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Super-Klein tunneling of Dirac fermions through electrostatic gratings in graphene
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We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac
fermions in the presence of an electrostatic grating. We show that there appears omnidirectional perfect
transmission through the grating at specific energy. Additionally to being transparent for incoming fermions,
the grating hosts strongly localized states.
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I. INTRODUCTION

Super-Klein tunneling (also called all-angle or omnidirec-
tional Klein tunneling) is a phenomenon where relativistic
particles can go through an electrostatic barrier at any angle
without being reflected. It was theoretically predicted for
quasiparticles of spin-1 in Dice lattices [1], in line-centered
square lattices formed by ultracold atoms [2], in optics [3],
or in the systems with spin-orbit interaction [4]. It was also
analyzed for the spin-1/2 Dirac fermions in graphene [5]
with an inhomogeneous Fermi velocity as well as for the
spin-less particles described by the Klein-Gordon equation
[6]. Omnidirectional Klein tunneling occurs exclusively for
a specific energy. When the energy of the incoming parti-
cle is mismatched with this critical value, transmission gets
strongly angle-dependent and the perfect tunneling takes place
for some sharp values of incidence angle only [7], see also
[8]. For instance, the total transmission occurs for massless
fermions bouncing in normal direction on the barrier that has
translational symmetry. In this case, the absence of backscat-
tering can be explained by the relation of the setting with the
free-particle model [9].

The all-angle Klein-tunneling was studied in models with
piecewise constant potentials, typically rectangular barriers,
that possessed translation invariance in one direction [1–5].
The explicit solutions and scattering amplitudes (transmission
coefficient in particular) were found for arbitrary energies.
Then it was shown that for a specific energy there appears
total transmission that is independent on the incidence angle.

In general, the Klein tunneling makes it difficult to con-
fine Dirac fermions using electrostatic fields. There is much
effort in the literature to show that, despite Klein tunneling,
the confinement of Dirac fermions by electrostatic fields is
actually possible. Guided modes in waveguides were revealed
in [10–12] for systems with translation symmetry, see also
the rigorous results in [13]. Quasibound states in quantum
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dots were considered in [14] whereas square integrable bound
states were found in [15–17] for systems with rotational
symmetry. In these works, both analytic and numerical cal-
culations were employed to find the localized states. The
square integrable wave functions were usually zero-energy
modes.

Supersymmetric quantum mechanics was used in the seek
for localized zero-energy solutions of the two-dimensional
Dirac equation with electrostatic potential, [18–23]. In
[20,22,23] translation symmetry allowed to deal with effec-
tively one-dimensional Dirac operator. Its square was identi-
fied with a known exactly solvable nonrelativistic model and
zero-modes were found analytically. In [21], supersymmetric
transformations were studied for two-dimensional Dirac op-
erators with matrix potential that possessed translation sym-
metry. The existence of zero modes for Dirac Hamiltonians in
the presence of the electrostatic potentials on a bounded do-
main was discussed in [18]. Generalized intertwining relations
for Dirac operator with electrostatic potential were used for
construction of truly two-dimensional settings that possessed
zero-modes, see [19].

In the this article, we present models where the super-
Klein tunneling phenomenon occurs in the presence of smooth
electrostatic potential that lacks translation symmetry and
resembles a grating formed by a periodic chain of localized
scatterers. We provide exact solutions of the corresponding
stationary Dirac equation for a fixed value of energy where the
super-Klein tunneling occurs. We discuss scattering properties
and show that there are also states that are strongly localized
by the electrostatic field.

The article is organized as follows. In the next section,
we make a brief review of the time-dependent supersymmet-
ric transformation for 1 + 1-dimensional Dirac equation and
present two explicit models. In Sec. III, we discuss the Wick
rotation of the 1 + 1-dimensional Dirac equation that results
in a 0 + 2-dimensional stationary Dirac equation. In Sec. IV,
we analyze the explicit models, their scattering properties and
existence of localized states at a fixed, nonzero energy. We
show that the reflection is missing in the considered regime
and the omnidirectional Klein tunneling appears naturally.
The last section is left for discussion.
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II. TIME-DEPENDENT SUSY TRANSFORMATIONS

Supersymmetric quantum mechanics provides a frame-
work for construction of new exactly solvable models from
known ones [24–26]. It relies on the supersymmetric (susy)
transformation L that intertwines the operator H0, be it a
Schrödinger or a Dirac operator of a known model, with an
operator H1 that represents the new quantum system,1

LH0 = H1L, L†H1 = H0L†. (1)

The second relation can be obtained by conjugation of the
first one provided that H0 and H1 are Hermitian. The inter-
twining operator is known for a long time in the analysis of
differential equations as Darboux transformation, see, e.g.,
[27] and references therein. The intertwining relations for the
stationary one-dimensional Dirac equation were discussed in
[28], for the nonstationary one in [29], see also [30] where the
higher-dimensional case was considered.

The operator L is usually defined as a differential operator
that annihilates a selected set of eigenvectors of H0. The
choice of these “seed” vectors also determines the explicit
form of H1. It has major influence on the Hermiticity of H1 and
smoothness of its potential term. The intertwining relations
are quite powerful; when ψ satisfies H0ψ = 0, then Lψ is
a solution of H1Lψ = 0. Since the relations (1) are formal,
one has to guarantee that the physical states of H0 are mapped
properly into the physical states of H1 by the operator L.

In this section, we briefly review the time-dependent susy
transformation for the 1 + 1-dimensional Dirac equation, see
[29] for more details, and present two explicit models that will
be further elaborated in the next section. Let us have the initial
equation in the following form:

H0ψ = (i∂t − iσ2∂z − V0(z, t ))ψ = 0, (2)

where the matrix potential V0(z, t ) is supposed to be Hermi-
tian. We denote σ0 the identity matrix and σ1, σ2, and σ3 are
the standard Pauli matrices. The susy transformation is based
on the choice of two vectors u1(z, t ), u2(z, t ) that are solutions
of (2). We can use them to compose a matrix u = (u1, u2) that,
by definition, satisfies

H0u = 0. (3)

Once the matrix u is fixed, it is possible to define intertwining
operators L, L† and the new Dirac operator H1 in the following
manner:

L = ∂z − uzu−1, L† = −∂z − (u†)−1u†
z , (4)

1In quantum field theory, supersymmetric transformations (the
supercharges) map bosons into fermions and vice versa. Supersym-
metric quantum mechanics was introduced in [24] as a simple model
for realization of the supersymmetric algebra and for the analysis
of spontaneous breakdown of supersymmetry. The supersymmetric
Hamiltonian was defined as a diagonal operator Hsusy = (H1

0
0

H0
) and

supercharges are given as Q = (0
0

L
0 ) and Q† = (0

L†
0
0 ). They satisfy

[H, Q] = [H, Q†], {Q, Q†} = Hsusy. In this framework, the super-
charges do not relate bosons and fermions, they rather provide
mapping between two orthogonal states of Hsusy corresponding to its
degenerate eigenvalue.

H1 = H0 − i[σ2, uzu−1]

= i∂t − iσ2∂z − V0(z, t ) − V (1)
1 (z, t )σ1 − V (1)

3 (z, t )σ3.

(5)

It can be checked by direct calculation that the operators L, L†,
and H1 satisfy (1), see [29]. The choice of the seed solutions
u1(z, t ) and u2(z, t ) determines the properties of the potential
term in H1 and of the intertwining operator L as they are both
defined in terms of uzu−1. The seed solutions should be fixed
such that V (1)

1 (z, t ) and V (1)
3 (z, t ) are real in order to keep H1

Hermitian. The matrix function uzu−1 should also be regular
and continuous. The later requirement helps to establish the
situation where the eigenstates of H0 are mapped by L into
the eigenstates of H1 that comply with the initial/boundary
conditions of the new system.

By definition, the matrix u gets annihilated by the in-
tertwining operator L, Lu = 0. The conjugate operator L†

annihilates a matrix v that satisfies

v = (u†)−1, L†v = 0, H1v = 0. (6)

Therefore, the columns v1 and v2 of v = (v1, v2) are solutions
of the equation H1va = 0, a = 1, 2.

Let us illustrate the framework now on two explicit exam-
ples.

A. Model A

We start by fixing the free-particle model as the initial
system. The dynamical free equation can be written as

H0ψ = (i∂t − iσ2∂z − mσ3)ψ = 0, (7)

where m is a real parameter. It is straightforward to find its
explicit solutions. They can be written as

ψ±(z, t ) = e±kz

(
∓m cosh(ωt ) + iω sinh(ωt )

k
, cosh(ωt )

)T

,

(8)
where k = √

ω2 + m2. To proceed with the time-dependent
susy mechanism, we define the matrix u in this model as u =
(ψ1, σ1ψ

∗
1 ) where

ψ1(z, t ) = 1

2

[
ψ+(z, t ) + ψ−(z, t )

]
(9)

= [−(m cosh(ωt ) + iω sinh(ωt )]
sinh(kz)

k
,

cosh(ωt ) cosh(kz))T . (10)

By virtue of Eq. (4), the time-dependent intertwining opera-
tors L(z, t ) and L†(z, t ) read as

L = ∂z − 1

2D1

(
ω2 sinh(2kz)

k
σ0 − 2m cosh2(ωt ) σ1

+ ω sinh(2ωt ) σ2

)
, (11)

L† = −∂z − 1

2D1

(
ω2 sinh(2kz)

k
σ0 − 2m cosh2(ωt ) σ1

+ω sinh(2ωt ) σ2

)
. (12)

Here, we abbreviated D1(z, t ) = [m2 + k2 cosh(2ωt ) +
ω2 cosh(2kz)]/2k2. We can construct the new Dirac operator
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H1 from the relation (5),

H1 = i∂t − iσ2∂z

+
(

−m + 4mk2 cosh2(ωt )

m2 + k2 cosh(2ωt ) + ω2 cosh(2kz)

)
σ3. (13)

It is intertwined with H0 by L via (1). The potential term
represents a fluctuation of the constant mass, exponentially
localized both in time and space. In contrast with the original,
free-particle system (7), the new system possesses two solu-
tions which are localized in space-time. The vectors v1 and
v2, see (6), satisfy H1v1 = H1v2 = 0 and have the following
explicit form:

v1(z, t ) = 1

D1
{[m cosh(ωt ) + iω sinh(ωt )] sinh kz,

k cosh(ωt ) cosh(zk)}T ,

v2(z, t ) = σ1v1(z, t )∗. (14)

B. Model B

In the second example, we identify H0 with the free-
particle operator (7) again. We fix the following linear combi-
nation of the solutions of (7),

ψ2 = i

2k
σ1ψ

∗
+

(
z, t + iπ

2ω

)
+ iks

2ω2
σ1ψ

∗
−

(
z, t + iπ

2ω

)
− k2

ω2
(c2 + ic1)ψ−

(
z, t + iπ

2ω

)
, (15)

where we used the basis states (8) and s, c1, and c2 are
constants. As in the previous case, we build the matrix u =
(ψ2, σ1ψ

∗
2 ) that satisfies by definition H0u = 0. The corre-

sponding intertwining operators are

L = ∂z − 1

D2
(�0σ0 + �1σ1 + �2σ2),

L† = −∂z − 1

D2
(�0σ0 + �1σ1 + �2σ2), (16)

where

�0(z) = ω4ke2kz−k5
[
s2−4

(
c2

1+c2
2

)
k2

]
e−2kz, (17)

�1(t ) = 2k4
[
ms + 2c1k2 − m(2c1m + s) cosh(2ωt )

+ 2c2mω sinh(2ωt )
]
, (18)

�2(t ) = 2ωk4[(2c1m + s) sinh(2ωt ) − 2c2ω cosh(2ωt )],
(19)

D2(z, t ) = ω4e2kz+k4
[
s2−4

(
c2

1+c2
2

)
k2

]
e−2kz

+ 2k4[(2c1m+s) cosh(2ωt )−2c2ω sinh(2ωt )]

− 2k2m(ms+2c1k2). (20)

The new Dirac operator H1 follows from (5) and reads

H1 = i∂t − iσ2∂z − [m + W (z, t )]σ3. (21)

The new potential term W (z, t ) is explicitly

W (z, t ) = 2k4
[
2ms + 4c1k2 − 2m(2c1m + s) cosh(2ωt ) + 4c2mω sinh(2ωt )

]
D2(z, t )

. (22)

We can see that W (z, t ) is a real function so that H1 is Hermitian provided that s, c1, and c2 are real. Let us omit here the
discussion on regularity of W (z, t ) since it is not relevant in this section. It is worth noticing that (22) for c1 = 0 and c2 = 0
was discussed in [29]. In that work, it was obtained via the so-called confluent susy transformation that is a specific case of the
second-order susy transformation, see also [31,32] for more details.

The eigenstates v1,2 of H1 can be found from (6). They are

v1 = 2k2

D2

(
k3[s sinh(ωt ) + 2(c1 + ic2)M(t )]e−kz − ω2k sinh(ωt )ekz

k2{isω cosh(ωt ) − [ms + 2(c1 + ic2)k2] sinh(ωt )} e−kz − ω2M∗(t )ekz

)
(23)

and v2 = σ1v
∗
1 , where M(t ) = m sinh(ωt ) + iω cosh(ωt ).

III. WICK ROTATION

The Wick rotation was used originally in [33] where it
was employed to get solutions of Bethe-Salpeter equation in
Minkowski space from those defined in the Euclidean space.
Let us go in the opposite direction and define a system living
in two-dimensional Euclidean space from a related 1 + 1-
dimensional relativistic model and get a relevant information
on its physical properties.

There are two possible transformations of coordinates that
turn the Minkowski metric into the Euclidean one; we can
set either z or t to be purely imaginary while keeping the
other coordinate real. First, we will discuss the first option
in detail and comment briefly on the second one in the end of
the section.

The following change of the coordinates

z = ix, ∂z = −i∂x, t = y (24)

transforms equation (2) into

H0(ix, y)ψ (ix, y) = [i∂y − σ2∂x − V0(ix, y)]ψ (ix, y) = 0.

(25)
It does not have the form of a stationary equation of a two-
dimensional system yet. Let us fix it by multiplying (25) by
σ3 from the left and making an additional gauge transform
U = ei π

4 σ1 . This way, we get the following two-dimensional
stationary equation for zero energy in terms of the spatial
coordinates x and y,

H̃0(x, y)ψ̃ (x, y) = −Uσ3H0(ix, y)U−1ψ̃ (x, y)

= [−iσ1∂x − iσ2∂y + Ṽ0(x, y)]Uψ (ix, y)=0

(26)
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with the potential term

Ṽ0(x, y) = Uσ3V0(ix, y)U−1. (27)

The solutions ψ (z, t ) of (2) transform into the solutions
ψ̃ (x, y) of (26),

ψ̃ (x, y) = Uψ (ix, y). (28)

A few comments are in order. The operations (24) to (26)
can render the Dirac operator H̃0 non-Hermitian in general.
As we shall see in the next section, this problem can be
successfully addressed in specific examples where it is pos-
sible to keep H̃0 Hermitian. The transformation also makes
profound changes into the character of the potential term.
With V0(z, t ) = ∑3

a=0 Va(z, t )σa, we get

Ṽ0(x, y) = Uσ3V0(ix, y)U−1

= σ0V3(ix, y) − iσ1V2(ix, y)

+ σ2V0(ix, y) − iσ3V1(ix, y). (29)

In particular, the mass term V3(z, t )σ3 of H0(z, t ) turns into the
electrostatic potential V3(ix, t ) of H̃0(x, y). The price paid for
the Wick rotation leading to (26) is the fact that (26) describes
the system at a single, fixed energy E = 0. As much as we
find this fact restrictive, it can still provide highly nontrivial
and valuable physical information on the system as we shall
see in the next section.

Let us see how the Wick rotation modifies the intertwining
relations and the susy transformation. Changing the coordi-
nates and multiplying (1) from the left by Uσ3 and from the
right by U−1, the intertwining relation can be written in the
following form:

L̃�(x, y)H̃0(x, y) = H̃1(x, y)L̃(x, y), (30)

where we denoted

L̃ = UL(ix, y)U−1, L̃�(x, y) = Uσ3L(ix, y)σ3U−1. (31)

Hence, the intertwining relation gets substantially altered as
there appears L̃�(x, y) on the left and while there is L̃(x, y) on
the right side and they do not coincide in general. Equation
(30) is a special case of the construction provided recently in
[19] where generalized interwining relations were discussed
for zero modes of a two-dimensional Dirac operator. As we
deal with the zero modes of H̃0 and H̃1 only, we can reduce
the intertwining relations into the following relevant formulas
(we suppose that H̃1 is Hermitian):

H̃0	0 = 0 ⇒ H̃1L̃	0 = 0, H̃1	1 = 0 ⇒ H̃0L̃†	1 = 0.

(32)
The Dirac operator (21) constructed via the susy transforma-
tion and Wick-rotated afterwards reads as

H̃1(x, y) = −Uσ3H1(ix, y)U−1 (33)

= −iσ1∂x − iσ2∂y + Ṽ0(ix, y)

+ σ0V (1)
3 (ix, y) − iσ3V (1)

1 (ix, y). (34)

The last formula reveals that the susy transformation in com-
bination with the Wick rotation adds an electrostatic interac-
tion and a mass term into the new system.

Let us discuss briefly the other change of coordinates
where t is set purely imaginary, t → ix, z → y. Following
the similar steps as above, we obtain the following stationary
two-dimensional Dirac equation for zero energy,

(−iσ1∂x − iσ2∂y + Ṽ0(x, y))ψ̃ (x, y) = 0, (35)

where

Ṽ0(x, y) = iσ1UV0(y, ix)U−1

= iσ0V1(y, ix) + iσ1V0(y, ix) − σ2V2(y, ix)

− σ3V3(y, ix), ψ̃ = Uψ (y, ix). (36)

The potential term Ṽ0(x, y) is non-Hermitian in general, how-
ever, it can reduce to Hermitian one in some specific cases.
It is also worth noticing that when compared to (29), the
potential terms V2 and V3 preserve their matrix structure.

IV. SUPER-KLEIN TUNNELING ON THE
ELECTROSTATIC GRATING

Let us return now to the 1 + 1-dimensional models A and
B and apply on them the Wick rotation. We will see that
the resulting 0 + 2-dimensional systems possess remarkable
physical properties that can be investigated with the use of the
intertwining operators.

A. Wick-rotated model A

The Wick rotation transforms the free-particle Dirac oper-
ator H0 into the two-dimensional Hamiltonian of a massless
particle

H̃0 = −iσ1∂x − iσ2∂y + mσ0. (37)

Following (26), the mass term of (13) is converted into the
electrostatic potential. We get this stationary equation

H̃1ψ̃ (x, y) = (−iσ1∂x − iσ2∂y + Ṽ (x, y)σ0
)
ψ̃ (x, y) = 0,

(38)
where the potential term is

Ṽ (x, y) = m − 4mk2 cosh2(ωy)

m2 + k2 cosh(2ωy) + ω2 cos(2kx)
. (39)

For large y, it rapidly converges to a constant value,
limy→±∞ Ṽ (x, y) = −m. Let us substract this asymptotic
value from the electrostatic potential and attribute it to the
energy of the fermion. This way, we get the new potential VA,

VA(x, y) = Ṽ (x, y) + m

= − 4mω2 sin2(kx)

m2 + k2 cosh(2ωy) + ω2 cos(2kx)
. (40)

It vanishes asymptotically for large |y|. Its sign depends on the
sign of m and it is periodic in x. It is also even with respect to
reflection

lim
|y|→∞

VA(x, y) = 0, VA(x + T, y) = VA(x, y),

VA(x, y) = VA(−x,−y), (41)

where T = π/k. It forms a thin electrostatic grating or a
comb, see Fig. 1. Substituting (40) into (38), we get the
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FIG. 1. The potential term VA(x, y) (upper row) with density of probability of the confined state ṽ1 (lower row). The columns differ by
the choice of ω. In all plots, we used m = 1, and φ1 = π

15 , φ2 = π

2.1 . Densities of probability of ṽ1 and ṽ2 are virtually indistinguishable. The
functions went over the cutoff in the purely white dots in the right column.

stationary equation for energy E = m,(−iσ1∂x − iσ2∂y + VA(x, y)σ0
)
ψ̃ (x, y) = mψ̃ (x, y). (42)

The localized solutions (14) get transformed into ṽ1 and ṽ2

via (28),

ṽ1 =
√

2k2

D̃1

(−i cosh(ωy)[k cos(kx) + m sin(kx)] + ω sin(kx) sinh(ωy)

cosh(ωy)[−k cos(kx) + m sin(kx)] + iω sin(kx) sinh(ωy)

)
, (43)

ṽ2 = 1√
2D̃1

(
cosh(ωy)[k cos(kx) − m sin(kx)] + iω sin(kx) sinh(ωy)

i cosh(ωy)[k cos(kx) + m sin(kx)] + ω sin(kx) sinh(ωy)

)
. (44)

We abbreviated here D̃1 = m2 + ω2 cos(2kx) + k2 cosh(2ωy). A brief inspection of these formulas reveals that these states are
exponentially vanishing for large |y|. Therefore, these solutions correspond to the states strongly localized by the electrostatic
potential, see Fig 1.

The electrostatic potential VA(x, y) is periodic in x, but it ceases to have translation invariance. Any plane wave incoming from
the left will hit the barrier under nonnormal direction locally and the backscattering can be expected. However, the potential is
reflectionless for the states with energy E = m. They are just phase-shifted when passing through the potential barrier. We can
show it with the use of the interwtining operator L̃ that maps the free-particle solutions of (37) into the solutions of (38), see
(32). The operator L̃ acquires the following explicit form

L̃ = ei π
4 σ1 L(ix, y)e−i π

4 σ1

= −i∂x − 2k2

D̃1

(
i ω2 sin(2kx)

2k
σ0 − m cosh2(ωy) σ1 − ω sinh(2ωy)

2
σ3

)
. (45)

We fix the wave vector �k for an incoming plane wave as
follows:

kx = m sin φ, ky = m cos φ, φ = (−π/2, π/2). (46)

Then the free-particle solutions of H̃0ψ̃0(x, y, φ) = 0 can be
written as

ψ̃0(x, y, φ) = eim(sin φ x+cos φ y)

(
1

−ie−iφ

)
. (47)

The parameter φ corresponds to the incidence angle of the
plane wave. The solution ψ̃0 can be transformed into the
scattering state of (42),

[−iσ1∂x − iσ2∂y + VA(x, y)
]
L̃ψ̃0(x, y) = mL̃ψ̃0(x, y). (48)

Let us see how the scattering state L̃ψ̃0 is affected when
passing through the potential barrier. For large |y|, the operator
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FIG. 2. The potential term VA(x, y) is plotted in the upper row. In the lower row, we show the density of probability (interference pattern)
of a linear combination of a free particle (left) and the asymptotically plane-wave solutions (63) for the upper row potential for m = 1 (left)
and m = −1 (right). In all plots, we used ω = 0.75, and φ1 = 0, φ2 = π

2 .

L̃ has the following asymptotic form:

L̃ ∼
{−i∂x + mσ1 − ωσ3, y → −∞,

−i∂x + mσ1 + ωσ3, y → ∞.
(49)

Hence, the action of L̃ on ψ̃0 is

lim
y→±∞ L̃ψ̃0 = eim(sin φ x+cos φ y)(±ω − im cos φ)

(
1

ie−iφ

)
. (50)

The relation (50) reveals that there is no backscattering on the
potential, independently on the incidence angle φ = arctan kx

ky
.

Hence, there emerges the omnidirectional tunneling of Dirac
fermions through the barrier for E = m. The scattering state
L̃ψ̃0 accumulates the phase shift when passing through the
barrier

lim
y→+∞ L̃ψ̃0 = ω − im cos φ

−ω − im cos φ

(
lim

y→−∞ L̃ψ̃0

)
. (51)

The phase shift depends both on the potential (determined by
the values of m and ω) and on the incidence angle φ. It is
symmetric with respect to φ → −φ which is to be expected

as the potential term is symmetric with respect to x → −x.
It changes the interference pattern of a linear combination of
the plane waves. Taking the sum of two plane waves with
incidence angles φ1 and φ2,

FA(x, y, φ1, φ2) = L̃ψ̃0(x, y, φ1) + L̃ψ̃0(x, y, φ2), (52)

the interference pattern gets slightly shifted along x axis when
passing through the potential barrier, see Fig. 2 for illustration.

B. Wick-rotated model B

Let us turn our attention to the model B described by
(21). Likewise in the model A, the Wick rotation transforms
the mass term of H1 into the electrostatic potential Ṽ1 =
[m + W (ix, y)] of the Wick-rotated operator H̃1,

H̃1 = −iσ1∂x − iσ2∂y + Ṽ1(x, y)σ0. (53)

Revising the explicit form of W in (22), we can see that the
substitution z → ix makes it complex-valued and the operator
H̃1 results to be non-Hermitian in general. Fortunately, we can
fix this issue by setting the parameter s2 = ω4/k4 + 4(c2

1 +
c2

2 )k2. Then the potential term becomes

Ṽ1 = m + k2[2ms + 4c1k2 − 2m(2c1m + s) cosh(2ωy) + 4c2mω sinh(2ωy)]

D̃2
, (54)

where

D̃2(x, y) = ω4

(
cos(2kx) − k2

ω4
m(ms + 2c1k2)

)
+ k4

[
(2c1m + s) cosh(2ωy) − 2c2ω sinh(2ωy)

]
. (55)
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The function D̃2(x, y) can be vanishing in some points in the
(x, y)-plane, making the potential singular. Let us discuss the
range of parameters m, ω, c1, and c2 where the singularities in
Ṽ1 can be avoided. We shall find the lower bound for D̃2 and
require it to be positive. The second term in (55) is a function
of y,

f (y) = k4[(2c1m + s) cosh(ωy) − 2c2ω sinh(2ωy)], (56)

and it has its minimum fmin =
k4√(2c1m + s − 2c2ω)(2c1m + s + 2c2ω) at y =

1
2ω

log
√

2c1m+s+2c2ω
2c1m+s−2c2ω

. The minimum fmin has to be real-valued.

We can guarantee it by demanding

2c1m + s > |2c2ω|. (57)

We can find the lower bound D̃min for D̃2 by replacing f (y)
and cos(2kx) by their minimal values. We require it to be
strictly positive,

D̃2 � D̃min = −ω4

(
1 + k2

ω4
m(ms + 2c1k2)

)
+ fmin > 0.

(58)
As D̃min depends on the eligible real parameters m, ω, c1,
and c2 only, the inequalities (57) and (58) form sufficient
conditions for regularity of the potential term Ṽ1. In the
numerical tests that we performed, it was rather problematic
to find a setting that would not comply with (57) and (58),
aside from c1 = c2 = 0 where Dmin = 0.

The potential Ṽ1 tends exponentially towards −m for large
|y|. Likewise in the previous case, we subtract the asymptotic
value and define the new function VB,

VB = Ṽ1 + m. (59)

The new potential VB satisfies

lim
|y|→∞

VB(x, y) = 0, VB(x + T, y) = VB(x, y) (60)

for T = π
k . This way (38) turns into the stationary equation

for a massless particle of energy E = m,(
iσ1∂x − iσ2∂y + VB(x, y)σ0

)
ψ̃ (x, y) = mψ̃ (x, y). (61)

The potential VB forms a periodic chain of scatterers that are
interconnected by a barrier. The periodicity of the chain can be
controlled by ω and m (recall k = √

ω2 + m2). Having these
parameters fixed, the height of the intermediate barrier relative
to the peaks of the scatterers can be controlled by c1 and c2,
see Fig. 3. The potential can be both attractive and repulsive
in dependence on the choice of the parameters.

The solutions ṽ1 and ṽ2 can be obtained directly from (23)
by the transformation (28). Their explicit form is not quite
compact so that we prefer not to present them here explicitly.
Instead, we refer to the Fig. 3 where the corresponding density
of probability is illustrated. We can see that these states are
strongly localized by the potential.

Similarly to the previous model, there also occurs super-
Klein tunneling at E = m. We can show it with the use of the
intertwining operator L̃ that maps free-particle solutions into
the solutions of (61). It can be obtained from (16) as

L̃ = −i∂x − 1

D2(ix, y)

[
�0(ix)σ0 + �1(y)σ1 − �2(y)σ3

]
. (62)

For large |y|, the intertwining operator (62) has the same
asymptotic form (49) as the intertwining operator of in the
model A. Therefore, there is no backscattering on the potential
barrier and we get exactly the same phase shift as in (51),
despite the fact that the electrostatic potentials are rather
different. Let us illustrate the effect of the phase shift on the
superposition

FB(x, y, φ1, φ2) = L̃ψ̃0(x, y, φ1) + L̃ψ̃0(x, y, φ2). (63)

Likewise in the previous model, the electrostatic potential
shifts the interference pattern along the x-axis, see Fig. 3.

Let us notice in the end of the section that the trans-
form (36) would render the potential term in (13) real
and regular but containing discontinuities, whereas (21)
would turn to be complex-valued and the Hamiltonian
non-Hermitian.

V. DISCUSSION

To our best knowledge, the super-Klein tunneling was dis-
cussed up to now for electric fields that possessed translation
symmetry, and therefore, the corresponding stationary equa-
tions were separable. We presented here two models where the
electrostatic barrier was truly two-dimensional. The scattering
of Dirac fermions on such potentials can be profoundly more
complicated when compared to the models with translation
symmetry. The incident wave bounces on the barrier with
angle that varies locally so that nontrivial interference of the
incoming and reflected wave is to be expected. This is, without
any doubt, also the case in our models. However, for E = m,
the interference is such that the reflected wave gets completely
annihilated and the waves incoming from any direction get
perfectly transmitted up to a phase shift.

The current work follows the spirit of [9]. There, the
total transmission of massless fermions bouncing on the
electrostatic barrier for a fixed angle (normal incidence) was
explained via unitary transformation that related the model
with the free particle scattering. The solutions corresponding
to the fermions incoming in normal direction were mapped
to the free-particle solutions and, therefore, no backscattering
could occur. In the current work, the stationary equation for
a specific fixed energy was related to the free-particle one
by the intertwining operator (32). This link allowed us to
show that at that specific energy, there is no backscattering
on the potential independently on the incidence angle so that
super-Klein tunneling occurs. We also showed that there also
exist states that are strongly localized by the electrostatic
barrier.

The electrostatic potentials VA in (40) and VB in (59)
of the Wick-rotated models A and B have quite different
form, compare Fig. 1 with Fig. 3. With m and ω fixed, the
shape of the potential VB can be tuned additionally by the
parameters c1 and c2. However, the formulas for the phase
shifts in the Wick-rotated model A and model B are identical.
It means that whatever are the potentials for given m and
ω, they are indistinguishable from their long-range effect on
the scattered waves. A possible hint of explanation could
be the asymptotic behavior of the matrix u at large |t | that
goes as exp(ω|t |) in both models, see (9) and (15). Since
the selection of u plays a key role in the construction of

115429-7



CONTRERAS-ASTORGA, CORREA, AND JAKUBSKÝ PHYSICAL REVIEW B 102, 115429 (2020)

FIG. 3. The potential term VB(x, y) (upper row) with density of probability of the confined states ṽ1 (central row) and the density of
probability (interference pattern) of a linear combination of the asymptotically plane-wave solutions (63) (lower row). The columns differ
by the choice of c1 and c2. In all plots, we used m = 1, ω = 1 and φ1 = π

15 , φ2 = π

2.1 . Densities of probability of ṽ1 and ṽ2 are virtually
indistinguishable. The functions went over the cutoff in the pure white dots in the lower row.

the new potential, the coincidence in the phase shifts could
partially be explained by this behavior. It could be interesting
in this context to investigate systems based on u that would
be either periodic or asymptotically vanishing. Nevertheless,
those possibilities were not fully explored since they could
produce non-Hermitian or singular potentials. The study of
different scenarios is open for possible extension of param-
eters and seed solutions or even a different Wick rotation
that could help to eliminate possible pathologies. Another
possible guidance could be provided by the results published
in [34–36] on the reflectionless integrable models described
by the one-dimensional Dirac equation. Having in mind the
connection of the later systems with the integrable fermion

models in 1 + 1 dimensions [35,36], it would be interesting
to see whether the settings described here could play such a
role in higher dimensions. However, we find deeper analysis
of these questions out of the scope of the current article.
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