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We study a flux qubit consisting of a symmetrical pair of superconducting loops, with two Josephson junctions
in each, joined by a common Josephson junction—a ‘twin’ flux qubit. The qubit is capacitively coupled to
a transmission line, which allows us to characterize the spectrum of the device by measuring the scattering
of propagated electromagnetic waves. We perform a detailed analytical analysis of the double-loop system,
revealing its properties, and compare experimental results with numerical simulations. At half-flux quantum
bias of both loops, the qubit is protected against global and local magnetic field fluctuations with much less
sensitivity to the global field in the second order. The system selection rules allow even-odd transitions and
prohibit transitions between even-even or odd-odd levels due to the symmetry of the device.
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I. INTRODUCTION

Superconducting qubits are among the most promising
platforms for quantum computing technology. Typical qubits
are on-chip aluminium structures with Josephson junctions
(JJs), whose geometry can be designed to select an operating
energy, state transition rates, and sensitivity required for a
particular environment. Over the past decade they have carried
out the functionality of a transistor [1–4]—where a control
field was used to pass or block a probe field at a different
frequency, multiplexer [5]—two input signals can be mixed
to controllably generate a single output signal and serial bus
[6]. Superconducting qubits can be fabricated using standard
nanofabrication techniques and integrated at scale into quan-
tum circuits [7].

One of the inherent limitations, which is encountered with
superconducting qubits, is a coherence time τdec, beyond
which quantum information becomes lost. In early qubits the
decoherence time was in the range of a few ns. Two main
sources of decoherence are charge and flux fluctuations in
the vicinity of the qubit. Charge fluctuations are particular
harmful for the qubits, where the charging energy EC is large.
In flux qubit architectures the JJ energy EJ dominates over
the charging energy (EJ/EC � 1), which lowers the device’s
charge sensitivity [8–10]. A family of flux qubit designs have
led to improvement of the coherence times: capacitively-
shunted flux qubit [11,12], 4-JJ qubit [13].
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Here we investigate experimentally a ‘twin’ qubit, consist-
ing of two symmetrical flux qubits, linked by a common α-JJ,
Fig. 1. The original investigation was motivated by the weak
flux dependence of the system transition energy when it is
biased to the degeneracy point (�0/2) in each loop. Compared
to the original flux qubit, the energy levels of the ‘twin’ qubit
are very flat. In a recent publication, a chain of 15 such qubits
was placed into a coplanar waveguide to demonstrate flux-
tuneable transmission of microwaves [14]. In our work we
isolate one of these ‘twin’ qubits and perform a detailed char-
acterization. Experimental study of the transmission spectrum
confirms weak dependence on the global-flux anharmonicity
with respect to the |0〉 ↔ |1〉 and |1〉 ↔ |2〉 transitions (|0〉,
|1〉, |2〉 correspond to the ground, first-excited, second-excited
states). Simulations further indicate some level of protection
against local-flux fluctuations.

II. DEVICE LAYOUT AND MEASUREMENTS SETUP

The sample is fabricated on an undoped silicon substrate,
which is pre-patterned with 100 nm Au ground planes. We
use electron beam lithography and a shadow evaporation tech-
nique to fabricate the qubit shown in Fig. 1(a). The qubit
consists of five JJs integrated into two symmetrical super-
conducting loops. The JJs have a layered structure of Al
(20 nm)-AlOx-Al (30 nm). The energy and capacitance of the
central JJ is a factor of α larger than for the outside ones,
which have dimensions 400 × 200 nm2. The coplanar trans-
mission line with impedance Z0 ∼ 50 � runs to the opening
between the ground planes in the center of the chip. The
qubits are coupled to the transmission line through T-shaped
capacitors. An external magnetic field is applied to change
magnetic flux linked through the almost-identical loops.

The sample is mounted on a holder at the 13 mK stage
of a dilution refrigerator. A superconducting shield is used
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FIG. 1. Geometry of a ‘twin’ qubit: (a) Scanning electron micro-
scope image of the ‘twin’ qubit. The Al-AlOx-Al JJs are highlighted
in red and yellow. ϕl and ϕr are phases induced in the left and right
loops by an external magnetic field. (b) Each of the qubits is coupled
to the transmission line with a T-shaped capacitor (light blue). (c) The
‘twin’ qubit is a symmetrical arrangement of two individual flux
qubits [8] sharing the central JJ. The qubit has four islands, which
are labeled with Cooper pair (CP) occupation �n = |n1, n2, n3〉, and
phases across its junctions: ϕi j , where i and j are the island indices
0, 1, 2, or 3. The central junction is geometrically a factor α larger
than the outer ones, resulting in energies αEC and αEJ .

to screen the holder from stray magnetic fields. The RF lines
connected to the sample have attenuators for thermalization:
−50 dBm at room temperature, −10 dBm on the 800 mK
stage, −30 dBm on dilution-chamber state (≈13 mK). We
attach a circulator on the output line for isolation. The trans-
mitted signal is amplified by approximately +35 dBm on the
4 K stage and by +35 dBm at room temperature. This set of at-
tenuators and amplifiers facilitate power conversion between
the laboratory equipment and the qubit. Prior to characteriz-
ing the qubit, we took the microwave transmission spectrum
with the qubit detuned and corrected all measurements by
subtracting this background transmission profile. Our primary
goal is to study the operation of the qubit in the vicinity of
a double degeneracy point (�0/2), find the intrinsic energy
structure and compare with a numerical model of the system.

III. MEASUREMENT RESULTS

We study the energy spectrum of the ‘twin’ qubit by mea-
suring transmission of coherent waves while sweeping the
biasing magnetic flux. The |0〉 ↔ |1〉 transition is mapped
with a network analyzer which measures the transmission of
signal ωNA through the system. Away from resonance the
signal passes through the circuit without any interaction with
the qubit so that the transmission is close to 100%.

Only near resonance (ωNA ≈ ω10) does the qubit exchange
photons with the driving field as it evolves between the ground
and excited states. The qubit emits a wave that is in antiphase
with the driving field [1], so that the destructive interference
in the output line results in a transmission dip, see Fig. 2(a) in-
set. The transmission coefficient is t = 1 − r0/(1 − iδω/	2),
where δω = ωNA − ω21, r0 = 	r

1/2	2 is an effective reflection
coefficient, 	r

1 is the radiative decay from the qubit to the
line, and 	2 is the total dephasing [1,15] (see Supplemental
Material note I [16]). The inset of Fig. 2(a) shows the power
transmission spectrum obtained in a weak driving limit, when
it takes the simplified form |t |2 ≈ 1 − 2r0/[1 − (δω/	2)2].

FIG. 2. Spectrum of the quantum system: (a) The resonance
frequencies (ω10) in the vicinity of �0/2 (blue points). An inset
exemplifies the power transmission coefficient |t |2 for the |0〉 ↔ |1〉
transition, taken in the weak driving limit. The transition frequencies
ω21 (red) are obtained in a two-tone measurement. (b) The spectrum
measured in a wide flux bias range. Experimental data (circles) are
compared with simulations (solid lines) for ω10 (blue) and ω21 (red).
Asymmetry in the flux penetrating the left and right loops results in
the gradual change of transition frequencies with every �0 period:
ω10 creeps up, while ω21 creeps down, breaking the usual periodicity
seen in flux qubits.

Fitting the dip we find 	2/2π ≈ 3.5 MHz and 	r
1/2π ≈

0.6 MHz.
The transmission minimum at different magnetic fields

maps out the qubit’s ground-to-excited-state frequency (ω10)
in Fig. 2(a). Such a spectrum is observed in the vicinity of
external flux bias � ≈ �0/2 for all samples. Because of a
small asymmetry, η ≈ 1, the phases induced through the left
and right loops can be slightly different: ϕl = �/2π and
ϕr = η�/2π . This results in gradual change of the resonant
frequency at larger magnetic fields, Fig. 2(b).

The |1〉 ↔ |2〉 transition (ω21) is mapped using spec-
troscopy with two tones. The network analyser probes signals
at ω10, while an additional generator sweeps a second
frequency, ωGEN. Whenever the second tone from the gen-
erator hits the |1〉 → |2〉 transition (ωGEN = ω21), the qubit
undergoes a ladder of excitations, |0〉 ω10−→ |1〉 ω21−→ |2〉, de-
populating states |0〉 and |1〉. Because of this depopulation,
the probe signal at ω10 is modified. This identifies ω21, which
is mapped with red circles, see Fig. 2. One can note that the
qubit has a large anharmonicity of more than 7.5 GHz in the
two lowest transitions.

IV. JOSEPHSON POTENTIAL: STABILITY DIAGRAMS

Each JJ contributes EJi j[1 − cos(ϕi j )] to a Josephson po-
tential. The loops are biased by an external magnetic field,
which can be accounted for as externally induced phases in
the left (ϕl ) and right (ϕr) loops, see Fig. 1. Therefore ϕ01 +
ϕ12 − ϕ02 = −ϕl and ϕ02 − ϕ32 − ϕ03 = −ϕr are the phase-
bounding conditions due to flux quantization. The Josephson
potential of our device can be written as

U = EJ [4 + α − α cos ϕ02 − cos ϕ01 − cos ϕ03

− cos(ϕ02 − ϕ01 − ϕl ) − cos(ϕ02 − ϕ03 + ϕr )]. (1)
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FIG. 3. Stability diagrams of the system: (a) The minimal value
of Josephson potential is plotted as a function of externally induced
phase in the left (ϕl ) and right (ϕr) loops. The stable flux config-
urations are denoted as |00〉, |01〉, |10〉, and |11〉. When the loops
are symmetrically biased, in the case of a uniform global magnetic
field and identical loop areas, the potential takes values along the red
arrowed line. An inset shows the energies along the dashed yellow
line. The blue curve is the minimized potential and the red curves
are parabolic approximations for |01〉 and |10〉 flux configurations.
Red diamonds mark the ends of the |01〉 − |10〉 degeneracy line.
(b)–(d) show phases ϕ02, ϕ01 + ϕ12, and ϕ03 + ϕ32. The abrupt phase
change by ∼2π corresponds to a flux quantum jumping through the
junctions.

Now we will discuss some properties of the potential.
Figure 3(a) shows the minimal value of the potential en-
ergy (Umin(ϕl , ϕr ) = minϕ01,ϕ12,ϕ03 U ), energetically favorable
for the system, as a function of the external phases. The
corresponding phases assumed on the JJs are shown in
Figs. 3(b)–3(d). Figures 3(c) and Fig. 3(d) show phases in
the left and right arms, ϕ01 + ϕ12 and ϕ03 + ϕ32. Note that
ϕ01 = ϕ12 and ϕ03 = ϕ32, as it is expected that the same
current flows in junctions situated sequentially on a branch,
and Ii j = Ici j sin ϕi j , where Ici j is the critical current across
junction i j. All the patterns are 2π periodic in ϕl and ϕr .
Together, the figures demonstrate that there are hexagonal
cells centered at ϕl = 2πnL and ϕr = 2πnR, where nL and nR

are integer numbers. Within the cells, phases vary smoothly
as a function of ϕl and ϕr and then may abruptly switch at the
boundaries of the cells.

The abrupt change of phase by 2π at the boundaries of the
cells corresponds to a flux quantum (�0) jumping in or out
of the loops. More precisely, in Fig. 3(c), varying ϕl at fixed
ϕr (e.g., ϕr = 0) results in the phase jump in the left shoulder
of the structure when the total phase (ϕ01 + ϕ12) flips from
−π to π close to ϕl = π + 2πnL, nL ∈ Z. This corresponds
to movement of a flux quantum into the left loop. Similarly, a
flux quantum movement occurs in the right loop close to ϕr ≈
π + 2πnR, nR ∈ Z; the flux in the right branch (ϕ03 + ϕ32) is
flipped from −π to π , see Fig. 3(d).

The most interesting process for us is the motion of the flux
quantum between the loops without changing the total flux

number in the system. Figure 3(b) shows phase ϕ02 abruptly
changing from π to −π , when moving along the dashed yel-
low line. This corresponds to a flux quantum jumping from the
right loop directly into the left loop. We denote energetically
favorable configurations with the ‘stable’ flux states |nLnR〉.
For example, |00〉 denotes the favorable state of the system
in the cell centered at ϕl = 0 and ϕr = 0. Moving through a
boundary of this cell results in a new ‘stable’ flux configura-
tion, which is labeled in Fig. 3(a) for four of the cells.

We will now consider properties of the Josephson po-
tential in cells centered at {ϕl/2π, ϕr/2π} = {nL, nR}. The
minimal values of the Josephson potential can be found from
∂U/∂ϕi j = 0. Differentiating it in ϕ01 and ϕ03 and applying
the phase-bounding conditions in the loops, we find ϕ01 =
ϕ12 = ϕ02−ϕl

2 + πnL and ϕ03 = ϕ32 = ϕ02+ϕr

2 − πnR (see Sup-
plemental Material note IIA [16]). The minimized Josephson
energy [Eq. (1)] reads

Umin(nL, nR) = EJ

[
4 + α − 2(−1)nL cos

(ϕ02 − ϕl

2

)

−2(−1)nR cos
(ϕ02 + ϕr

2

)
− α cos ϕ02

]
. (2)

Next, ∂U/∂ϕ02 = 0 results in

(−1)nL sin
(ϕ02 − ϕl

2

)

+ (−1)nR sin
(ϕ02 + ϕr

2

)
+ α sin ϕ02 = 0. (3)

This condition is equivalent to the Kirchhoff’s law for currents
in our system. The phase behavior at least in the vicinity of
the cell centers can be found from the series expansion of this
expression up to the first order (see Supplemental Material
note IIB [16]), which results in

ϕ02 ≈ ϕl − ϕr − 2π (nL − nR)

2(1 + α)
. (4)

Substituting Eq. (4) into Eq. (2), and expanding up to second
order around the center of the cells (see Supplemental Ma-
terial note IIC [16]), we can draw approximated potentials.
The blue curve in the inset of Fig. 3(a) shows the potential
along the yellow dashed line (ϕ+ = π , where ϕ+ = ϕl +ϕr

2 )
minimized in all ϕi j . Two red parabolic curves are taken from
the series expansion of Umin, where the left parabola is for
nL = 0, nR = 1 (state |01〉) and the right one is for nL = 1,
nR = 0 (state |10〉). This approximation case is equivalent to
the replacement of the Josephson junctions by linear induc-
tances. The parabolic approximations slightly deviate from
the exact calculations only at ϕl ≈ π (the boundary of the
cell).

From Fig. 3(a) we can also identify a ‘triple-point,’
where energies of three configurations |nL, nR〉, |nL, nR + 1〉,
and |nL + 1, nR〉 are degenerated—that is U (nL, nR) =
U (nL, nR + 1) = U (nL + 1, nR). For the |00〉, |01〉, and |10〉
states, the point lies on the red arrowed line (ϕ− = 0, where
ϕ− = ϕl −ϕr

2 ) of Fig. 3. We denote the position of the ‘triple-
point’ as ϕl = ϕr = ϕT . Using Eq. (2) and Eq. (3) to minimize
U (0, 0), we find that ϕ02 = 0 and, therefore, Umin(0, 0)/EJ =
4 − 4 cos ϕT

2 . Similarly the condition for minimal U (0, 1)
is found to be sin ϕ02

2 = 1
α

sin ϕT

2 and Umin(1, 0)/EJ = 4 −
2
α

sin2 ϕT

2 . The condition Umin(0, 0) = Umin(0, 1) = Umin(1, 0)

115422-3



I. V. ANTONOV et al. PHYSICAL REVIEW B 102, 115422 (2020)

FIG. 4. Potential minimum at the (ϕl = π, ϕr = π ) degeneracy
point: The plots show 2D Josephson potential in ϕ02-ϕ01 coordinates
and 1D potentials along the minimum as a function of ϕ02 (light
blue line) for: (a) α = 0.8; (b) α = 1.0; (c) α = 1.2. A double well
emerges for α > 1.0 (light blue points).

brings us to the solution ϕT = 2 arccos(
√

1 + α2 − α) (see
Supplemental Material IID [16]). For α = 1, ϕT /2π ≈ 0.36
and the total length of the degeneracy |01〉 − |10〉 line is
ϕl/2π = ϕr/2π ≈ 0.28.

V. ANHARMONIC JOSEPHSON POTENTIALS

Next we consider the Josephson potential in the ϕi j space
at fixed ϕl and ϕr . We are interested in the region along the
red arrowed line in Fig. 3(a), where states |01〉 and |10〉 are
degenerated. Because the potential is a function of three inde-
pendent variables (ϕ01, ϕ02, and ϕ03), for visualization on a 2D
plot we reduce the number of variables by excluding ϕ03. Fig-
ures 4(a)–4(c) show U (ϕ01, ϕ02)/EJ = minϕ03 (U/EJ ) at ϕl =
ϕr = π for three different α parameters (α = 0.8, α = 1.0,
and α = 1.2). The bottom plots show the potential along the
minimal energies with U (ϕ02)/EJ = minϕ01 U (ϕ01, ϕ02)/EJ .
All phases are defined on a 2π interval, however, here, we
shift ϕ02 along the x axis from [−π ; π ] to [0; 2π ] to center
on the potential minimum. The 2π -phase flip from ϕ02 =
−π → π (along yellow line in Fig. 3), accompanied by a flux
quantum jump, now corresponds to ϕ02 = π − 0 → π + 0.

In contrast to three and four-junction flux qubits, α = 1.0
corresponds to the case when the second order of the potential,
at the minimal point, is completely suppressed. With α < 1,
the potential is anharmonic but with a nonzero second order
curvature at the center. And α > 1 corresponds to the double
well potential case.

Now we analyze the potential analytically at the sym-
metric point ϕl = π and ϕr = π on the boundary of cells
{0, 1} and {1, 0} (blue diamond in Fig. 3). The minimal U
corresponds to ϕ03 = ϕ32 = ϕ02∓π

2 and therefore U = EJ [4 +
α − α cos ϕ02 − cos ϕ01 ∓ 2 sin ϕ02

2 + cos(ϕ02 − ϕ01)]. This is
the analytical form of the 2D potentials in Figs. 4(a)–4(c).
Furthermore, minimizing in ϕ01 gives ϕ01 = ϕ12 = ϕ02±π

2
and U = EJ [4 + α − α cos ϕ02 ∓ 4 sin ϕ02

2 ] (see Supplemental
Material note IIE [16]). The potential has the minimum (or
minima) in the vicinity of ϕ02 = π , which will be labeled as a

deviation δϕ02, such that ϕ02 = π + δϕ02. Then

min
ϕ01,ϕ03

(U ) = EJ

[
4 + α + α cos δϕ02 − 4 cos

δϕ02

2

]
. (5)

When δϕ02 is small, both terms are approximated by parabo-
las, where the first term behaves as if it were classical linear
inductance. A series expansion of the potential up to the

second order gives U ≈ EJ [2α + (1 − α) δϕ2
02

2 ]. This means
that when α > 1, the potential curvature at δϕ02 = 0 becomes
negative and the potential shape turns to double well.

The values of minima can be found again by differentiation
of U by ϕ02, which is simplified to 2 sin δϕ02

2 (1 − α cos δϕ02

2 ) =
0. The minima of U are found as

ϕ02 = π, α � 1

ϕ02 = π ± 2 arccos
1

α
, α > 1. (6)

When α > 1, the potential has two minima at ϕ02 = π ± φ,
where φ = 2 arccos 1

α
. If we map the phase back into the

[−π ; π ] range, then ϕ02 ≈ −π + φ and ϕ02 ≈ π − φ. This
means that with small φ, the jump of the system from one well
to another is accompanied by change of the phase by nearly
2π and therefore a jump a flux quantum through the middle
junction.

VI. THE HAMILTONIAN

The charges and potentials on the islands are linked by the
capacitance matrix:

2e�n = C �V . (7)

The capacitance matrix in the ‘twin’ qubit topology is (see
Supplemental Material note III [16]):

C = C

⎛
⎝ 2 −1 0

−1 2 + α −1
0 −1 2

⎞
⎠, (8)

where C is the capacitance of the outer JJs. The interaction
of the CPs, carrying a charge �Q = 2e�n, and potentials on
their respective islands gives rise to the kinetic energy term
(considering vortex motion) of the Hamiltonian:

T = ECC�nT C−1�n, (9)

where charging energy is EC = (2e)2/2C.
The Hamiltonian, H = T + U , is written in the charge

basis (see Supplemental Material note IV [16]) with EJ/h =
91.0 GHz, EC/h = 13.5 GHz, α = 1.023 , η = 1.011 , where
η = ϕr/ϕl . The resulting eigenenergies are compared with
the experimental data in Fig. 2(b). Data for ω32 is shown
in the limited flux range from 0.37 �0 to 0.63 �0, because
away from � = (n + 1

2 )�0, n ∈ Z, the energy of |0〉 ↔ |1〉
diverges.

The discrepancy between the experimental data and the
simulations in Fig. 2(b) can be a result of deviation of the
actual qubit parameters from the fitted ones—for example,
the JJ in the two arms of the qubit are likely to have small
differences after fabrication; at relatively large bias, the actual
magnetic field may deviate from what we expect due the
influences of trapped vortices in the ground planes.
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FIG. 5. Energies of ground-to-excited state transitions:
(a),(b) Transition energies as functions of external phase biases (ϕl ,
ϕr, ϕ+ = (ϕl + ϕr )/2, ϕ− = (ϕl − ϕr )/2). (c) Transition energies
along lines denoted I, II, III, and IV. Curve I shows the transition
energy as a function of the global magnetic flux, which increases
with ϕ+. Curves II, III, and IV show the transition energy as a
function of the difference in magnetic fluxes, denoting local flux
fluctuations. The qubit is much better protected against the global
field fluctuations as curve I has a much smaller curvature.

Importantly, the transition matrix element (d02) is 0 for a
wide magnetic flux interval, in contrast with a flux qubit where
it happens strictly at the degeneracy point (�0/2). Below we
will discuss properties of the dipole elements in details. We
estimate the photon emission rate using relationship [1,15]
	r

1 = (d01Cc)2ωZ0/h̄ and found that the previously estimated
value (	r

1/2π = 0.6 MHz) can be obtained if we substitute
coupling capacitance Cc = 6 fF, which is a very reasonable
value for our geometry.

VII. TRANSITION ENERGIES IN THE VICINITY
OF THE SYMMETRIC POINT

Figure 5 shows the ground-to-excited state transition en-
ergies of the qubit as a function of local phase biases ϕl and
ϕr . In the ideal case of symmetric bias (ϕl = ϕr) and away
from the symmetric point (ϕl = ϕr = π ), the transition energy
varies slowly with the global magnetic field, demonstrated by
the flat curve I in Fig. 5(c). In the perpendicular directions to
ϕ+ = ϕl +ϕr

2 = const, which is attributed to the system under-
going completely anticorrelated fluctuations in the two loops
(an extreme case of local fluctuations), energy bands have a
steep gradient away from the |01〉-|10〉 degeneracy line (blue
line in Fig. 5), demonstrated by curves II, III, IV in Fig. 5(c).

Numerically, ∂E10/∂ϕ+ = ∂E10/∂ϕ− = 0 at ϕl = ϕr = π ,
but the curvatures characterized by the second derivatives
are h̄−2∂2E10/∂ϕ2

− ≈ −380 GHz/�2
0 and for the global field

h̄−2∂2E10/∂ϕ2
+ ≈ 4 × 104 GHz/�2

0. This confirms that al-
though in first order there is no sensitivity to both global
and local flux noise, in the second order the qubit is much
better protected against the global fluctuations. The local noise
can be produced by spin fluctuations on the metallic surfaces

FIG. 6. Energies of the system and the corresponding transition
matrix elements: (a) As a function of the local magnetic flux devia-
tions with ϕ+ = π . (b) As a function of the global magnetic flux bias
with ϕ− = 0.

[17,18]. Local flux sensitivity can be reduced in expense of an-
harmonicity, by increasing the junction shunting capacitances
[12].

VIII. TRANSITION MATRIX ELEMENTS

We now analyze the transition matrix elements of the
qubit due to excitation from the transmission line through
the coupling capacitance. The driving amplitude in transition
between levels |i〉 and | j〉 can be presented as h̄� = V0Ccdi j .
The matrix elements di j = 〈 j|V̂2|i〉, whose physical meaning
is the induced potential on island 2 due to atomic transitions,
are calculated and plotted in Fig. 6 for several levels. Here
V̂2 = (2e)−1∂H/∂n2 is the potential operator for the island
2. The calculation of the operator is given in Supplemental
Material Note V [16]. Figure 6(a) shows the case ϕ+ = π ,
perpendicular to the |01〉-|10〉 degeneracy line.

The general rule is the following: All elements are nonzero
at least in some limited range away from the degeneracy
point ϕ− = 0. However along the degeneracy line, there are
clear selection rules: The transitions between even-odd and
odd-even states (|k〉 ↔ |k + 1〉, |k〉 ↔ |k + 3〉, where k de-
notes energy levels of the system), particularly transitions
between adjacent states, (characterized by d01, d12, d23, d03)
are allowed, while the transitions between even-even or odd-
odd states are prohibited (d02 = d13 = 0). In our device the
small asymmetry (η = 1.011), due to the global magnetic field
bias, results in very weak change of the transition energies and
dipole moments (Supplemental Material note IV [16]).

IX. DEMONSTRATION OF COHERENT DYNAMICS

Finally, we measure Rabi oscillations, see Fig. 7 by
applying short microwave pulses with varied length. The
oscillations decay with characteristic time τdec = 42 ns. It
is consistent with the decoherence time taken from the
spectroscopy measurements 	2 ≈ 1/τdec ≈ 2π × 3.8 MHz.
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FIG. 7. Rabi oscillations: taken at the degeneracy point by driv-
ing the qubit with resonant microwaves pulses for fixed time periods
t . The decoherence time of τdec = 42 ns is extracted from the decay
envelope e−t/τdec of the oscillations.

A relatively short decoherence time in our experiment is not
surprising and can be a result of poisoning of the sample with
the infrared radiation, and the coupling of the qubit to the

two-level oscillators in the substrate, owing to the simplified
technology used in the qubit’s fabrication. Note also that co-
herent operation is additionally limited due to strong coupling
to the open line.

In conclusion, we have characterized an isolated ‘twin’
qubit. With this geometry the qubit has weak flux sensitivity at
the degeneracy point and strong anharmonicity. We analyzed
analytically and numerically properties of our device. The
measured energy level structure is well reproduced by the
numerical model.
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