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Accessing long timescales in the relaxation dynamics of spins coupled to a conduction-electron
system using absorbing boundary conditions
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The relaxation time of a classical spin interacting with a large conduction-electron system is computed
for a weak magnetic field, which initially drives the spin out of equilibrium. We trace the spin and the
conduction-electron dynamics on a timescale which exceeds the characteristic electronic scale that is set by the
inverse nearest-neighbor hopping by more than five orders of magnitude. This is achieved with a construction
of absorbing boundary conditions, which employs a generalized Lindblad master-equation approach to couple
the edge sites of the conduction-electron tight-binding model to an external bath. The failure of the standard
Lindblad approach to absorbing boundaries is traced back to artificial excitations initially generated due to the
coupling to the bath. This can be cured by introducing Lindblad parameter matrices and by fixing those matrices
to perfectly suppress initial-state artifacts as well as reflections of physical excitations propagating to the system
boundaries. Numerical results are presented and discussed for generic one-dimensional models of the electronic
structure.
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I. INTRODUCTION

The relaxation of a nonequilibrium state of a single or
several local magnetic moments is one of the central issues
in various atomistic spin-dynamics theories [1–5]. In many
cases the local moments are treated as classical spins and the
relaxation process is covered by an atomistic version of the
Landau-Lifshitz-Gilbert (LLG) equation [6]. Such effective
spin-only theories are extremely effective and have proven to
be very successful.

In many cases, however, an explicit treatment of the
coupling of the spins to the conduction-electron system is
necessary and can be described, e.g., with s-d-type models [7].
Those approaches comprise the effective spin-only theories
and can rederive the LLG equation and the Gilbert-damping
parameter using, e.g., perturbative techniques [8–11], or
perturbative or other downfolding approaches within a first-
principles framework [12–16].

An explicit and nonperturbative treatment of the full prob-
lem of coupled spin and electron dynamics on equal footing
becomes necessary, if the exchange interaction J between
the spin and the conduction-electron system is strong, if the
spins are driven fast compared to typical electronic timescales,
or, generally speaking, if the coupled dynamics of spin and
electron degrees of freedom is intricate and cannot be sep-
arated easily. Examples comprise one-dimensional systems,
where the perturbative derivation of Gilbert damping breaks
down [17], or spin prerelaxation effects due to electronic cor-
relations [18], or the feedback of local topological properties
of the fast electron system to the slow spin dynamics [19–21].
Certainly, another general motivation to address the full prob-
lem is the discovery of new physical phenomena.

With the present paper we would like to focus on the tech-
nical aspects and the numerical feasibility of a full, combined
treatment of spin and electron degrees of freedom for a par-
ticular class of problems, as sketched in Fig. 1. We consider
a single classical spin (or a few spins) coupled to a finite
but large system of noninteracting electrons described by a
tight-binding model with nearest-neighbor (NN) hopping on
a lattice of L sites. A one-dimensional geometry is assumed
for simplicity but the discussion will be general. The coupling
is given by a local exchange interaction J at a site i0 of the
lattice, and the system is assumed to be instantaneously kicked
out of its ground state by some strong but local perturbation
at the same site. There is a closed system of equations of
motion [17] determining the real-time dynamics such that, in
principle, this type of problem can be solved (numerically)
exactly. One expects that locally the system decays to its
ground state, i.e., that all local observables in the vicinity of
i0 converge to their ground-state values as time t �→ ∞. For a
single classical spin, the timescale required for the completion
of this process defines the spin-relaxation time τ . Our goal
is the numerically exact computation of τ and of other local
observables in the interaction region close to i0 by solving the
equations of motion for coupled spin and electron dynamics
explicitly.

While this type of calculation provides the maximum in-
formation on the system, it runs into computational troubles,
when the relevant timescale, e.g., the spin-relaxation time,
becomes large compared to L/v, where v is the character-
istic velocity, at which energy- and spin-carrying excitations
propagate through the electron system. Namely, since energy
and spin are conserved quantities, the excitation energy and
the excess spin must be completely transported away from

2469-9950/2020/102(11)/115434(11) 115434-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8387-4437
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.115434&domain=pdf&date_stamp=2020-09-25
https://doi.org/10.1103/PhysRevB.102.115434


MICHAEL ELBRACHT AND MICHAEL POTTHOFF PHYSICAL REVIEW B 102, 115434 (2020)

conduction-electron system

spin(s)

local 
excitation

energy
dissipation

FIG. 1. Relaxation of a single spin or a few spins interacting with
a large conduction-electron system after an initial local excitation. In
the long-time limit, the spin-electron system is expected to reach its
ground state locally, i.e., in the vicinity of the impurity spin(s), since
the excitation energy is completely dissipated to the bulk.

i0 during the relaxation process and must be fully dissipated
into the macroscopically large electron system. Thus, the dis-
sipation rate sets a bound on τ . As the computational effort
scales about cubic with the system size L, long-time relaxation
processes cannot be treated exactly.

Calculations are spoiled by unwanted reflections of exci-
tations, which backpropagate and interfere with the system
dynamics in the interaction region. This type of problem is
well known in atomic, molecular, and optical physics, where
an unbound quantum system under study is conceptually de-
composed into an interaction region of finite spatial extent and
an asymptotic region where the (single-particle) wave func-
tion has some asymptotic form, and where it is desirable to
focus on the dynamics in the interaction region only. This can
be achieved by imposing absorbing boundary conditions (ab-
sorbing BCs), which minimize reflections from the edge of the
core physical system represented on a numerical grid [22]. In
most cases, one uses a complex absorbing potential (CAP) as
an additional non-Hermitian term in the Hamiltonian, which
is optimized with respect to its reflection properties [23]. In
the context of wave equations this is also known as perfectly
matched layers [24]. Such techniques are widely used but
become problematic for systems with more than a single quan-
tum particle [25] since, if particles are lost, the Schrödinger
equation with a CAP is not able to consistently describe the
remainder of the system.

A consistent formalism can be based on Markovian quan-
tum master equations of the Lindblad type [26,27], which
focus on the many-body statistical operator ρ̂(t ) rather than
on the single-particle wave function of the quantum system
and which preserve the trace, Hermiticity, and positivity of
ρ̂(t ) and thus respect the usual probability interpretation. In
derivations of the Lindblad equation a couple of approxima-
tions must be made, such as assuming a weak system-bath
interaction or the Born-Markov approximation (see, e.g.,
Refs. [28–30]).

Hence, we will merely use the master-equation approach
to construct absorbing BCs, i.e., the different approximations
are controlled by choosing a setup where the central region of
interest, which is initially excited by a local perturbation, is
surrounded by a sufficiently large core region and finally by
a boundary region where local Lindblad operators couple to
the bath degrees of freedom and which must be large enough

to fully absorb excitations emitted from the central part. If
perfectly absorbing BCs can be constructed, one may in fact
obtain the exact relaxation dynamics in the central part.

A similar idea has been applied recently [31] to compute
the steady-state properties of strongly correlated electron sys-
tems out of equilibrium. The required numerical solution of
the Lindblad equation for interacting impurity systems can
be carried out, e.g., with an exact-diagonalization approach
in the superfermion representation of the Lindbladian [32].
This requires auxiliary degrees of freedom and thus enlarges
the Hilbert space, which, due to the two-body (Coulomb)
interaction terms, is large anyway, such that the numerical
implementation of Lindblad-type absorbing BCs can be-
come quite demanding in practice. For one-dimensional and
impurity systems, density-matrix renormalization-group tech-
niques are very powerful [33–35].

Actually, the Lindblad approach to absorbing BCs appears
to be perfectly suited for impurity models, where classical
degrees of freedom are coupled to an uncorrelated electron
system. With the present study we focus on a system con-
sisting of a single classical spin coupled to noninteracting
conduction electrons with the goal to further develop the idea
of absorbing BCs. We will demonstrate that the Lindblad
approach can straightforwardly be adapted to the noninter-
acting case. Surprisingly, however, we find that the resulting
absorbing BCs are not useful as demonstrated by comparing
with results for open BCs obtained for short propagation
times. While the coupling to the bath is found to almost
perfectly suppress the unwanted reflections from the system
boundaries, standard choices for the Lindblad parameters also
induce unwanted artifacts, namely excitations generated ini-
tially at the boundaries, which are then propagating towards
the core system and interfering with the physical dynam-
ics. We therefore suggest to extend the Lindblad theory by
considering Lindblad parameter matrices and by fixing those
parameters such that a perfect suppression of the mentioned
artificial initial excitations is achieved. This requires one to
adapt the parameters to the system’s initial state. It is demon-
strated that this approach leads to convincing results.

The paper is organized as follows: Section II introduces the
model and the fundamental equations of motion. Section III
discusses the standard Lindblad approach to absorbing BCs
and demonstrates its limitations. These are overcome with
the BCs introduced in Sec. IV. In Sec. V we discuss results
demonstrating the progress made, and the conclusions are
given in Sec. VI.

II. MODEL AND EQUATIONS OF MOTION

The generic model to discuss spin-relaxation dynamics is
the s-d exchange model [7] where the spin S = (Sx, Sy, Sz ) =
S(t ) is treated as a classical dynamical variable, i.e., as a
classical vector of fixed length S = 1

2 . The spin is coupled to
a system of noninteracting conduction electrons via a local
antiferromagnetic exchange interaction. The electron system
serves as a large reservoir for the dissipation of energy and
spin. It is specified by the hopping Ti j between the sites
i, j = 1, . . . , L of a chain consisting of L sites. Throughout
the study we consider hopping Ti j = −T with T > 0 between
nearest neighbors i and j only. We assume half filling with
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FIG. 2. Sketch of the system geometry: A classical spin S of
length |S| = 1

2 is coupled via a local antiferromagnetic exchange
interaction J to a noninteracting system of electrons on a chain of L
sites. The hopping between nearest-neighboring sites is −T . LB sites
on the left and LB sites on the right edge are coupled to a bath. The
spin is located at the chain center and subjected to a local magnetic
field B. Suddenly flipping the field direction induces the real-time
dynamics.

N = L electrons in an isolated system with open boundary
conditions (open BCs). Half filling is also maintained when
introducing a coupling of the sites close to the chain edges
to an external bath in Sec. III. Figure 2 provides a sketch of
the system. The corresponding Hamiltonian (with open BCs)
reads

H =
∑
i jσ

Ti jc
†
iσ c jσ + JSsi0 − SB. (1)

Here, c jσ annihilates an electron at site j with spin pro-
jection σ =↑,↓. The classical spin couples locally with
strength J > 0 to the local spin of the electron system,
si0 = 1

2

∑
σσ ′ c†

i0σ
τσσ ′ci0σ ′ , at site i0 of the chain, where τ =

(τx, τy, τz ) is a vector whose components are the Pauli spin
matrices. Furthermore, the model includes an external local
magnetic field B, which can be used to drive the classical spin.
Note that this does not couple to the electronic degrees for
freedom. The energy scale and (with h̄ ≡ 1) the timescale is
set by choosing T = 1.

Since the electron system is noninteracting, Wick’s the-
orem applies, and all correlation functions factorize into
one-particle correlations. A closed system of equations of
motion,

d

dt
S(t ) = J〈si0〉t × S(t ) − B × S(t ) (2)

and

i
d

dt
ρ(t ) = [T eff (t ), ρ(t )], (3)

can be obtained for the classical spin S = S(t ) and for the one-
particle reduced density matrix ρ = ρ(t ) with elements

ρiσ i′σ ′ (t ) = 〈�(t )|c†
i′σ ′ciσ |�(t )〉, (4)

where |�(t )〉 is the many-body quantum state of the electron
system, where 〈si0〉t = 〈�(t )|si0 |�(t )〉 = 1

2

∑
σσ ′ τσσ ′ρi0σ ′i0σ ,

and where the effective hopping matrix T eff in Eq. (3) is given
by the elements

T (eff)
iσ i′σ ′ (t ) = Tii′δσσ ′ + δii′

J

2
S(t )τσσ ′ (5)

(see Refs. [17,36] for a derivation and further details).

Suppose that initially the system is in its ground state for
a given external field direction B0. The formal purpose of the
field is twofold: First, it breaks the SO(3) degeneracy of the
ground state. Second, it will be employed to initiate the real-
time dynamics at time t = 0, namely by suddenly switching
the field direction: B0 → B. This sudden switch causes a local
excitation of the system in the vicinity of site i0. In the course
of time, the system is expected to relax such that the ground
state will be restored locally. This requires that conserved
quantities, i.e., energy and spin, must be transported away
from i0 and is in fact seen in the numerical solution of the
equations of motion (2) and (3): Excitations are emitted from
i0 and propagate ballistically at a velocity v = O(T ) set by
the nearest-neighbor hopping. Assuming that the spin couples
to the middle of the chain, i.e.,

i0 = (L + 1)/2, (6)

for odd L, this implies that after a time ∼L/v, the emitted
excitations have reached the system boundaries, have been
reflected, and, after backpropagation, interfere with the local
dynamics in the vicinity of site i0.

To avoid this unwanted finite-size effect in a practical
calculation, a sufficiently large system is required. If one is
interested in tracing the time evolution of the spin from the
instant of the initial excitation to the fully relaxed final state,
a system size L ∼ vτ = O(T τ ) is required. Here, τ is the
spin-relaxation time. For a metallic state with v ≈ 2T [17],
complete spin relaxation could be observed in computations
for chains as long as L = O(103) sites, but only at compara-
tively strong fields B = O(T ). At weaker B or for insulating
states, however, the spin-relaxation time is expected to be
possibly several order of magnitudes longer. Since the com-
putational effort for the numerical solution of the equations
of motion scales as L3 for large systems, such timescales
103/T cannot be reached in practice with the present theo-
retical setup.

III. CONSTRUCTION OF ABSORBING BOUNDARIES

A major goal of this paper is to construct system bound-
aries, which absorb the outgoing excitations emitted from the
chain center. The boundaries shall prevent any reflections to
avoid the unwanted interference with the time evolution of
local observables close to the central site i0, such that their
real-time dynamics in a sufficiently large environment of i0 is
practically indistinguishable from the dynamics of an infinite
system (L → ∞). To this end we couple the outermost LB

sites on the left and on the right edge of the chain to a suitable
bath, while the remaining L − 2LB sites are left untouched.
Typically we take LB � L. The model is displayed schemati-
cally in Fig. 2.

As a suitable framework for the construction of the
absorbing boundaries, we consider the Lindblad master equa-
tion [26,27]

d

dt
ρ̂(t ) = −i[H, ρ̂(t )] +

∑
μ

(2Lμρ̂(t )L†
μ − {L†

μLμ, ρ̂(t )})

(7)
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for the many-body statistical operator ρ̂(t ). This appears as
an attractive approach to construct absorbing boundaries as
it preserves fundamental properties of the statistical operator,
namely for all times t we have tr ρ̂(t ) = 1, ρ̂(t )† = ρ̂(t ), and
ρ̂(t ) � 0. In Eq. (7) the first term on the right-hand side is
the von Neumann term describing the system’s unperturbed
dynamics while the second one models the coupling to an
external bath via Lindblad operators Lμ. Here, {·, ·} stands for
the anticommutator.

Typically, the Lindblad operators are non-Hermitian and
local. Here, we choose Lμ = L(r)

iσ with r = 1, 2 and further-
more

L(1)
iσ =

∑
i′σ ′

α
(1)
iσ i′σ ′ ci′σ ′ , L(2)

iσ =
∑
i′σ ′

α
(2)∗
iσ i′σ ′ c†

i′σ ′ , (8)

i.e., we consider arbitrary linear combinations of annihilators
or creators, respectively. With this choice, one introduces a
large number of unknown parameters to the theory, even if
one takes into account that the sums over i′ are restricted to
those sites coupling to the bath. We will later see how these
parameters are fixed in a satisfactory way. In standard cal-
culations one typically employs r-independent and diagonal
matrices α

(r)
iσ i′σ ′ ∝ δii′δσσ ′ to keep the number of parameters at

a reasonable level.
For the present case of a noninteracting electron system,

the Lindblad equation (7) for the statistical operator ρ̂(t ) can
be strongly simplified and reformulated as a 2L × 2L matrix
equation for the one-particle reduced density matrix ρ(t ) [see
Eq. (4)]. This is easily achieved by multiplying Eq. (7) with
c†

i′σ ′ciσ from the right, by taking the trace, and using that
tr[ρ̂(t )c†

i′σ ′ciσ ] = ρiσ i′σ ′ (t ). We first get

d

dt
ρiσ i′σ ′ (t ) = −i tr([H, ρ̂(t )] c†

i′σ ′ciσ ) +
∑

jτ j′τ ′ j′′τ ′′
α

(1)
jτ j′τ ′ tr (2c j′τ ′ ρ̂(t )c†

j′′τ ′′c
†
i′σ ′ciσ − {c†

j′′τ ′′c j′τ ′ , ρ̂(t )}c†
i′σ ′ciσ )α(1)∗

jτ j′′τ ′′

+
∑

jτ j′τ ′ j′′τ ′′
α

(2)∗
jτ j′τ ′ tr (2c†

j′τ ′ ρ̂(t )c j′′τ ′′c†
i′σ ′ciσ − {c j′′τ ′′c†

j′τ ′, ρ̂(t )}c†
i′σ ′ciσ )α(2)

jτ j′′τ ′′ . (9)

Exploiting the cyclic invariance of the trace and using tr[ρ̂(t )O] = 〈O〉t for an operator O, we find

d

dt
ρiσ i′σ ′ (t ) = −i

∑
jτ

(
T (eff)

iσ jτ (t )ρ jτ i′σ ′ (t ) − ρiσ jτ (t )T (eff)
jτ i′σ ′ (t )

)

+
∑

jτ j′τ ′ j′′τ ′′
α

(1)
jτ j′τ ′ (2〈c†

j′′τ ′′c
†
i′σ ′ciσ c j′τ ′ 〉 − 〈c†

j′′τ ′′c j′τ ′c†
i′σ ′ciσ 〉 − 〈c†

i′σ ′ciσ c†
j′′τ ′′c j′τ ′ 〉)α(1)∗

jτ j′′τ ′′

+
∑

jτ j′τ ′ j′′τ ′′
α

(2)∗
jτ j′τ ′ (2〈c j′′τ ′′c†

i′σ ′ciσ c†
j′τ ′ 〉 − 〈c j′′τ ′′c†

j′τ ′c
†
i′σ ′ciσ 〉 − 〈c†

i′σ ′ciσ c j′′τ ′′c†
j′τ ′ 〉)α(2)

jτ j′′τ ′′ . (10)

The first term on the right-hand side reproduces the equation of motion (3), while the remaining ones can be simplified using
the standard Fermi anticommutator rules. This results in the following equation of motion,

d

dt
ρiσ i′σ ′ (t ) = −i

∑
jτ

(
T (eff)

iσ jτ (t )ρ jτ i′σ ′ (t ) − ρiσ jτ (t )T (eff)
jτ i′σ ′ (t )

) −
∑
jτ j′τ ′

α
(1)
jτ i′σ ′ρiσ j′τ ′α

(1)∗
jτ j′τ ′ −

∑
jτ j′τ ′

α
(1)
jτ j′τ ′ρ j′τ ′i′σ ′α

(1)∗
jτ iσ

−
∑
jτ j′τ ′

α
(2)∗
jτ iσ ρ j′τ ′i′σ ′α

(2)
jτ j′τ ′ −

∑
jτ j′τ ′

α
(2)∗
jτ j′τ ′ρiσ j′τ ′α

(2)
jτ i′σ ′ + 2

∑
jτ

α
(2)∗
jτ iσ α

(2)
jτ i′σ ′, (11)

which can be written in matrix form:
d

dt
ρ(t ) = −i[T eff (t ), ρ(t )] − ρ(t )α†

1α1 − α†
1α1ρ(t ) − α†

2α2ρ(t ) − ρ(t )α†
2α2 + 2α†

2α2. (12)

We define the Hermitian and non-negative matrices

γ = α†
1α1 + α†

2α2, � = α†
2α2, (13)

such that the equation reads as

d

dt
ρ(t ) = −i[T eff (t ), ρ(t )] − {γ, ρ(t )} + 2�. (14)

This replaces Eq. (3). Note that the effective hopping matrix
depends on S(t ), and thus Eq. (14) must still be supplemented
by the equation of motion (2) for the classical spin.

Equations (2) and (14) describe the relaxation of the system
after an initial excitation of the localized spin. In the core
system, i.e., for LB < i < L + 1 − LB, conservation laws hold

locally. Hence, energy, spin, and particles are transported to
the chain edges and dissipated to the external baths for finite
Lindblad coupling parameters �, γ . The Lindblad parameters
are taken to be nonzero at the boundaries only.

To test the quality of the absorbing boundaries imple-
mented with the standard Lindblad equation and generic
Lindblad paramters, we consider a manifestly particle-hole
symmetric electron system at half filling, i.e.,

∑
σ ρiσ iσ (t ) = 1.

For the sake of simplicity, we assume diagonal coefficient ma-
trices αr with real spin- and r-independent diagonal elements,

α
(r)
iσ i′σ ′ = δii′δσσ ′αi. (15)

115434-4



ACCESSING LONG TIMESCALES IN THE RELAXATION … PHYSICAL REVIEW B 102, 115434 (2020)

10−1 100 101 102 103

time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

S

Sx

Sz

open BC

                   
absorb. BC

L=47

absorb. BC
L=47

open BC
L=1001

FIG. 3. Time evolution of the z and the x component of the clas-
sical spin coupled to an electron system with NN hopping −T at half
filling after a sudden switch of the local magnetic field from the x to z
direction (see text for details). Red/orange lines: Standard theory for
a chain with open boundary conditions (open BCs) with L = 1001
sites (i0 = 501, J = 1, B = 1). Green/blue lines: Calculation with
absorbing boundaries (absorbing BCs) [Eqs. (2), (14), (15), and (17)]
for L = 47 (i0 = 24, J = 1, B = 1, LB = 5, �min = 0.2). Energy and
timescales set by T = 1, h̄ = 1.

This implies γ = 2� and �iσ i′σ ′ = δii′δσσ ′�i. With this stan-
dard choice, particle-number conservation is maintained as is
easily verified by taking the trace of both sides of Eq. (14) and
noting that 〈N〉 = tr ρ(t ). We furthermore set the parameters
either as constant,

�i = � > 0, (16)

for all sites coupling to the external bath, or choose them to
increase linearly with increasing distance to the outermost
sites of the core system,

�i =

⎧⎪⎨
⎪⎩

(LB + 1 − i)�min, i � LB,

0, LB < i < L + 1 − LB,

[i − (L − LB)]�min, i � L + 1 − LB,

(17)

with �min > 0, and use � or �min to optimize the absorbing
properties of the coupling to the bath.

To check the effect of absorbing boundaries, we compare
numerical results obtained with the standard theory for a large
system (L = 1001) and open BCs to results obtained with
Eq. (14) for a much smaller system (L = 47) and absorbing
BCs (see Fig. 3). For the integration of the equations of motion
a high-order Runge-Kutta technique with variable step size is
employed. We set J = 1 and B = 1, as we expect a compar-
atively short spin-relaxation time τ for this choice of model
parameters. The local magnetic field is suddenly switched
from the x to z direction to initiate the dynamics, i.e., we
prepare the system in its ground state for B0 pointing in the
x direction by diagonalization of the effective hopping matrix
and by filling the effective one-particle eigenstates up to the
Fermi level to reach half filling. For the subsequent dynamics
starting at t = 0, the field B points into the z direction.

In the case of open BCs, the x component of the classical
spin immediately starts to oscillate (see Fig. 3). Together
with the y component (not displayed), this just reflects the
Larmor precession of the spin around the field direction. The

precession frequency is ω ≈ B. Looking at the z component
we see that the spin relaxes to the new field direction on a
timescale of t ≈ 200. Our physical expectation is that after
reaching its new ground-state direction, the spin dynamics
should basically stop. As can be seen in Fig. 3, however, there
is an unphysical revival of the dynamics for t � 500. Further
revivals at still later times are expected as well. These are in
fact caused by the effect of excitations reaching the site i0 after
back reflection from the system boundaries. The timescale for
this unwanted artifact is approximately given by twice the
distance of i0 to the edges of the system size, 2 × L/2 ≈ 1000,
divided by the Fermi velocity vF = 2.

Let us now compare with the results obtained for the
small system (L = 47) with absorbing BCs. We employ the
model with linearly increasing coupling parameters, Eq. (17),
starting with �min = 0.2 and use LB = 5 absorbing sites on
each edge, such that the core system has L − 2LB = 37 sites.
We find that, initially, up to about t = 10, the dynamics is
reproduced more or less correctly. For t < 10, there are tiny
deviations, which are most clearly seen in the z component
of the spin. These could be attributed, e.g., to the coarser
description of the initial Fermi-sea ground state. The main
effect for t � 10, however, appears to be again related to the
presence of the boundaries as becomes obvious when compar-
ing calculations for different system sizes L (not displayed).
Compared to the results for open BCs, these deviations must
obviously show up much earlier, at about t = 23, due to the
much shorter distance to the edges (L = 47 vs L = 1001). We
find, however, that they come even earlier by about a factor of
2.

At later times t � 100, the predicted dynamics deviates
strongly and full spin relaxation, if present at all, is massively
delayed with τ  1000. We conclude that absorbing BCs,
naively derived from the Lindblad approach with a standard
parameter choice, lead to an unacceptable impact on the spin
(and electron) dynamics. Note, however, that there are in fact
no visible effects, which hint to reflections from the bound-
aries. Hence, the presently discussed absorbing BCs do absorb
the outgoing excitations, but at the same time strongly disturb
the time evolution. Let us point out that this does not depend
very much on the parameter choice as has been checked by
varying �min and LB. Also for spatially constant parameters
[see Eq. (16)], the results do not improve or get worse signifi-
cantly.

Our strategy in the following is to find the cause of the
problem and to modify the absorbing boundary conditions
accordingly. Figure 4 displays the initial one-particle reduced
density matrix at time t = 0. The density matrix at time
t = 0 is constructed as the ground-state density matrix for
B0 = ex, i.e., for the classical spin pointing in the x direction.
Since J > 0, the electron magnetic moment at i0 is antiferro-
magnetically oriented. We see that ρiσ iσ = 0.5 for all sites,
corresponding to half filling. Further, ρi↑i↓ = ρi↓i↑ for an x-
polarized state. The site off-diagonal elements ρiσ i′σ with i �=
i′ show a damped oscillation with increasing distance |i − i′|.
Close to i0 and particularly close to the chain edges, there are
some Friedel-like oscillations of the diagonal elements ρiσ iσ

as a function of i. The oscillations induced by the edges are
strongly damped, such that the density-matrix elements close
to the center are essentially unaffected.
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FIG. 4. Initial one-particle reduced density matrix at time t = 0
for a system with L = 47 sites, open BCs, and the impurity spin at
the central site i0 = (L + 1)/2 pointing in the x direction. The color
coding is indicated by the bar on the right side. Exchange coupling
J = 1. We display the elements ραβ of ρ using the combined site-
spin (“orbital”) index α ≡ 2i − 1

2 (1 + zσ ) = 1, . . . , 2L with z↑ =
+1, z↓ = −1.

Figure 5 shows the time evolution of the density-matrix
elements for a system with L = 47 sites. As compared to

the initial density matrix ρ(0) the time-dependent deviations
of the matrix elements, ρ(t ) − ρ(0), are typically smaller by
more than an order of magnitude (note the different scales
encoded with the color plots in Figs. 4 and 5). Hence, only (the
real part of) the difference is plotted. For open BCs (middle
panel of Fig. 5) we see an overall oscillation of elements ρiσ i′σ ′

with i, i′ close to i0 (central site) with a period approximately
given by 2π/ωL, where ωL = B = 1 is the Larmor frequency.
More important, however, one finds spin-dependent excita-
tions being emitted from the central region. These oscillate
with the same frequency but are phase shifted depending
on the distance to i0, i.e., we see a propagation of a wave
packet through the lattice. This propagation is found to be
equally pronounced for the spatially diagonal (i = i′) elements
of ρiσ i′σ ′ as well as for the off-diagonal ones. At later times
t , approximately given by the distance L/2 divided by the
Fermi velocity vF = 2, i.e., t � 10, the excitations reach the
edges, are back reflected and, for still later times, lead to
the unwanted interference with the relaxation dynamics close
to i0.

For the same system but with absorbing BCs based on
the Lindblad approach with a standard parameter choice,
Eqs. (14), (15), and (17), there are several defects that are un-
covered with the upper panel of Fig. 5. First, the comparison
of results for open and absorbing BCs at early times shows
that the presence of the coupling to the bath induces artificial
excitations, which start close to the edges and propagate to
the central region with Fermi velocity and finally, at times
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FIG. 5. Time dependence of the one-particle reduced density matrix for a system of L = 47 sites. The color code (see bottom) quantifies
the real part of the difference to the initial density matrix, Re[ρ(t ) − ρ(0)], at selected instants of time (see the time labels at the top).
Representation of the elements ραβ as in Fig. 4 using the orbital index α = 2i − 1

2 (1 + zσ ) = 1, . . . , 2L. Middle panel: System with open BCs.
Upper panel: Same system but with absorbing BCs based on the standard Lindblad approach [Eqs. (14), (15), and (17)]. Lower panel: Same
system but with modified absorbing BCs (see text). Other parameters as in Figs. 3 or 6, respectively.
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≈(L/2)/vF, interfere with the spin-relaxation dynamics close
to i0. This actually explains the different time evolution of the
classical spin in Fig. 3 for times t � (L/2)/vF ≈ 12. This arti-
fact stems from bath contributions to the equations of motion,
which are nonzero in the initial state at t = 0 and must be
avoided by an improved model for the coupling to the bath.

Second, as a consequence of the damping terms in the
equation of motion (14) for the one-particle reduced density
matrix, we see that all its nondiagonal elements i �= i′ are
exponentially approaching zero. In the full dynamics, on the
other hand, this is not the case at all. Especially the elements
with i′ = i ± 1, have a considerable absolute magnitude at
t = 0 (Fig. 4), and essentially do not decrease in the course
of time.

Finally, absorbing BCs based on the standard Lindblad ap-
proach do not introduce absorption of excitations propagating
along the antidiagonal of the density matrix. Such excitations
on the antidiagonal, however, are clearly seen in the middle
panel of Fig. 5 and are actually of the same order of magni-
tude as compared to the diagonal. Hence, absorption of both
diagonal and antidiagonal excitations reaching the edges must
be included in a modified coupling to the bath.

IV. IMPROVED ABSORBING BOUNDARIES

To analyze their origin and to remove the artifacts, we first
consider the equation of motion (14) at time t = 0. For a
quench of the magnetic field direction, the density matrix ρ(t )
commutes with the effective hopping matrix T eff (t ) at t = 0.
For an infinite system or for a system with open boundaries,
this would imply dρ(t )/dt |t=0 = 0. Note that there is a finite
torque on the local impurity spin that initiates the dynamics,
and the updated impurity-spin direction will impact ρ(t ) for
t > 0. With standard Lindblad boundaries, however, there is a
nonzero time derivative of ρ(t ) already at t = 0,

d

dt
ρ(t )|t=0 = −{γ, ρ(0)} + 2� , (18)

which gives rise to dynamics due to the mere presence of the
bath and which starts from the system boundaries. Avoiding
this artificial cause of dynamics implies the following condi-
tion on the Lindblad parameters,

� = 1
2 {γ, ρ(0)}, (19)

i.e., we must necessarily choose the parameters dependent
on the initial system state. Furthermore, this condition also
implies an r-dependent choice of the coefficient matrices αr

[see Eq. (13)]. Using Eq. (19) to eliminate �, the resulting
equation of motion reads

d

dt
ρ(t ) = −i[T eff (t ), ρ(t )] − {γ, ρ(t ) − ρ(0)}. (20)

We emphasize that all properties that are constitutive for the
general Lindblad approach apply to this equation as well, as it
exactly derives from the fundamental Lindblad equation (7)
by merely specializing to a noninteracting electron system
and by a special parameter choice only. Particularly, Eq. (20)
therefore respects the Hermiticity and the non-negativity of
ρ(t ) at all times t .

However, there are restrictions for the choice of the pa-
rameter γ , which must be taken care of. To discuss this, let
us first construct the general formal solution of Eq. (20),
assuming that the impurity spin S(t ) and thus the time de-
pendence of T eff (t ) is given. Equation (20) represents a linear
inhomogeneous system of first-order ordinary differential
equations. The corresponding homogeneous system, d

dt ρ(t ) =
−i[T eff (t ), ρ(t )] − {γ, ρ(t )}, can be written as i(d/dt )ρ =
�ρ − ρ�† with � ≡ T − iγ and is thus solved by
ρ = Uρ0U

† for the initial condition ρ(t = 0) = ρ0. Here,
U = U (t ) = U (t, 0) with U (t, t ′) = T exp [−i

∫ t
t ′ dτ�(τ )]

(for t > t ′) is a nonunitary time-evolution matrix formally
constructed with the help of the time-ordering operation
T . A special solution of the inhomogeneous system is
easily obtained with the ansatz ρ = U ρ̃U†. We find ˙̃ρ =
U−1{γ, ρ0}U†−1. The desired special solution with initial
condition ρ̃(t = 0) = 0 is obtained by integration and back
transformation from ρ̃ to ρ. Adding the solution of the homo-
geneous system, we finally obtain

ρ(t ) = U (t, 0)ρ(0)U (t, 0)†+
∫ t

0
dτ U (t, τ ){γ, ρ(0)}U (t, τ )†.

(21)

Note that for finite damping γ the backwards time evolution
U (t, t ′)−1 = U (t ′, t ) = T̃ exp [−i

∫ t ′

t dτ�(τ )] (for t > t ′ and
with the antichronological ordering T̃ ) is generally different
from the adjoint of the time evolution U (t, t ′)† �= U (t ′, t ). Due
to the nonunitarity of U , damping is not only described by the
second term including a memory effect but also by the first
one.

One immediately sees that ρ(t ) is Hermitian and non-
negative for all t , if (i) the anticommutator {γ, ρ(0)} is
non-negative, and if (ii) γ is Hermitian. Furthermore, we must
have (iii) γ � 0 to ensure that the first “homogeneous” term
remains bounded for t → ∞. The conditions (i) and (iii) are
also obvious from Eqs. (13) and (19).

All conditions (i)–(iii) can be satisfied as follows: We
diagonalize the initial density matrix, ρ(0) = V †nV , with a
unitary matrix V . The elements of the diagonal matrix n,
the natural occupations, are non-negative since ρ(0) � 0. The
rows of V are the corresponding natural orbitals. Note that,
for an infinite and translationally invariant system, the natural
orbitals are delocalized states and labeled by a wave vector.
Hence, for a finite but large L we expect them to be rather
delocalized as well. Using V , we can now define γ ≡ V †gV ,
where g is a real, non-negative, and diagonal matrix. With
this choice, we immediately have γ† = γ and γ � 0, i.e.,
conditions (ii) and (iii) are satisfied. Furthermore, since γ

and ρ(0) are, by construction, simultaneously diagonalized by
the same unitary transformation V , they must commute. This
immediately implies condition (i). The remaining degrees of
freedom, the elements of the diagonal matrix g, should be
used to localize γ close to the system boundary. Strictly
speaking, we need to satisfy O[(L − LB)2] conditions of the
form γii′σσ ′ = 0 for i, i′ in the core system, having only O(L)
parameters at our disposal. While this is not an obstacle in
principle, it would imply that the boundary region with finite
coupling to the bath extends over almost the whole system and

115434-7



MICHAEL ELBRACHT AND MICHAEL POTTHOFF PHYSICAL REVIEW B 102, 115434 (2020)

that the remaining core system is comparatively small. From
a computational point of view this is highly inconvenient.

In practice, it has turned out, however, that a more prag-
matic and much simpler procedure is fully satisfying. We take
γ as diagonal right from the start and set γiσ = γ with γ > 0
for a small number of sites 2LB coupling to the external bath
and γiσ = 0 else. Alternatively, a linear γ profile, analogous
to Eq. (17), may be employed. This implies that generically
γ does not commute with ρ(0), and hence 2� = {γ, ρ(0)}
[see Eq. (19)] may develop negative eigenvalues. While there
are negative eigenvalues of 2� indeed, as is easily seen nu-
merically, these have a small modulus for all cases studied
and particularly for setups with a small boundary and a large
core region, i.e., for the conceptually and computationally
attractive case. Causality problems, such as negative densities
ρiσ iσ < 0, have not been observed. One may also relax the
condition (19) and replace the initial density matrix by the
J = 0 density matrix for the computation of �, with the idea to
work with a spin-independent � matrix. Again, this is unprob-
lematic in practice, as the finite coupling to the classical spin
does not affect the density-matrix elements in the boundary
region substantially if L is reasonably large.

To test the construction of absorbing BCs, we solve the
coupled system of Eqs. (2) and (20) for the comparatively
small system with L = 47 sites. The lower panel of Fig. 5
displays the time evolution of the one-particle reduced density
matrix as obtained with the modified absorbing BCs. Com-
paring with the results obtained for open BCs (middle panel)
at early instants of time (t � 9) and in the central region for
i, i′ close to i0, only marginal differences are found, which are
by far too small to be visible in the figure. In particular, all
fine details of the spatial structure of the density matrix are
reproduced correctly.

For later times (see t = 20, for example) there are still
no deviations in the central region. This is as desired. In
the calculation with open boundaries, we expect unphysical
interference effects only for times t � 2i0/vF ≈ 23. Off the
central region, however, artifacts start for t = 20 and also for
earlier times, e.g., t = 14, but only for sites i and i′ far from
the central site i0, both on the diagonal and the antidiagonal
(see, e.g., the middle panel for t = 14, around i = 1, i′ = 1
and around i = 1, i′ = L). On the other hand, the calculations
with modified absorbing BCs are entirely free from those
artifacts. Comparing with the simple absorbing BCs based on
the naive application of the Lindblad approach (upper panel),
demonstrates the progress made, in particular if one takes into
account the fact the small scale of differences to the initial-
state (t = 0) density matrix.

We conclude that the absorption of the outgoing excitations
is perfectly accomplished with our approach [Eq. (20)] and
that therefore the temporal development of the density matrix
in the physical core of the system indeed reflects the temporal
development of the infinite system very accurately.

This is also nicely seen in the resulting relaxation dy-
namics of the classical spin. In Fig. 6 we compare S(t ) as
obtained from the calculation for the small system with L =
47 sites and with the new absorbing BCs to corresponding
results of a calculation with open BCs but for a much larger
system (L = 1001). For the chosen system parameters the
spin-relaxation time amounts to τ ≈ 200 inverse hoppings.
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FIG. 6. Time evolution of the z and the x component of the
classical spin as in Fig. 3 but here the results of the standard theory
(red/orange lines) for open BCs and L = 1001 are compared to
those obtained for L = 47 sites (green/blue lines) with modified BCs
(linear profile and γmin = 0.2). Other parameters as in Fig. 3.

We note that for t � τ artificial interference with excitations
back reflected from the edges manifests itself in an unphysical
revival of the dynamics starting at t ≈ 500 inverse hoppings
in the calculation done for open BCs, while there is no such
effect visible for modified absorbing BCs. For times shorter
than t ≈ 500, the agreement between the results obtained for
L = 1001 (open BCs) and for L = 47 sites (absorbing BCs)
is not perfect but extremely good, such that deviations are
more or less invisible on the scale of the figure. Remaining
discrepancies can be eliminated systematically by increasing
the core system size.

V. ACCESSING LONG TIMESCALES

The benefit of the absorbing BCs is that much longer
timescales are accessible. This is demonstrated with Fig. 7,
which displays the relaxation time τ as a function of the
magnetic field strength B. For convenience the classical spin is
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FIG. 7. Relaxation time τ as a function of 1/B. Calculations for
i0 = 1 (spin couples to the “left” edge), L = 46, J = 1, and modified
BCs for the “right” edge (linear profile, γmin = 0.2, LB = 5).
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coupled to the first site of the chain, i0 = 1, and the absorbing
BCs are implemented, with LB = 5 sites coupling to the bath,
for the opposite edge. We define τ pragmatically as the time
required for Sz(t ) to reach 95% of its fully relaxed value
Sz(t → ∞) = 0.5. As can be seen in the figure, for very weak
fields, down to B = 1 × 10−4, the relaxation time approaches
τ ≈ 250 000 in units of the inverse hopping parameter, i.e.,
the coupled microscopic real-time dynamics of the spin and
the conduction-electron system can be traced on a timescale,
which is by more than five orders of magnitude longer than
the intrinsic bare timescale of the electron system that is set
by the inverse hopping 1/T = 1. This is way beyond what can
be reached with conventional calculations using open BCs.

It is instructive to compare the results with the prediction
of the Landau-Lifshitz-Gilbert (LLG) approach [6],

τ ∝ 1 + α2

α

1

B
, (22)

where α is the Gilbert damping parameter (see Ref. [37]).
Starting from the simplified model considered here, the LLG
equation can be derived by lowest-order perturbation theory
in J and by a Markov approximation assuming that the spin
dynamics is much slower than the electron dynamics, i.e., by
assuming that the strength of the local field B is weak on
the scale given by the nearest-neighbor hopping (see, e.g.,
Ref. [17] for a detailed discussion).

Thus, in the present context, Eq. (22) is not expected
to capture the case of very strong fields. For strong B, the
field term will eventually dominate and only the precessional
motion will survive. This means that τ should increase with
increasing B and diverge for B → ∞. In fact, as is seen in
Fig. 7 for field strengths exceeding a critical strength of the or-
der of the bandwidth, the computed relaxation time diverges.

On the other hand, Eq. (22) should well describe the
physics at weak B. It is satisfying to note that our approach,
based on microscopic calculations including the details of
the electronic structure, perfectly agrees with the prediction
of the spin-only LLG theory. As is seen in the figure, the
relaxation time is proportional to 1/B for weak fields down to
B = 0.0001. We conclude that even for very moderate system
sizes L and even for timescales of the order of 105 inverse
hoppings, the absorbing BCs do not lead to any observable
artifacts.

The predictive power can be exploited to study spin re-
laxation in cases where lowest-order perturbation theory in J
and the Markov approximation do not apply. One important
example to be discussed here is the case of a system with a
gapped electronic structure. Even for a conventional band in-
sulator, perturbation theory must break down, as this predicts
the Gilbert damping constant to be given by [9,17,38]

α = J2 ∂

∂ω
Im χ (ret)(ω)|ω=0. (23)

For an insulator with a gapped electronic structure, the imag-
inary part of the retarded magnetic susceptibility χ (ret)(ω)
must vanish in a finite range of excitation energies ω around
ω = 0, which immediately implies α = 0. Hence, perturba-
tion theory predicts the absence of damping, i.e., an infinite
spin-relaxation time, independent of the field strength. How-
ever, this is unphysical since relaxation should be possible, if

FIG. 8. Relaxation time τ as function of 1/B as in Fig. 7 but
for an insulator [see Eq. (24)] and for different values of the on-site
potential ε as indicated.

the initially induced Larmor precession with frequency ω ≈ B
can couple to the magnetic modes in the electron system. This
is the case when Im χ (ret)(ω = B) �= 0, i.e., for field strengths
of the order of the fundamental gap or larger. Hence, a more
elaborate effective theory would be necessary to cover this
case.

The microscopic theory that includes the electronic degrees
of freedom explicitly, on the other hand, perfectly complies
with the expectation of a critical field strength: Fig. 8 dis-
plays results for the spin-relaxation time τ as obtained for a
simple one-dimensional model of a band insulator, which is
constructed by replacing

Tii′ �→ Tii′ + ε0(−1)iδii′ (24)

in the Hamiltonian, Eq. (1), or, equivalently, in the effective
hopping matrix, Eq. (5). The staggered on-site potential of
strength ε0 > 0 leads to a doubling of the unit cell and opens
a gap of size �E = 2ε0 in the bulk band structure at the edges
of the reduced Brillouin zone. Here, for a finite system, the
gap is �E � 2ε0. For L = 46 sites, however, the difference
is small, and we have checked that the results do not change
significantly when increasing L. Figure 8 indeed shows that
complete spin relaxation is possible if the spin is driven with
a sufficiently strong field. A divergent spin-relaxation time
(τ > 100 000) is only found for field strengths weaker than
a certain critical value related to the gap size.

Finally, we would like to stress that our approach is a sys-
tematic one, as the reliability of the approximations involved
is fully controlled by the choice for the size of the system
L. For L → ∞, one trivially recovers the exact dynamics of
a spin and of the coupled electron degrees of freedom, since
the Lindblad-type boundaries become meaningless and since
the construction of the boundaries is the only approximative
element of the theory. Thus, varying the system size gives a
good impression on the quality of results.

To give an example, we display in Fig. 9 the spin-relaxation
time τ at a fixed field strength B = 0.001 but as a function
of L for the metallic case. This corresponds to Fig. 7 where
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FIG. 9. Relaxation time τ as function of the system size L = 6,
16, 26, 36, 46, 56, 66 and LB = 5 = const as in Fig. 7 for B = 0.001.

L = 46 was chosen to represent converged results. Figure 9
demonstrates that this is in fact the case: We have τ ≈ 25 000
for L = 46, and this value is not significantly changing when
larger system sizes are considered. For L = 56 and L = 66,
we get the same value from the numerical calculation within
an error of less than 0.1%. It is very satisfying to see that
already L = 16 sites are actually quite sufficient, and only
with L = 6, which means one site that is left unchanged plus
five sites coupling to the bath, the deviation of about 15% is
clearly beyond what should be tolerated.

VI. CONCLUSIONS

The real-time dynamics of local magnetic moments in-
teracting with a large conduction-electron system is in most
cases much slower than the bare electronic timescales. One
general reason is the weakness of magnetic interactions
compared to the conduction-band width or to the Fermi
energy. Moreover, spin dynamics can be slowed down by
missing phase space for magnetic scattering or by strongly
anisotropic magnetic interactions and by other effects. The
strong separation of energy and timescales makes the theoret-
ical description a challenging task. For the study of relaxation
phenomena, for example, it is the long-time limit that is of
primary interest, but this cannot be treated independently from
and is actually governed by the fast electronic processes.

On short timescales, perturbation theory, exploiting the
separation of energy scales, can be very helpful. Master-
equation approaches, including the Landau-Lifshitz-Gilbert
approach, Redfield, and other more sophisticated theories,
are quite powerful but are necessarily based on approxima-
tions, which in most cases are of ad hoc character and can
be controlled a posteriori only. For complex dynamics with
phase-space bottlenecks, prerelaxation phenomena, or emer-
gent symmetries, there is clearly an urgent need for a fully
atomistic modeling, which covers timescales spanning several
orders of magnitude and which is controlled systematically.

Here, we have presented some steps towards such an
approach. The main idea is that relaxation processes are unidi-
rectional, i.e., they are characterized by dissipation of energy
and other conserved quantities due to flows of energy, spin,
etc., away from the initially excited core system to the elec-

tronic bulk but not vice versa. The fast processes in the core
system, consisting of the local magnetic moments and the
immediate surrounding, lead to the emission of wave packets
carrying energy and spin, which implies that the core region
must approach its ground state in the course of time. Hence,
the theory must (i) treat this spatial region exactly and (ii)
must ensure that the processes within the core region and
the excitations leaving the core region are not disturbed by
artificial excitations backpropagating from the bulk to the
core. Those backpropagating modes, however, are typically
produced by reflections of outgoing wave packets from the
edges of a system of finite extent, i.e., they result from the use
of open or periodic boundary conditions.

Boundary conditions, which fully absorb the outgoing ex-
citations, solve the problem. We found that those can be
realized with coupling the sites that are close to the edges
of the finite system to an external bath as described by the
Lindblad equation for the one-particle reduced density matrix.
The important point is that the master-equation approach is
merely employed as a technical tool to realize the absorbing
boundaries while the quality of the approximation is solely
controlled by the size of the core region, and thus we get a
systematic approach.

It has turned out that the Lindblad coupling to the bath does
a perfect job inasmuch as the absorption is concerned. How-
ever, the naive implementation of Lindblad boundaries also
generates excitations propagating from the edges to the core
right at the start of the dynamics. Fortunately, this problem
could be solved completely by using a Lindblad approach with
matrix-valued Lindblad parameters that are fixed to perfectly
suppress the mentioned initial-state artifacts.

This type of absorbing boundaries has been tested in de-
tail. For a single classical spin coupled to a one-dimensional
system of conduction electrons we were easily able to trace
the atomistic real-time dynamics on a timescale longer than
105 inverse hoppings without any noticeable problem. The
computational limitation is solely given by the necessary size
L of the core system. For the currently studied case, we find
that L � 50 is fully sufficient for convergence of the results.

Future applications will address systems with several spins,
coupled to electron systems in two and three dimensions, and
including anisotropic interactions. The role of lattice degrees
of freedom could be investigated as well. For quantitative and
realistic studies, relaxation mediated also via phonons is an
important aspect. Work along these lines is in progress. An
open question is whether correlated electron systems might be
treated within a similar framework on a level beyond standard
Hartree-Fock theory.
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