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Band structure and inter-tube optical transitions in double-walled carbon nanotubes
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Usually, in optical spectra of double-walled carbon nanotubes (DWCNTs), weak van der Waals coupling
between the layers leads only to a small shift of transition energies with respect to their values in pristine
single-walled nanotubes. However, recent results have shown that the Rayleigh spectrum of the DWCNT
(12,11)@(17,16) contains additional peaks. Using the tight-binding approximation, we demonstrate that in
specific DWCNTs the interlayer coupling can slightly modify the band structure of pristine nanotubes in such
a way that the unconventional inter-tube electronic transitions become possible and additional peaks in the
DWCNT optical spectrum appear. Using the known experimental data on 118 optical transitions in DWCNTs,
in addition to the recently published case, we reveal six more DWCNTs with inter-tube transitions and obtain
geometrical selection rules permitting them. In a few dozen of DWCNTs our approach yields the energies of
electronic transitions close to the experimentally observed ones and may be useful for structural identification of
this type of nanotubes.

DOI: 10.1103/PhysRevB.102.115426

I. INTRODUCTION

In recent years graphene-based and analogous bilayer sys-
tems have attracted increasing attention due to their unique
properties. In these modern materials, close connection be-
tween the structural organization that can demonstrate very
beautiful moiré patterns [1,2] and electronic band structure
opens up new possibilities for altering their electronic proper-
ties. For example, by varying the angle between the layers in
twisted bilayer graphene (TBLG), one can change the position
of the van Hove singularities (VHS) [3,4] in the density of
electronic states of the TBLG [1,3,4]. When the VHS is close
to the Fermi energy, electronic instabilities arise in the bilayer
superlattice, which can result in the appearance of new states
such as superconducting [5,6] and Mott insulating ones [6,7].
TBLG is also one of the few systems where it was possible
to observe the fractal structure of electronic spectrum in the
magnetic field, called the Hofstadter’s butterfly [8]. Despite
the great progress made in the study of planar incommensurate
systems, such as TBLG, graphene on boron nitride [9,10], and
MoS2 structures [11,12], the electronic properties of DWC-
NTs remain poorly studied, and the number of papers devoted
to the theoretical side of this problem hardly exceeds a dozen.
All structurally identified double-walled carbon nanotubes
(DWCNTs) investigated so far are incommensurate [13–17].
The incommensurability together with the curved geometry
and structural diversity of DWCNTs can result in rather in-
teresting electronic properties useful for various applications
[18,19].

Usually the DWCNT optical spectrum is described as a
simple superposition of the spectra of single-walled carbon
nanotubes (SWCNTs) forming the DWCNT, with a small
shift of spectral peaks caused by weak van der Waals inter-
action between the inner and outer layers [14–16,20]. Using

this idea, in order to describe the electronic transitions in
incommensurate DWСNTs, the authors of the pioneer paper
[20] proposed a theoretical model based on perturbation the-
ory. Let us note that virtually all previous theoretical studies
considered only commensurate DWCNTs [21–27], and the
model proposed in Ref. [20] was the first one explaining the
optical spectra of real DWCNTs. An alternative approach [28]
allows one to calculate a small region of the band structure
of incommensurate DWCNT. According to Ref. [28], if the
nanotube has some certain structure, a global alteration of
electronic bands occurs, and the resulting optical spectrum is
far from a simple sum of the SWCNT spectra. The authors
[28] argue that for such spectrum rearrangement, one of two
conditions must be satisfied: either the chiral vectors direc-
tions for the inner and outer SWCNTs are close to each other,
or the vectors difference is parallel to the armchair direction.
An optical spectrum rearrangement has been experimentally
observed in the DWCNT (12,11)@(17,16) only a few months
ago [29]. The measured Rayleigh spectrum besides the optical
transitions originating from the inner and outer SWCNTs
contained a few additional ones. The authors [29] explain the
rearrangement of the band structure within the framework of
the approach [28], since both inner and outer tubes are nearly
armchair and their chirality angles are approximately equal.

In this article, developing and revising the previous works,
we introduce a concept of inter-tube electronic transitions and
explain the mechanism of this phenomenon. As we demon-
strate, the weak van der Waals interlayer coupling in specific
DWCNTs can change the band structure of pristine SWC-
NTs in such a way that the electronic transition between the
bands corresponding to different nanotubes becomes possible.
Denying the global reconstruction of the band structure, we
point out the origin of each band participating in the transition.
The proposed theory uses the nearest-neighbor tight-binding
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approximation (NN TBA) [30,31], which makes it a sim-
ple and convenient tool for analyzing the band structure of
DWCNTs. Geometric selection rules permitting the inter-tube
transitions are found. The rules obtained are not as strict as
those formulated earlier [28] and allow the unconventional
electronic transitions in DWCNTs with much greater struc-
tural diversity. Particularly, we detect the inter-tube transitions
in the previously published optical spectra of DWCNTs
(12,12)@(21,13) [20] and (10,6)@(14,13) [15], which violate
the conditions [28,29]. In addition, the developed theory can
also be successfully applied to describe conventional in-tube
electronic transitions in DWCNTs. Comparing to Ref. [20],
the obtained expressions for energy dispersions contain ad-
ditional terms, which correspond to cross-band interaction
and increase the accuracy of calculations. Totally, using the
known data [15,16,20], we have analyzed and successfully
explained 118 conventional in-tube electronic transitions in
32 DWCNTs.

The rest of this article is organized as follows. In the next
section we reanalyze the theory [20] and present essentially
more compact and more accurate expressions to calculate the
energies of optical transitions. We also introduce the effective
Hamiltonian which we use to analyze the band structure of
incommensurate DWCNTs. In Secs. III and IV we present the
concept of inter-tube electronic transition and justify it using
the known experimental data. Section III mostly regards the
peculiarities of the band structure in considered DWCNTs,
while in Sec. IV we discuss and calculate dipole matrix el-
ements for inter-tube transitions. In Discussion we compare
the developed theory with the previous ones. The paper ends
with Conclusion.

II. RELATION BETWEEN THE DWCNT BAND
STRUCTURE AND THE ONES OF PRISTINE NANOTUBES

In the framework of the nearest-neighbor tight-binding
model [30–33] the Hamiltonian of an individual SWCNT can
be written as

H =
( 0 f (q)

f ∗(q) 0

)
, (1)

where f (q) = γ {exp[−i(a1 + a2)/3 · q] + exp[i(2a1 − a2)/
3 · q] + exp[i(−a1 + 2a2)/3 · q]} is the matrix element de-
scribing the interaction between the graphene sublattices
A and B, γ is the hopping coefficient; a1 and a2 are the
graphene’s primitive translations expressed in a cylindrical
coordinate system of SWCNT, where the first and second
components correspond to the projections on the circumfer-
ence and the longitudinal axis of the tube, respectively (see
Appendix A); and q = (μ, k) is the wave vector. Its first
integer component μ numbers the cutting lines and the second
component k is the wave vector projection along them [20,34].
Eigenenergies of the Hamiltonian (1) read E± = ±| f (μ, k)|,
while eigenvectors can be found as

|ψ±〉 = |ψA〉 ± eiϕ |ψB〉, (2)

where |ψA〉 and |ψB〉 are the Bloch wave functions (WFs) of
the sublattices [20,31,33], the positive and negative signs in
Eq. (2) correspond to the states in the conduction band (CB)
and the valence band (VB), respectively, ϕ = Arg(| f |/ f ) is

the phase shift between the sublattices. Thus, the electronic
states in SWCNTs can be classified using the vector (μ, k)
and the number σ = ±1, indexing the conduction (+1) and
valence (−1) bands.

This formalism can also be generalized for the case of
DWCNT. As shown in the paper [20], in a DWCNT an elec-
tronic state of one tube can strongly interact with several states
of the other tube. However, simplifying the problem, we first
consider the interaction between two electronic states (q, σ )
and (q′, σ ′) of the inner and outer SWCNTs, respectively.
Let us write, using the matrix representation, the effective
DWCNT Hamiltonian suitable to describe such “pair” inter-
action as

HDW =
(H in V

V ∗ Hout

)
, (3)

where H in and Hout are the Hamiltonians of the inner and
outer SWCNTs with the form (1), V is the interlayer coupling
matrix:

V =
(VA,A′ VA,B′

VB,A′ VB,B′

)
. (4)

In Eq. (4) Vα,β = 〈ψ in
(α)|V̂ |ψout

(β )〉 are the matrix elements of
the interlayer coupling operator V̂ , describing the interaction
between the sublattices of the inner (α = A, B) and outer (β =
A′, B′) nanotubes.

Following Ref. [20], these quantities can be written as

Vα,β = 1√
N1N2

∑
j,l

e−i[q·R j (α)−q′ ·R′
l (β )]u( j, l ), (5)

where R j (α) = (θ j, z j ) and R′
l (β ) = (θ ′

l , z′
l ) are the cylin-

drical coordinates of atoms in the sublattices α and β,
respectively; N1 and N2 are equal to the number of atoms in
these sublattices; and u( j, l ) is the interatomic matrix element
between p orbitals localized near atoms with the numbers
j and l . This integral depends only on the linear distance
between the sites of the atoms [20,23].

In incommensurate DWCNTs when we consider two ar-
bitrarily electronic states (q, σ ) and (q′, σ ′) of the inner and
outer tubes, the matrix element Vα,β , being averaged over
spatial coordinates, vanishes due to oscillating phase. How-
ever, for strongly coupled electronic states this is not the case
[20,28]. In particular, the strong coupling takes place for the
modes with q′ = q. Let us note that the coupling strength
decays exponentially with increasing distance between q and
	 points [20].

As we show in Appendix B due to incommensurability of
inner and outer nanotubes, matrix elements Vα,β are practi-
cally real and independent on indices α and β. Accordingly,
omitting the indices of sublattices and taking into account the
properties considered above, we can rewrite the element Vα,β

as

h = 1√
N1N2

∑
j,l

cos [q · (R j − R′
l )]u( j, l ) . (6)

To calculate the h value, the function u( j, l ) is chosen
as u = γc exp(−r/λ), where γc is the interlayer interaction
strength, r is the distance between the atom sites j and l
[21,23]; and λ = 0.045 nm is the characteristic wavelength
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[23]. Our numerical analysis shows that the length of a
DWCNT in calculations can be limited to 100 nm.

Thus, the effective Hamiltonian (3) can be simplified as

HDW =

⎛
⎜⎝

0 fin

f ∗
in 0

h h
h h

h h
h h

0 fout

f ∗
out 0

⎞
⎟⎠. (7)

The eigenenergies E of the Hamiltonian (7) are found from
a fourth-degree equation:

E4 − A1E2 − 4A2E − A3 = 0, (8)

where A1 = (| fin|2 + | fout|2 + h2), A2 = h2(| fin| cos ϕin +
| fout| cos ϕout ), A3 = 4h2| fin|| fout| cos ϕin cos ϕout −| fin|2
| fout|2; ϕin and ϕout are the phase shifts between the sublattices
of the inner and outer tubes, respectively [see Eq. (2)].

All four solutions of Eq. (8) can be obtained numerically.
When the value of h is small the roots of Eq. (8) do not bi-
furcate but only repel each other with increasing h. Therefore,
the order of bands (from lower to higher energies) remains the
same as in noninteracting nanotubes, where h = 0. Using
this fact, let us analyze how the energies of the valence and
conduction bands are shifted due to the small perturbation h.

First, we consider the bands of inner SWCNT. Suppose
that the energy of the conduction band has shifted by �E+

in (q)
due to the interlayer coupling. In order to find that shift, we
substitute the energy E as | fin| + �E+

in in Eq. (8). Then, by
linearizing the equation for �E+

in and expanding its solution
in a series limited to the second order terms in h, we obtain

�E+
in (q) = h2(1 + cos ϕin )(1 + cos ϕout )

| fin| − | fout|

+ h2(1 + cos ϕin)(1 − cos ϕout )

| fin| + | fout| , (9)

where all the quantities on the right-hand side also depend
on the wave vector q. Obviously the obtained expansion is
applicable provided that h � || fin| − | fout||. In addition, com-
paring it with the results of stationary perturbation theory [35],
one can see that the first and second terms correspond, respec-
tively, to the intraband and cross-band interactions between
the modes.

Performing similar calculations for the VB case, one can
find

�E−
in (q) = −h2(1 − cos ϕin )(1 − cos ϕout )

| fin| − | fout|

− h2(1 − cos ϕin )(1 + cos ϕout )

| fin| + | fout| . (10)

Accordingly, the energy shift for the direct electronic tran-
sition is obtained as

�Ein(q) = 2h2(1 + cos ϕin cos ϕout )

| fin| − | fout|

+ 2h2(1 − cos ϕin cos ϕout )

| fin| + | fout| . (11)

Let us return to a pair of strongly coupled modes with q′ =
q. As is shown in Appendix B, the strong coupling takes place

for all other modes equivalent to the considered ones. Ac-
cordingly, the state (or equivalent states) of one nanotube can
interact with several nonequivalent ones of another nanotube
[20]. As an example, Fig. 1 shows strongly coupled modes
in superimposed reciprocal spaces of SWCNTs forming the
DWCNT (16,9)@(24,10). In Fig. 1(a) comprising SWCNTs
have the same handedness, while in Fig. 1(b) they possess the
opposite one. The black circles show strongly coupled states
that are chosen in the figure as follows. First, a state of the
inner tube is chosen with a wave vector in the vicinity of
the reciprocal space point K1. After that the translationally
equivalent states in vicinities of K2 and K3 points are also
taken into account.

The three equivalent states of the inner tube (see Fig. 1)
can strongly couple with three nonequivalent states of the
outer tube. In turn, the latter ones can also interact with
states of the inner tube which are different from the former
three states. Thus, in any incommensurate DWCNT there is a
branching infinite sequence of strongly coupled states. There-
fore, obtaining an exact solution to the problem of DWCNT
eigenenergies is a very challenging task and we follow the
approximation [20], according to which the state of the inner
(outer) tube is considered only at three translationally equiva-
lent points (as is shown in Fig. 1) and its energy shift is mainly
due to the interaction with three nonequivalent states of the
outer (inner) tube at the same points. Obviously, within this
approach, the energy dispersions of the outer and inner tubes
have to be found one by one.

Thus, for the inner tube the shifts of CB and VB energies
can be obtained as the sum over three wave vectors and the
total energy shift �Etot for the in-tube electronic transition at
the point q is found as

�Etot (q) =
3∑

j=1

�Ein
(
q j

)
, (12)

where the wave vectors are expressed as q1 = q, q2 = q −
b1, q3 = q + b2; b1 and b2 are the basis vectors of the inner
tube reciprocal space. To simplify the calculation of the above
sum, one can take into account that | fin(q j )| is invariant under
the translations in the reciprocal space. In addition, for all in-
tube electronic transitions considered below in our paper, one
can use approximate expressions (9)–(11). The energy shifts
for the outer SWCNT are found in a similar way. To do so one
only needs to swap the in and out indices in Eqs. (9)–(12) and
use the vectors of the outer tube reciprocal space.

Note also that, as can be seen from expressions (9)–(11),
the energy shift �Etot in the inner tube is positive provided
that the denominators of the first terms in Eqs. (9) and (10)
satisfy the relation | fin| > | fout|. This is possible only if the
strong coupling point is accidentally located in the vicinity of
the K point belonging to the outer tube reciprocal space. Sim-
ilarly, for a transition energy in the outer tube to be positively
shifted, it is necessary to satisfy the condition | fout| > | fin|,
which requires proximity of the strong coupling point and
the K point of the inner tube reciprocal space. Analyzing the
experimental data from Ref. [20], one can conclude that this
situation is quite often, however, due to the presence of an
additional redshift [14,36,37], in-tube optical transitions are
extremely rarely shifted toward the blue end of the spectrum.
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FIG. 1. The reciprocal space of the DWCNT (16,9)@(24,10). (a) and (b) The cases of the same (a) and the opposite (b) handedness of
the comprising nanotubes. The extended Brillouin zones of the inner and outer SWCNTs are shown in black and red, respectively. Coincident
cutting lines of both tubes are denoted with gray parallel lines. With the used definition of basis vectors in direct and reciprocal spaces of
SWCNT (see Appendix A), the cutting lines coincide automatically. In (b), the reciprocal space of the outer tube is reflected relative to the
horizontal direction compared to the one shown in (a). Large black circles show modes with strong electronic coupling and correspond to
translationally equivalent states of the inner tube. In pristine tube the energies of these states are equal, but the phases ϕ [see Eq. (2)] at points
near K2 and K3 differ from the phase at the point near K1 by ±2π/3. For the outer tube, the same circles correspond to different states.

A further extensive analysis of available experimental data is
mainly aimed to search for such optical transitions in DWC-
NTs that cannot be interpreted as an in-tube one. A theoretical
approach to these transitions is also developed in the next
section.

III. EXPERIMENTAL DATA ANALYSIS AND THE
CONCEPT OF INTER-TUBE ELECTRONIC TRANSITIONS

Let us recall that the electronic transitions displaying
themselves in the optical spectra of SWCNTs originate
from extremal points of the function f (μ, k) at fixed μ

values. These extrema are also called van Hove singulari-
ties [30]. Near the considered K points [K1 = (b1 − b2)/3,

K2 = −(2b1 + b2)/3, K3 = (b1 + 2b2)/3] the VHS coordi-
nates can be found as K j + P, where P = ( p

3 , δk), p is an
integer [34], and δk is a small VHS shift along the cutting line
μ(p). The value of δk increases with the distance between the
cutting line and the K point. Positive and negative numbers
p which are multiples of three (|p| = 3, 6, 9) correspond to
transitions in metallic SWCNTs (M11, M22, M33). These tran-
sitions are split (except for the case of armchair tubes) [30,34],
positive numbers correspond to slightly higher energies than
negative ones. This splitting can also be obtained within the
framework of the Hamiltonian (1) [30]. Other positive and
negative numbers (|p| = 1, 2, 4, 5, 7, 8) index electronic
transitions in semiconducting tubes (S11, S22, S33, S44, S55,
S66). For the SWCNT (n, m) the sign of p numbers is unequiv-
ocally determined by the integer constraint for the “angular”
component μ(p) = (n − m + p)/3 of the q vector.

In the framework of conventional NN TBA, the error in
calculations of SWCNT transition energies amounts to 100–
150 meV or 10%–15% which by modern standards is far from
satisfactory. However, such a relative error is acceptable when

calculating only a small correction �Etot to the unperturbed
energy. Therefore, using NN TBA, we calculate only the shifts
�Etot, and transition energies in SWCNTs are taken from
Ref. [34]. By adding these two quantities, we obtain optical
transition energies in DWCNTs.

As was shown in Refs. [14,20], the energies of electronic
transitions in DWCNTs can be shifted not only due to the in-
terlayer coupling, but also due to the screening effect [36,37].
To take this into account in our calculations we added the
constant term �s to the shift �Etot (p), which is assumed
to be different for metallic and semiconducting constituent
SWCNTs.

First, we have analyzed 95 optical transitions in 27 DWC-
NTs from Ref. [20], in which the absorption spectra of
DWCNTs were measured and the historically first theory
describing DWCNT optical transitions within a weak pertur-
bation regime was developed. Note that we have excluded
the DWCNT (11,7)@(21,6) from the consideration since, in
our opinion, the data [20] contain typos for this nanotube. In
our calculations, the hopping coefficient γ is assumed to be
3.0 and 2.9 eV for semiconducting and metallic SWCNTs,
respectively. On average, with these γ values the theoretical
(obtained within the framework of the NN TBA) transition
energies in SWCNTs forming DWCNTs [20] turn out to be
the closest to the experimental values. The remaining material
coefficients γc and �s (the interlayer interaction strength and
the screening constant) were obtained from the experimental
data [20] by using the method of least squares. The result-
ing values are γ ≈ 933 eV, �s(M ) = −50 meV, and �s(S) =
−60 meV for metallic and semiconducting tubes, respectively.
The obtained γc value turns out to be a bit lower than the value
from Ref. [20], which is apparently due to the fact that our
model, in contrast to the approach [20], explicitly takes into
account the cylindrical geometry.
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Using Eq. (12) we calculated the energy shifts for 94 of
the 95 optical transitions [20], the standard deviation of �Etot

is 18 meV, and the maximum deviation lies within the range
from −28 to 47 meV. Approximately the same deviations
were obtained in Ref. [20], although our expressions seem
to us more accurate. In contrast to the model [20], we take
into account cross-band interaction described by the second
terms in Eqs. (9) and (10); moreover, we calculate the ma-
trix elements using the explicit summation (6), rather than
approximate integral expression (S5) from Ref. [20]. The
error resulting from utilization of the latter expression, ac-
cording to our estimates, can reach 10%. However, in spite
of the better accuracy, one of the experimentally observed
transitions in the DWCNTs [20] cannot be explained in the
proposed framework. Let us consider the problem in more
detail.

The optical transition in the DWCNT (12,12)@(21,13)
with the energy EDW = 1.76 eV, according to Ref. [20], orig-
inates from the transition with an index |p| = 5 of the outer
SWCNT (21,13). The transition energy Eout in pristine nan-
otube is 1.91 eV and the calculations using Eq. (12) lead to
a theoretical value of EDW = 1.92 eV instead of 1.76 eV. The
resulted error (160 meV) is more than 3 times larger than the
maximum deviation for the other transitions.

Standard analysis shows that the outer tube interacts
strongly with the inner one only near the K ′

1 point, and the
interaction near the points K ′

2 and K ′
3 can be completely ne-

glected. At the coupling point, the quantities | fout| = 0.89 eV
and | fin| = 0.76 eV are close to each other. Since | fout| >

| fin|, the interlayer interaction [see Eqs. (9)–(11)] must shift
the optical transition toward higher energies, but in the exper-
iment, we see the strong redshift.

To understand the phenomenon, let us consider the scheme
of superimposed extended Brillouin zones in the reciprocal
space [see Fig. 2(a)]. One can see that in the outer nanotube
the coupling point (which is located on the cutting line with
μ = 1) is very close to the VHS of the inner tube. Namely,
on the scale of Fig. 2(a), the projections of the points K ′

1
and K1 on this cutting line are practically indistinguishable
and correspond to the observed optical transitions in the outer
(with |p| = 5) and inner (with p = 3) pristine nanotubes, re-
spectively. Thus, there is a quite rare situation when both
strongly coupled modes in the DWCNT are very close to
optical transitions in the spectra of the pristine SWCNTs.

Since in the inner tube the energy bands (with μ = 1) are
also mainly modified due to the coupling near the K1 point (its
contribution is about 80%), for simplicity, the further analysis
of the interacting modes can be carried out within the single
Hamiltonian (7). Using it, we have calculated the dispersion
curves for the CBs and VBs of the DWCNT (12,12)@(21,13)
near the projections of the points K1 and K ′

1 on the consid-
ered cutting line. The resulting dispersions are presented in
Fig. 2(c).

The wave vector k corresponding to the point K ′
1 [see

Fig. 2(a)], equals 16.86 nm−1 and, as we earlier pointed out,
on the scale of the figure the projections of the points K1

and K ′
1 on the first cutting line practically coincide. However,

on the scale of Fig. 2(b) (where interlayer coupling is not
taken into account), it becomes clear that the extrema of the
dispersions of the inner and outer tubes do not lie exactly one

above the other. The interlayer coupling leads to a rearrange-
ment of the electronic spectrum [see Fig. 2(c)], as a result,
the extrema, which previously were exactly above each other,
now diverge, and the extrema of the bands that originate from
different SWCNTs converge. Consequently, the wave vector
with the coordinate of the CB bottom (the VB top) of the outer
SWCNT approximately coincides with the one corresponding
to the VB top (the CB bottom) of the inner SWCNT. In fact,
calculations within our model show that the VHSs in the VB
and CB of the outer tube diverge up to �k ≈ 0.2 nm−1. The
distance between the VHS in bands originating from different
pristine SWCNTs becomes equal to ≈0.1 nm−1. Thus we
conclude that this location of VHSs makes possible the inter-
tube optical transition and its intensity should be significantly
greater than the one of the in-tube transition.

In order to compare qualitatively our theory and experi-
mental data, let us define the effective shift in the experimental
transition energy as EDW − (Ein + Eout )/2, which approx-
imately equals −0.015 eV for the considered case. The
definition implies that the CB and VB in SWCNTs are sym-
metrical. Such assumption is fairly reasonable considering the
results of Ref. [34]. Using the Hamiltonian (7) we obtain the
following energies: E+

in = 0.71 eV, E−
in = –0.725 eV, E+

out =
0.935 eV, E−

out = –0.91 eV, in which values are calculated at
the extrema of the dispersion curves. As can be seen in Fig. 2,
there are two inter-tube transitions in the DWCNT spec-
trum with corresponding energies ≈(E+

out − E−
in ) and ≈(E+

in −
E−

out). A small displacement �k of the band extrema relative
to each other [see Fig. 2(c)] leads to a broadening of the peaks
and a slight blueshift of the transition energies [38] com-
pared to the above approximate values. As our estimates show
(within the approximation of the dipole matrix element not
depending on the wave vector q) for all inter-tube transitions
considered in this work, the blueshift has a value less than
0.01 eV and, therefore, is not taken into account below.

Then, for one of the spectral peaks, we obtain that

�E = (E+
out − E−

in ) −
(
ESW

in + ESW
out

)
2

+ �s ≈ �s + 0.01 eV,

where the values ESW
in = 1.50 eV and ESW

out = 1.77 eV are the
optical transition energies in noninteracting SWCNTs, calcu-
lated using NN TB theory. Assuming that the screening shift
�s is approximately the same (from −50 to −60 meV) as for
in-tube transitions in metallic and semiconducting tubes, we
get that the error of the proposed theory is about 35 meV. A
more detailed analysis shows that the found error decreases
by 15–20 meV provided that the electronic coupling near
the points K ′

2 and K ′
3 is taken into account as well. This

can be done within the above-developed perturbation theory.
The second spectral peak (shifted toward the red end of the
spectrum by only 40 meV) apparently was not resolved during
the spectrum fitting due to its lower intensity. At the end of
the next section we will demonstrate it by directly calculating
optical matrix elements.

We have attempted to find in those few papers [15,16],
devoted to the experimental study of the DWCNT optical
spectra, other cases that can be interpreted as inter-tube transi-
tions. We have analyzed 23 optical transitions in 5 DWCNTs
(for more details see the Supplemental Material, S1 [39])
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FIG. 2. Reciprocal space and dispersion relations of the DWCNT (12,12)@(21,13) (a)–(c) and (10,6)@(14,13) (d)–(f). In (a) and (d), the
extended Brillouin zones of the inner and outer SWCNTs are shown in black and red, respectively. The cutting lines of the DWCNTs are gray;
the line associated with the inter-tube transition is highlighted with black. The projections of the points K

′
1 and K1 on the highlighted lines have

very close k coordinates, which corresponds to the proximity of extrema on the dispersion curves of pristine SWCNTs shown in (b) and (e).
The interlayer coupling shifts the VHS positions and modifies the DWCNT spectra, as shown in (c) and (f). Dispersions for the inner and outer
tubes are shown in black and red, respectively. The black circles in (b), (c), (e), and (f) indicate the exact VHS positions obtained within the
model. Arrows denote inter-tube direct transitions in DWCNTs. In all the plots, the VHS coordinate of the outer pristine SWCNT is taken as
the origin (k = 0).

and found a particularly interesting one in the DWCNT
(10,6)@(14,13) with an energy EDW = 1.985 eV [15]. Ac-
cording to the authors this transition originates from the S33

one in the outer pristine SWCNT, where its energy is 1.93 eV
[34].

Calculation using Eq. (13) gives the following energy
EDW = 1.87 eV of the DWCNT optical transition, which dif-
fers from the experimental value by more than 100 meV.
Further analysis of the dispersion relations shows that the
spectral line with the energy of 1.985 eV corresponds with
much better accuracy to the inter-tube transition.

Figure 2(d) shows superimposed reciprocal spaces of the
tubes (10,6) and (14,13). The projections of the points K1

and K ′
1 on the cutting line with the index μ = 2 practically

coincide. The first and second projections correspond to the
optical transitions in the inner (|p| = 2, Ein = 1.66 eV) [34]
and outer (|p| = 5, Eout = 2.34 eV) [34] pristine nanotubes.

The calculation of dispersion relations [see Fig. 2(f)] using the
Hamiltonian (7) shows a similar spectrum rearrangement as in
the case of DWCNTs (12,12)@(21,13). The distance between
the extrema that originate from the bands of different pristine
SWCNTs turns out to be two times smaller (�k ≈ 0.02 nm−1)
than the distance between the VHSs of CB and VB of the
outer SWCNT (�k ≈ 0.04 nm−1). The theoretical energies,
calculated as (Ein + Eout )/2 + �E , are both approximately
equal to 1.95 eV, which is very close to the experimental value.

Note that, in contrast to the case of DWCNTs
(12,12)@(21,13), this spectrum rearrangement does not affect
the Sout

44 transition observed experimentally [15], but makes
possible the appearance of additional peaks in optical spec-
tra of DWCNTs, which are not associated with transitions
in pristine SWCNTs. As can be seen from the spectrum in
Fig. 2(f), all four VHSs have very close coordinates, thus, we
argue that in this case both the in-tube transition (Sout

44 ) and the
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FIG. 3. Inter-tube transitions in DWCNT (12,11)@(17,16). (a) The superimposed extended Brillouin zones of the inner and outer SWCNTs
which are shown in black and red, respectively. The cutting lines of the DWCNT are gray; lines μ = −1 and μ = 2 highlighted with black
correspond to the DWCNT bands which dispersions are presented in (b) and (c), respectively. Dispersions for the inner and outer tubes are
shown in black and red, respectively. The origin in the plots is chosen as the VHS coordinate of the inner pristine SWCNT. The VHS positions
are denoted by black circles, while inter-tube transitions are denoted by arrows.

inter-tube one (identified by the authors [15] as Sout
33 ) originate

from the electronic bands corresponding to the same cutting
line μ = 2.

Let us also note that the authors of Ref. [15], according to
their experimental data, could not unambiguously identify the
indices of the outer SWCNT [(14,13) or (16,11)]. Our analysis
shows that the outer tube is undoubtedly (14,13).

The first DWCNT Rayleigh spectrum, containing addi-
tional spectral peaks, which, according to Ref. [29], cannot
be associated with the optical transitions in the inner and
outer SWCNTs, was published only a few months ago. In the
measured range from 1.5 to 2.75 eV the spectrum of DWCNT
(12,11)@(17,16) has two more spectral lines with energies
about 1.85 and 2.35 eV in addition to five of those originating
from the pristine SWCNTs. Our theory unambiguously inter-
prets these peaks as inter-tube transitions, which correspond
to the cutting lines with the indices μ = −1 and μ = 2 . Both
values of �k for these cases are equal to ≈0.1 nm−1 and are
very close to �k values of the other inter-tube transitions
considered in this paper.

According to our analysis, the first measured peak with
energy 1.85 eV corresponds to transitions with theoretical
energies 1.89 and 1.92 eV [see Fig. 3(b)], and the second one
corresponds to transitions with energies 2.35 and 2.37 eV [see
Fig. 3(c)]. Unfortunately, in the work [29] neither values of the

transition energies (only the initial Rayleigh spectrum without
its decomposition), nor specific values of energies calculated
within the framework of their theory are given, so it is not
possible to compare the approaches. Note that our theory also
predicts the inter-tube transitions in the bands with μ = 0 and
μ = 1 [see Fig. 3(a)]. However, their energies are beyond the
measured range and are close to 1 eV.

After analyzing the four inter-tube transitions we came to
the conclusion that they are not as rare as stated in Ref. [29]
and returned to the analysis of the experimental data [20]
in order to find other possible transitions of this type. We
checked whether the observed energies [20] and the energies
of possible inter-tube transitions can match or be very close
to each other. As a result, we have found out that inter-tube
optical transitions can be masked in the spectra of 4 DWCNTs
(see Table I). Calculated DWCNT electronic dispersions ex-
plaining the origin of the transitions in Table I are shown in the
Supplemental Material, S2 [39]. It is interesting to note that all
the DWCNTs, in which inter-tube transitions are possible, are
composed of the tubes with the same handedness.

In the following section we propose an approach to cal-
culate dipole matrix elements. Within its framework we
demonstrate that in considered cases, the intensity of the inter-
tube transition can be of the same order as the intensity of
conventional in-tube one.

TABLE I. Possible inter-tube optical transitions in the DWCNTs [20].

Distance between VHSs for inter-tube
DWCNT Cutting line, μ Energy, eV transitions, nm−1

(13, 8)@(16, 15) 2 1.39, 1.39 0.05, 0.13
(14, 9)@(17, 16) 3 2.55, 2.57 0.12, 0.11
(18, 5)@(27, 5) 6 2.10, 2.10 0.05, 0.01
(13, 2)@(21, 3) 4 1.74, 1.77 0.17, 0.12
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IV. OPTICAL MATRIX ELEMENTS
FOR INTER-TUBE TRANSITIONS

Previously in the article we justified the existence of
inter-tube transitions in DWCNTs by the fact that without
introducing this concept, it turned out to be impossible to
explain the measured energies of some optical transitions. We
have also found the specific band rearrangement correspond-
ing to the case. However, to unequivocally prove the existence
of inter-tube optical transitions we need to consider the Hamil-
tonian Hopt describing the coupling with the electromagnetic
field. Within the dipole approximation this Hamiltonian can
be written as [40]

Hopt = ζη(P · ∇ ), (13)

where ζ = −i eh̄
m0

√
h̄

2V0ε0ω
, e and mo are charge and mass of the

electron, ε0 is dielectric constant, V0 is the DWCNT volume,
quantity η = √

Np corresponds to the case of photon absorp-
tion, while η = √

Np + 1 corresponds to its emission, and Np,
ω, and P are the photon number, frequency, and polarization,
respectively.

An electron transition from the state |i〉 to the state | f 〉
is allowed if the matrix element 〈 f |Hopt|i〉 does not vanish.
However, instead of calculating matrix elements directly, let
us approach this problem by, first, rewriting the operator (13)
in the matrix representation. Since for all considered inter-
tube transitions the interaction between tubes near the K1

point is significantly higher, we neglect the interaction near K2

and K3 points. This allows us to choose the same four Bloch
WFs we previously used to construct the effective Hamilto-
nian (7) as a new representation basis. We also consider the
light polarization P along DWCNT axis (P = 〈0, 0, 1〉). This
choice corresponds to the discussed optical transitions which
preserve the value of the wave number μ. Then, within the
framework of the nearest-neighbor tight-binding approxima-
tion, we rewrite the Hamiltonian (13) as

Hopt = iζη

⎛
⎜⎝

0 gin

g∗
in 0

v v

v v

v v

v v

0 gout

g∗
out 0

⎞
⎟⎠, (14)

where, following Refs. [41,42], gin and gout can be compactly
written as

gin = M(a0)

a0γ

∂ fin

∂k
, gout = M(a0)

a0γ

∂ fout

∂k
,

and M(a0) = ∫
S0

φ∗(r − a0)φ1(r)dS; φ(r − R) is the atomic p
orbital, localized near the site R; and a0 is the vector con-
necting the nearest carbon atoms. Since the function φ(r) is a
p orbital, oriented perpendicularly to the tube axis, it can be
written as φ(r) = r⊥ξ (r), where r⊥ is the perpendicular to the
z-axis projection of the radius vector, and ξ (r) is some spher-
ically symmetric real function of r = |r|, localized near the
origin. Accordingly, φ1(r) denotes the function r⊥ξ ′(r), where
the prime means differentiation with respect to r. Therefore,
in gin and gout the quantity M only depends on the length of
the vector a0.

Inter-tube matrix elements v in Eq. (15) are obtained as

v = −1√
N1N2

∑
j,l

(z j − z′
l )

|R j − R′
l |

sin [k · (z j − z′
l )]

× cos [μ · (θ j − θ ′
l )]M(R j − R′

l ),

where, as in Eq. (6), the primed and unprimed coordinates
specify the positions of atoms in one of the sublattices of
the inner and outer tubes. The equality of the elements v

with different indices is prompted by approximately ran-
dom relative arrangement of the atoms in the inner and
outer layers. A more rigorous justification can be carried
out in the same way we used to derive Eq. (6) and which
is discussed in Appendix B. For the same reasons, in the
expression for v the only remaining part of the factor
(z j − z′

l ) exp[−iq · (R j − R′
l )] is proportional to the term

(z j − z′
l ) sin[k(z j − z′

l )] cos[μ(θ j − θ ′
l )], which is even with

respect to independent permutations z j ↔ z′
l and θ j ↔ θ ′

l .
Deriving the Hamiltonian (14), we have also utilized the ap-
proximation [43], according to which

〈φ(r − R j )| ∂

∂z
|φ(r − Rl )〉

≈ z j − zl

|R j − Rl |
∫

V0

φ∗(r − R j + Rl )φ1(r)dV.

The uncertainty in the approximation when R j − Rl = 0
requires a separate analysis, which shows that in this case the
element 〈φ(r − R j )| ∂

∂z |φ(r − Rl )〉 vanishes.
The Hamiltonian (7) simultaneously determines the ener-

gies Ei and the corresponding normalized eigenvectors Ci

of four electron states with the same wave vector q. Within
the framework of the developed approach the dipole matrix
element of the electron transition between ith and jth states
can be calculated as

di, j = C∗
j HoptCi. (15)

By substituting the eigenvectors of the matrix (7) into
Eq. (15) when the interaction between tubes is neglected (h =
0), one can see that the dipole matrix elements for individual
SWCNTs coincide with the ones obtained in the previous
works [40,43], and when h = 0 the inter-tube transitions are
not allowed.

As our numerical estimates show, for all inter-tube transi-
tions considered in the previous section the electron states are
strongly mixed due to van der Waals interaction; namely, the
lengths of the vectors Ci and C j projected onto the subspaces
corresponding to the inner and outer tubes turn out to be close
to each other. Thus, even when v � gα (α = in, out), the op-
tical matrix elements for inter-tube transitions do not vanish.
However, accurate calculations of the quantity di, j may prove
difficult, since there are no estimates of the function M(R) in
the literature.

Let us note that in case of p-orbitals function M(R) as
well as the overlap integral

∫
V0

φ∗(r − R)φ(r)dV depends
on the value of the parallel and perpendicular projec-
tion of R to the DWNCT radius. However, since the
interlayer coupling is well described by the function u =
γc exp(−r/λ), where r = |R|, we can roughly estimate the
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integral
∫

V0
φ∗(r − R)φ′(r)dV as ∂u

∂r (such estimate is valid for
spherically symmetric localized states). Then, as our numeri-
cal estimates show, when the intralayer overlap integral M(a0)
has an order of 0.5–1.0 eV nm−1, the dipole matrix elements
of the inter-tube and in-tube transitions turn out to be very
close.

Using this estimate, it is interesting to return to the discus-
sion of the inter-tube transitions in DWCNT (12,12)@(21,13)
considered in the previous section. For both transitions with
close energies ≈(E+

out − E−
in ) and ≈(E+

in − E−
out) the matrix

elements and eigenvectors of the states involved have rela-
tively weak dependence on the wave vector. However, since
these transitions involve different pairs of eigenvectors of
the Hamiltonian (7), the dipole matrix elements can be very
different.

The intensity of a peak in absorption spectrum is pro-
portional to |di, j |2/(Ei − Ej )2 [40]. Then using the estimates
for M(a0), one can obtain that the intensity of the transition
with energy ≈(E+

out − E−
in ) is higher by 30%, when M(a0) =

1 eV nm−1, and only by 10%, when M(a0) = 0.5 eV nm−1,
which is consistent with the experimental data [20]. Similar
calculations for the rest of the inter-tube transitions considered
in this paper are not presented here, since for these transitions
it is difficult to compare theoretical results with the available
experimental data.

V. DISCUSSION

In this work we developed the theory of inter-tube optical
transitions in DWCNTs. As the first step we have revised the
NN TBA which is proven to be a very powerful tool in calcu-
lating the band structure of low-dimensional systems [44,45].
Unlike Ref. [20], we have not applied the perturbation theory
from the very beginning and first considered the effective
4 × 4 Hamiltonian for strongly coupled states of the outer
and inner tubes. Constructing this Hamiltonian, we explicitly
have taken into account the incommensurability of SWCNTs
in a DWCNT and obtained the more accurate expression (8)
to calculate the energies of the coupled states. Its linearization
leads to the partially known results. If we exclude the second
(less significant) terms corresponding to cross-band interac-
tion in the approximate expressions (9) and (10) describing
the shifts in band dispersions, the formulas become equivalent
(as we have shown) to the implicit ones obtained in Ref. [20].
Our approach is more accurate for one more reason. We have
refused to use the approximate expression [20] for calculating
the matrix elements. Replacing the sum (6), which can be
calculated on any personal computer in a few seconds, with
an approximate integral expression for a slight increase in the
efficiency of calculations, it seems unimportant.

As in our work, the approach [28] considers the effective
4 × 4 Hamiltonian. This Hamiltonian is based on the linear
expansion of the function f (q) [see Eq. (1)] in the vicinity of
the points K and K ′ [30,32]. The matrix elements describing
the interaction between the sublattices of different tubes are
also expanded into series near these points. In our opinion
both expansions are unnecessary; they decrease the accuracy
of the theory [28]. We have decided that it is better to consider
only one small parameter—the magnitude of the interaction
between the tubes. Indirect evidence that the theory proposed

is more accurate is that we were able to detect several inter-
tube transitions in the previously published data [15,20] on
the optical spectra of DWCNTs. In addition, we fully agree
with the authors of Ref. [20] that some state of one tube can
be strongly coupled with several nonequivalent states of the
other tube. Accordingly, it is necessary to take into account all
the interacting states, and in the general case this is impossible
within the framework of the single 4 × 4 Hamiltonian. In the
general case, the 8 × 8 Hamiltonian may be useful, and we
will deduce it elsewhere. Here, for simplicity, we successively
apply three copies of equations based on the rather simple
Hamiltonian (7).

The phenomenon we call the inter-tube transition was dis-
covered a few months ago in the DWCNT (12,11)@(17,16)
[29] and the authors considered it as absolutely unique, re-
quiring complete altering of the band structure. According to
Ref. [29] such transitions take place only in those DWCNTs,
both layers of which have close chirality angles. In our opin-
ion, the geometric selection rules permitting the inter-tube
transitions are not so rigorous. Both inter-tube and in-tube
optical transitions originate from those in SWCNTs; how-
ever, the inter-tube transition is genetically related with two
different transitions occurring in the inner and outer pristine
nanotubes. In the scheme of superimposed extended Brillouin
zones both transitions in the nanotubes should be character-
ized by the same cutting line μ and have very close values of
the one-dimensional wave vector k (very close VHS positions
on this cutting line). Then, due to the inter-tube coupling,
these positions can practically coincide, which, in our opinion,
makes the transition between the bands of different tubes
possible.

As we mentioned the greater the distance between the con-
sidered cutting line and the K point is, the more the VHS shifts
along the cutting line. Therefore, the inter-tube transition is
more probable to occur when the strong coupling point is
near both K points of the outer and inner SWCNTs. We also
note that electronic bands are periodic in reciprocal space
of pristine SWCNTs. Thus, the difference �k between the
projections of K points on the considered cutting line should
be significantly smaller than the reciprocal space periods of
both tubes.

The above selection rules are purely geometric and can be
easily applied separately without energy calculations. Even
though within the proposed theory we cannot unequivocally
establish the threshold value of �k permitting an inter-tube
transition, the developed approach easily allows one to deter-
mine which transition (inter-tube or in-tube one) is more likely
in a particular case. Let us also emphasize that the inter-tube
transitions in the framework of our theory are described in
almost the same way as the in-tube ones. If the geometri-
cal analysis shows the possibility of inter-tube transition, in
addition to the shifts of the band energies, it is necessary
to determine new VHS positions and analyze their relative
location.

Within the proposed theory, in addition to the case of
DWCNT (12,11)@(17,16) [29], we have found two more
examples where the experimental data cannot be explained by
only in-tube transitions. The examples violate the selection
rules [28,29], since in both cases the difference of the chiral-
ity angles is quite significant. However, the found examples

115426-9



D. V. CHALIN AND S. B. ROCHAL PHYSICAL REVIEW B 102, 115426 (2020)

satisfy the selection rules presented in this work. In addition,
analyzing the data [20], we have revealed four probable inter-
tube transitions that are close in energies with the in-tube
transitions in the same DWCNTs.

In this regard, it is of great interest to reanalyze the ex-
perimental data [15,20] since for DWCNTs studied there
the theoretical energies of in-tube and inter-tube transitions
are well distinguishable. Unfortunately, the optical spectra
of DWCNTs considered in these works are insufficiently
represented. The only published Rayleigh spectrum (which
according to our theory contains an inter-tube transition) is
given in low resolution for the DWCNT (10,6)@(14,13) [15].
In this spectrum the maximum with an energy about 1.9–
2.0 eV corresponds exactly to the wide region where, along
with the in-tube transition (Sout

33 ), the inter-tube transition is
located. But because of low resolution it seems almost impos-
sible to fit the spectrum [15] and conduct a more thorough
analysis.

All existing methods for fitting optical spectra of DWCNTs
use the number of transitions as an input parameter which is
equal to the number of transitions in pristine SWCNTs in the
measured spectral range. According to Ref. [20], when fitting
experimental data, a spectral line can be shifted from −200 to
+50 meV with respect to its initial position and it is assumed
there are no new transitions due to the interlayer coupling. Our
results show that in cases satisfying the obtained geometric
selection rules, additional inter-tube transitions must be taken
into account. As the initial energy of such a transition, one
should take the half-sum of the energies of the corresponding
transitions in SWCNTs. In the most general case, the inter-
tube transition is a doublet due to the symmetry breaking with
respect to the electron-hole permutation. Analysis within the
framework of our theory can predict the splitting and values
of dipole matrix elements for possible inter-tube transitions.
In subsequent works, testing the proposed theory, it would
be interesting to study how the fit quality of experimen-
tal optical spectra changes when the theoretical predictions
regarding the number of allowed transitions are taken into
account.

VI. CONCLUSION

In conclusion, we have developed the theory describing
the band structure of incommensurate DWCNTs and intro-
duced the concept of inter-tube electronic transitions. They
are possible in some DWCNTs with the specific geometry
of superimposed extended Brillouin zones corresponding to
constituent SWCNTs. The obtained selection rules permit-
ting inter-tube transitions are purely geometric and represent
a simple guideline allowing one to determine which transi-
tions in which DWCNTs are possible even without direct
calculations of the band structure. The proposed theory to-
gether with Rayleigh spectroscopy can be used as a powerful
tool in the structural identification of DWCNTs including
such a parameter as relative handedness of the layers. Our
approach can be generalized for the case of double-walled
boron nitride nanotubes [46,47] and we suppose it could
also provide insight into the energy shifts of photolumines-
cence transitions observed in experiments on single-walled

carbon nanotubes with organic molecules wrapped around
them [48].
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APPENDIX A: DESCRIPTION OF THE DIRECT AND
RECIPROCAL SPACES IN SWCNTS

Considering SWCNT translational and rotational symme-
try, it is convenient to project graphene basis translations a1

and a2 on the surface of a nanotube [49,50] and express
the components of these translations along its perimeter and
axis. In contrast to the conventional approach, here the first
component of the translations is dimensionless and found as
a fraction of the SWCNT perimeter. For a SWCNT with the
chiral indices (n, m) one can obtain

a1 =
(

(2n + m)π

(n2 + m2 + nm)
,

3m · a0

2
√

n2 + m2 + nm

)
, (A1)

a2 =
(

(2m + n)π

(n2 + m2 + nm)
,

−3n · a0

2
√

n2 + m2 + nm

)
, (A2)

where a0 = 0.142 nm is the distance between the nearest sites
of carbon atoms. Using the condition aib j = 2πδi j , where δi j

is the Kronecker delta, one can easily obtain the components
of the reciprocal lattice vectors b1 and b2:

b1 =
(

n,
2π

3a0

2m + n√
n2 + m2 + nm

)
, (A3)

b2 =
(

m,− 2π

3a0

2n + m√
n2 + m2 + nm

)
. (A4)

The used definition of the SWCNT basis vectors is con-
venient in the way that it leads to the automatic matching of
the cutting lines in the reciprocal spaces of the outer and in-
ner tubes and the coefficients corresponding to the reciprocal
space stretching/compression used in Refs. [20,28] become
unnecessary. This is because the first component of the vectors
(A3) and (A4) measures the distance from the origin in units
equal to the distance between the nearest cutting lines.

APPENDIX B: ANALYSIS OF THE INTERLAYER
COUPLING MATRIX ELEMENTS

The calculation of the elements (5) can be significantly
simplified for incommensurate DWCNTs, which are the vast
majority of possible DWCNTs. In such nanotubes, the ratio
between the periods of the inner and outer tubes is an irra-
tional number. Therefore, any relative shift of nanotubes in an
infinitely long DWCNT can be expressed with arbitrarily good
accuracy as an integer linear combination of the periods of the
inner and outer SWCNTs. Any translations leave the SWCNT
structure invariant; therefore, the sum (5) should also remain
the same.
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Unlike the relative shifts, relative rotations of nanotubes
in DWCNT preserve the value of the sum (5) only approxi-
mately. Indeed, as is well known [49,50], SWCNT (n, m) has
a screw Q-fold axis, where Q = 2(n2+m2+n·m)

GCD(2n+m,2m+n) and GCD(x,
y) denotes the greatest common divisor of the integers x and
y. Suppose that the inner and outer nanotubes have Qin-fold
and Qout-fold axes, respectively. Then, taking into account the
translational invariance of Eq. (5), it is easy to see that Eq. (5)
should also be invariant with respect to the relative rotation of
the SWCNTs by the angle δ = 2π GCD(Qin, Qout )/(QinQout ).
In real DWCNTs, the angles are very small, for example, the
maximal angle δ for all DWCNTs considered in Ref. [20] is
approximately 2 × 10−3 rad.

The analysis performed shows that the DWCNT symmetry
with respect to relative rotations of constituent nanotubes is
almost continuous, and in a sufficiently long DWCNT the pair
correlation function of the atomic coordinates of inner and
outer layers practically does not change under their relative
rotations. Therefore, the matrix elements Vα,β can be consid-
ered as independent on the α and β indices.

Sum (5) also must be nearly invariant with respect to a
specific transformation: R j → −R j and R′

l → −R′
l , which is

equivalent to some relative translation and rotation. Therefore,
the matrix element Vα,β should be approximately real. Indeed,

since incommensurate sublattices can be relatively shifted, it
is always possible to match the coordinates of a pair of atoms
Rl = R′

k and to choose in this point a common origin. The
latter fact makes another interesting property of the elements
(5) obvious. This sum is invariant with respect to the following
substitutions:

q → q + Q, q′ → q′ + Q′, (B1)

where Q and Q′ are arbitrary translations in the reciprocal
space of the inner and outer nanotubes, respectively. It is
interesting to note that the quantity f (q) has no such property,
and being translated in the reciprocal space it either remains
invariant or changes the phase by ± 2π

3 ; nevertheless, this fact
does not violate the translation invariance of the eigenvalues
of the Hamiltonian (1).

Our calculations show that the absolute values of matrix
elements Vα,β differ from each other by no more than 2%, and
the arguments of these practically real numbers vary within
±0.01. In particular, for all DWCNTs considered in this pa-
per, the maximum error occurs only for the (11,11)@(22,9)
nanotube. For all other cases, the error due to utilization of
approximate Eq. (6) turns out to be tens or even hundreds of
times smaller.
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