because the higher pump frequency provides a stronger
enhancement of H IFE

ϕ due to a tighter mode confinement of
the plasmonic pump. The nonlinear wave number shift is
sign-reversed by changing the direction of the pump flow,
Fig. 2(f). The condition that the cyclotron frequency ωc must
be much smaller than the optical signal frequency ω gives an
upper limit on the strength of the pump field. For a pump
mode power of 1 W, the maximum value of ωc = 0.0097ωpl

is much smaller than the optical signal frequency ω, thus the
above condition is well satisfied. On the other hand, the sig-
nal frequency should be near the plasmon resonance and the
pump frequency should be away from the resonance because
guiding plasmons near the resonance are very sensitive on an
external magnetic field and those away from the resonance
are not sensitive on the external magnetic field, keeping a
moderately low loss to influence the signal effectively. For the
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FIG. 3. Nonreciprocal propagation in the semiconductor wire.
(a) Distribution of the static azimuthal magnetic field H IFE

ϕ induced
by the plasmonic pump field. (b) Distribution of the azimuthal
magnetic field component of the plasmonic signal. The input pump
power is 1 W, the pump frequency is ωp = 0.63ωpl and the signal
frequency is ωs = 0.84ωpl. The corresponding dispersion can be seen
in Fig. 2(c). For the simulation, a small loss of γs = 0.0005ωpl in the
wire has been assumed. A time-harmonic oscillation of azimuthal
magnetic current at z = 0 has been introduced to excite both of up-
ward and downward signals. The plasmonic pump has been excited
by introducing a power of the fundamental mode at the down port.

considered plasmonic structure, a pump mode power of 1 W
corresponds an intensity of about 107 W/cm2 and a fluence of
0.01 mJ/cm2 for a picosecond pulse which is a typical value
in experiments and much smaller than the damage threshold
of solid-state materials [10].

In Figs. 3 and 4, we demonstrated the optically induced
nonreciprocity with numerical simulations. Figure 3(a) shows
the static azimuthal magnetic field induced by the plasmonic
pump power field. Figure 3(b) shows the all-optical diode
function based on the mode cutoff for the forward signal
near the SPP resonances, which was predicted in Fig. 2(c).
A significant loss in the wire has been introduced in Fig. 4 be-
cause the loss reduces the performance of many of plasmonic
devices significantly.

III. DISCUSSIONS AND CONCLUSIONS

We discuss that our findings are promising for all-optical
on-chip nonreciprocal devices based on simple waveguide
structures. There have been intensive studies on optical
nonreciprocity because of its practical importance. The
magnetic-field-induced nonreciprocity is based on the asym-
metric property of nondiagonal permittivity of materials
under an external magnetic field, thus it has no further
requirement on the structure. However, this conventional ap-

FIG. 4. Nonreciprocal propagation with a significant loss in the
semiconductor wire. (a) Distribution of the static azimuthal magnetic
field H IFE

ϕ induced by the plasmonic pump field. (b) Distribution of
the azimuthal magnetic field component of the plasmonic signal.
A pump frequency of ωp = 0.57ωpl, a signal frequency of ωs =
0.76ωpl, an input pump power of P = 300 W and a significant loss
of γs = 0.11ωpl have been used.

proach requires a bulky configuration for excitation of the
external magnetic field, rendering it infeasible for systems
integration. Although the optically induced nonreciprocity
is more appropriate for integrated photonic circuits and all-
optical processing, this approach generally requires more
complicated structures for achieving asymmetric field distri-
butions. The proposed conception in this paper combines both
of the advances of the magnetic-field-induced nonreciprocity
and the optically induced nonreciprocity. Here, we note that
chip-compatible utilization of the IFE is not trivial. Most of
the already proposed configurations for the IFE require the
free-space coupling scheme, thus are not compatible with on-
chip integration. While the plasmonic waveguide structures
are promising for on-chip integration with conventional di-
electric waveguides, a feature necessary for future photonic
nanocircuits, we utilized the recently studied scheme of the
IFE in waveguide structures [21].

We found that semiconductor wires, which provide a very
simple and efficient platform, are spatially asymmetry-free,
however, are naturally biased by a plasmonic pump flow,
resulting in the nonreciprocal properties of the plasmonic
propagation. The rotating electric field vector of the plasmonic
pump in the semiconductor wires act as a static magnetic
field along the azimuthal direction. The static azimuthal mag-
netic field induces a nonlinear wave-number shift of the
fundamental plasmonic mode which has opposite signs for
forward and backward signals. With numerical simulations,
we demonstrated the all-optical diode function exploiting the
mode cutoff for the forward signal near the SPP resonances.
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We note that also in states far away from the SPP reso-
nances, small differences of the nonlinear wave-number shift
for forward and backward signals can be used to provide the

all-optical diode function with the help of a Mach-Zehnder
interferometer. Our findings may open an avenue toward
highly integrated all-optical diodes.

APPENDIX A: DERIVATIONS OF EQ. (4)

Consider two arbitrary modes with the fields �E1(�r), �H1(�r), �E2(�r), and �H2(�r). The time-harmonic sourceless Maxwell
equations for the first mode are

∇ × �E1 = iω �B1, (A1)

∇ × �H1 = −iω �D1. (A2)

Dot multiplying Eq. (A1) with H2 and Eq. (A2) with E2 and then summing gives

�H2∇ × �E1 + �E2∇ × �H1 = −iω( �E2 �D1 − �H2 �B1). (A3)

Applying the same process with interchanged primes yields

�H1∇ × �E2 + �E1∇ × �H2 = −iω( �E1 �D2 − �H1 �B2). (A4)

Subtracting these two equations, we obtain

∇ · ( �E1 × �H2 − �E2 × �H1) = −iω( �E2 �D1 − �E1 �D2 − �H2 �B1 + �H1 �B2). (A5)

If we remind the reader that the time-harmonic fields have been assumed, at the optical frequency ω:

�H2(ω) �B1(ω) = �H2(ω)μ̂1(ω) �H1(ω),

�H1(ω) �B2(ω) = �H1(ω)μ̂2(ω) �H2(ω).

At the optical frequency ω, μ̂1(ω) = μ̂2(ω) = μ0 Î, where Î is the unit tensor. Here, we note that an effect of the static magnetic
field �H IFE by the IFE is not considered for μ̂(ω) and �H (ω) at the optical frequency. An effect of the static magnetic field �H IFE

has been considered for the dielectric permittivity tensor ε̂(ω) because the off-diagonal component of the dielectric permittivity
tensor is proportional to the static magnetic field �H IFE as shown in Eq. (3). Therefore, �H2(ω) �B1(ω) = �H1(ω) �B2(ω) and

∇ · ( �E1 × �H2 − �E2 × �H1) = −iω( �E2 �D1 − �E1 �D2). (A6)

Integration of both terms of Eq. (A6) in the volume between two planes at z and z + �z gives∫
∇ · ( �E1 × �H2 − �E2 × �H1)dV = −iω

∫
( �E2 �D1 − �E1 �D2)dV. (A7)

Using the divergence theorem, we obtain∮
( �E1 × �H2 − �E2 × �H1)d �σ = −iω

∫
( �E2 �D1 − �E1 �D2)dV. (A8)

If �z converges to 0, Eq. (A8) can be rewritten as∫
σ (z+�z)

( �E1 × �H2 − �E2 × �H1) · �zdσ −
∫

σ (z)
( �E1 × �H2 − �E2 × �H1) · �zdσ = −iω�z

∫
( �E2 �D1 − �E1 �D2)dσ.

Rewriting the above equation gives

∂

∂z

∫
( �E1 × �H2 − �E2 × �H1) · �zdσ = iω

∫
( �E1 �D2 − �E2 �D1)dσ. (A9)

APPENDIX B: DERIVATIONS OF EQS. (5) AND (6)

Now we substitute for ( �E1, �H1) and ( �E2, �H2) the unperturbed backward-propagating field ( �E−, �H−) and the perturbed
forward-propagating field ( �E+, �H+) under an external transverse magnetic field, respectively. The external magnetic field
induces a magnetic field �H IFE in the ϕ direction and leads to a perturbation for the mode distribution

�E− = �E−(ρ, ϕ) exp(−ikz),

�H− = �H−(ρ, ϕ) exp(−ikz),

�E+ = ( �E+(ρ, ϕ) + � �E+(ρ, ϕ))exp(i(k + �k)z),

�H+ = ( �H+(ρ, ϕ) + � �H+(ρ, ϕ))exp(i(k + �k)z). (B1)
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From a physical insight on backward- and forward-propagating fields, the components of electric field and magnetic field satisfy
E−

z (ρ, ϕ) = −E+
z (ρ, ϕ), E−

ϕ (ρ, ϕ) = E+
ϕ (ρ, ϕ), E−

ρ (ρ, ϕ) = E+
ρ (ρ, ϕ), H−

z (ρ, ϕ) = H+
z (ρ, ϕ), H−

ϕ (ρ, ϕ) = −H+
ϕ (ρ, ϕ), and

H−
ρ (ρ, ϕ) = −H+

ρ (ρ, ϕ). From the above relations, we derive

�E−(ρ, ϕ) × �H+(ρ, ϕ) − �E+(ρ, ϕ) × �H−(ρ, ϕ) = 2( �E+(ρ, ϕ) × �H+(ρ, ϕ)). (B2)

Using Eq. (B2), we can express the left side of Eq. (A9) in terms of E+
ρ (ρ, ϕ) and H+

ϕ (ρ, ϕ):

∂

∂z

∫
( �E− × �H+ − �E+ × �H−) · �zdσ = ∂

∂z

∫
exp(i�kz)( �E−(ρ, ϕ) × ( �H+(ρ, ϕ) + � �H+(ρ, ϕ))) · �zdσ

− ∂

∂z

∫
exp(i�kz)(( �E+(ρ, ϕ) + � �E+(ρ, ϕ)) × �H−(ρ, ϕ)) · �zdσ

≈ ∂

∂z

∫
exp(i�kz)( �E−(ρ, ϕ) × �H+(ρ, ϕ) − �E+(ρ, ϕ) × �H−(ρ, ϕ)) · �zdσ

= 2i�kexp(i�kz)
∫

( �E+(ρ, ϕ) × �H+(ρ, ϕ)) · �zdσ

= 2i�kexp(i�kz)
∫

E+
ρ (ρ, ϕ)H+

ϕ (ρ, ϕ)dσ .

Now, on the right side of Eq. (A9), the electric displacements are expressed as

�D1 = ε0ε �E−,

�D2 = ε0ε̂ �E+ = ε0(ε �E+ + iα �E+ × �H IFE). (B3)

Using Eq. (B3), we can express the right side of Eq. (A9) in terms of E+
ρ (ρ, ϕ) and H+

ϕ (ρ, ϕ),

iω
∫

( �E− �D+ − �E+ �D−)dσ = iω
∫

( �E−ε0( �D+ + iα �E+ × �H IFE) − �E+ε0 �D−)dσ

= −k0α

η0

∫
�E−( �E+ × �H IFE)dσ

= −k0α

η0
exp(i�kz)

∫
(E−

z (ρ, ϕ)E+
ρ (ρ, ϕ)H IFE − E−

ρ (ρ, ϕ)E+
z (ρ, ϕ)H IFE)dσ

= 2k0α

η0
exp(i�kz)

∫
H IFEE+

ρ (ρ, ϕ)E+
z (ρ, ϕ)dσ .

From both sides of Eq. (A9), we obtain

2i�kexp(i�kz)
∫

E+
ρ (ρ, ϕ)H+

ϕ (ρ, ϕ)dσ = 2k0α

η0
exp(i�kz)

∫
H IFEE+

ρ (ρ, ϕ)E+
z (ρ, ϕ)dσ . (B4)

If we substitute E s
ρ, E s

z and H s
ϕ for E+

ρ (ρ, ϕ), E+
z (ρ, ϕ) and H+

ϕ (ρ, ϕ), we obtain

�k = − ik0α
∫

E s
ρE s

z H IFEdσ

η0
∫

E s
ρH s

ϕdσ
. (B5)

The mode power is expressed as P = 1/2|∫ Re(Ep
ρ Hp

ϕ
∗)dσ | and we obtain

γ = �k

P
= −i2k0α(ωs)

∫
E s

ρE s
z H IFEdσ

η0
∫

E s
ρH s

ϕdσ
∣∣∫ Re

(
Ep

ρ Hp
ϕ

∗)dσ
∣∣ = 2k0α(ωs)α(ωp)

∫
E s

ρE s
z

(
Ep

ρ Ep
z
∗ − Ep

z Ep
ρ

∗)dσ

η0
3
∫

E s
ρH s

ϕdσ
∣∣∫ Re

(
Ep

ρ Hp
ϕ

∗)dσ
∣∣ , (B6)

where H IFE = iα(ωp)ε0/μ0(Ep
ρEp

z
∗ − Ep

z Ep
ρ

∗).
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