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Modeling Green’s function measurements with two-tip scanning tunneling microscopy
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A double-tip scanning tunneling microscope with nanometer-scale tip separation has the ability to access
the single-electron Green’s function in real and momentum spaces based on second-order tunneling processes.
Experimental realization of such measurements has been limited to quasi-one-dimensional systems due to the
extremely small signal size. Here we propose an alternative approach to obtain such information by exploiting
the current-current correlations from the individual tips and present a theoretical formalism to describe it. To
assess the feasibility of our approach we make a numerical estimate for an ∼25-nm Pb nanoisland and show that
the wave function in fact extends from tip to tip and the signal depends less strongly on increased tip separation
in the diffusive regime than the one in alternative approaches relying on tip-to-tip conductance.
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I. INTRODUCTION

Green’s functions provide a general framework for per-
turbed and interacting electron systems. Direct experimental
access to the electron Green’s function is vital for our under-
standing of (new) complex systems and electronic states of
matter. This access is increasingly provided by the emergence
of spectroscopic imaging scanning tunneling microscopy (SI-
STM) and by various types of angle-resolved photoemission
spectroscopy experiments. A further possible tool for prob-
ing the single-electron Green’s function locally is double-tip
STM, where two tips are brought into tunneling simultane-
ously within a few (tens of) nanometers apart [1–3]. The
challenge of accessing the Green’s function using a two-probe
setup is twofold: (i) Since it is a second-order tunneling pro-
cess, the signal depends strongly on both the tip-to-sample
and tip-to-tip distances [1,2,4], and (ii) experimental realiza-
tion of such a small tip separation in combination with the
stringent stability requirements STM brings has proven chal-
lenging and has been a long-standing goal for the multiprobe
community [5].

Here we explore and present a theoretical formalism for
an alternative approach which, using a double-tip STM, has
access to the propagator—an averaged product of two single-
electron Green’s functions. The propagator determines the
nature of electron wave propagation and is essential for un-
derstanding quantum effects in electron transport. Here we
show that it can be measured locally, between the points corre-
sponding to the tip positions. The advantage of this approach
is that, compared with the approach mentioned above, the
result is not exponential in terms of tip-to-tip distance, at the
cost of having a higher power of the tip-sample tunneling

*s.groeblacher@tudelft.nl
†allan@physics.leidenuniv.nl
‡y.m.blanter@tudelft.nl

amplitude. We concentrate on the diffusive regime of electron
transport and show that by calculating statistical correlations
between the individual currents from the tips to the sample
we can access the diffusion propagator at the nanoscale. Us-
ing the proposed formalism, we performed initial numerical
estimates on Pb nanoislands to demonstrate the feasibility of
this approach.

Much progress has been made over the past few decades
towards a stable, well-controlled double-tip microscope [6]
able to probe the local Green’s function by reducing tip
radii and increasing their aspect ratio [7–10], low-temperature
and/or ultrahigh-vacuum (UHV) operation [11–13], mechan-
ical stability [14,15], and navigation of the tips [7,16].
Recently, we have seen a reemergence of the double-tip
STM [7,17], culminating in the first two-point single-electron
Green’s function measurements to date using a multiprobe
system on quasi-one-dimensional dimer rows on the Ge(001)
surface [18].

In parallel we observed a similar resurgence of nanofab-
ricated STM probes [19–21] that can be equipped with two
(fixed) probes that are compatible with ultrahigh vacuum and
low-temperature operation and potentially allow the integra-
tion in ultrastable single-tip STM systems currently available
[21]. Advances in modern nanofabrication techniques such as
focused ion beam milling and electron beam induced deposi-
tion could lead to a tip separation of a few tens of nanometers
in the very near future. Driven by this experimental progress,
we outline the theory for our measurement formalism here and
make a numerical estimate to assess its feasibility.

In Sec. II we recap earlier proposals for measuring the elec-
tron Green’s function with a double-tip STM. Subsequently,
in Sec. III we discuss the current correlations and show that
they are proportional to the diffusion propagator. In the same
section, we produce numerical estimates of the effect and
show that is can be measured using the current technology. We
present conclusions in Sec. IV. Some technical details from
the derivation of Sec. III are relegated to the Appendix.
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FIG. 1. Schematic of a two-tip setup on a mesoscopic island.

II. MEASURING GREEN’S FUNCTIONS WITH STM
INVOLVING TWO TIPS

Before we outline our alternative tools that use current-
current correlations to probe the electronic states we first
briefly introduce the method proposed by Refs. [1,2] that
shares the same three-terminal setup. The tips and the sample
are kept at constant chemical potentials: tip 1 (μ1), tip 2
(μ2), and the sample (μ0), and similar to single-probe STM,
both tips are individually biased (V1, V2), and their respective
currents are measured (I1, I2) as shown in Fig. 1. The response
of currents to voltages is described by the conductance matrix
σi j , Ii = σi jVj .

In a usual STM experiment only the response of the current
in a tip to the voltage applied between the tip and the sample
is measured. For the two-probe setup this translates into diag-
onal elements of the conductance matrix, σ11 and σ22, which
are proportional to the local density of states at the locations of
the tips. With the two-probe setup one can also obtain the off-
diagonal elements σ12 and σ21 that contain information about
transport properties of the electrons inserted at one tip and
collected on the other. In fact, this complementary information
should allow us, in principle, to obtain the full single-electron
Green’s function [1].

The transport is described by a cotunneling process with
the sample as the intermediate state. The properties of this
process can be derived using Fermi’s golden rule to second
order and result in a transconductance σ21 = ∂I2/∂V1 [22].
The same expression, albeit in a slightly different form, was
obtained in the original work [1,2] when looking at second-
order transport,

σ21 = ∂I2

∂V1
= �1�2

2πe2

h̄
|G(r1, r2; ε = μ1)|2, (1)

where G(r1, r2; ε) is the retarded Green’s functions of the
sample for noninteracting electrons at zero temperature and
�1, �2 are the tunnel rates from the tips to the substrate, which
in Ref. [2] were related to the matrix elements of the tunnel
Hamiltonian. We note that the signal size is now quadratic in
tip-sample coupling and |G(r1, r2)| is on the order of 10−2 for
two-dimensional (2D) systems and a tip-to-tip distance of a
few tens of nanometers and is inversely proportional to that
distance [1]. A similar result can be obtained using the Lan-
dauer formalism following Settnes et al. [3,4]. Unsurprisingly,
the first double-tip STM results were taken on a quasi-one-
dimensional system [18] where the signal is stronger overall
and does not decay with tip separation.

Technical considerations

The technical development of the double-tip STMs has
been led by the multiprobe community that originally fo-
cused on studying resistance in mesoscopic systems on
(sub)micrometer length scales by contacting the surface with,
ideally, four probes. An intrinsically simpler double-tip STM
designed for Green’s function mapping uses only two tips
to probe the single-electron Green’s function; however, it
requires operation in the tunneling (not contact) regime,
prolonged out-of-feedback measurements, and nanometer tip
separation. Therefore, mechanical stability and tip-to-tip dis-
tance make up the main challenges that need to be addressed.

For the latter, the radii of curvature of the tips need to be
reduced to the (tens of) nanometer range to achieve tip sepa-
ration that is effectively set by twice the tip radius. Tips made
by well-controlled tungsten etching, sharpened by focused ion
beam milling or equipped with metallized carbon nanotubes,
are used to create extremely sharp, high aspect ratio tips capa-
ble of achieving tip separations down to 30 nm [7]. Being able
to navigate the two tips to such proximity that the scanning
range of each tip overlaps has proven challenging as well,
especially without any optical input. Several solutions have
been explored [16,23], resulting in an additional scanning
electron microscope (SEM) column as the most common so-
lution [24–26]. The separate piezo drives for each tip together
with the SEM column make for a more complex and elaborate
apparatus, making it more challenging to achieve very low
temperatures and rival the stability of compact single-tip STM
designs [6,15], but recently that has been changing [25] and
has paved the road to the first transconductance measurements
to date [18].

Some of the navigation and stability issues can also be
overcome by relocating the complexity of two probes from
the STM head design to the tip itself, i.e., by having two
nanofabricated tips fixed on a single device [21,27–29].
Such devices can, indeed, be implemented in (commercially
available) ultrastable single-tip STM systems that operate at
low-temperature and UHV conditions [21]. Future application
for controlled double-tip experiments will depend on the abil-
ity to get both tips into tunneling simultaneously with good
stability.

III. PROPAGATOR FROM THE CURRENT
CORRELATIONS: THEORETICAL CONSIDERATION FOR

MEASURING THE DIFFUSION PROPAGATOR

To further assist the recent experimental progress we out-
line the theory for an alternative experiment using two tips
on a nanoisland to probe the propagator �(r1, r2) at the
nanoscale and highlight the feasibility of our approach with
numerical estimates. Whereas we focus on and make esti-
mates for the regime of diffusive motion of electrons, the
principle is more general and applies to any underlying elec-
tron dynamics. We note that this is just one example of
accessing Green’s functions with double tips; others are men-
tioned above [1–4,30–32]. Our example has the advantage
of being simpler and yielding an improvement of the signal
strength. It is based on correlating the two measured single-tip
currents in order to obtain correlations between electron states
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at the respective tip positions and to ultimately measure the
electronic diffusion propagator on the nanoscale.

In this section, we first describe the specific setup we are
considering here. We then derive an explicit expression of
the diffusion propagator as a function of our experimental
observables. By exploiting the formalism of level and wave
function statistics developed earlier [33,34], we show that the
correlations of the amplitude of the same wave function are
sustained even at these relatively large distances (much larger
than the Fermi wavelength), while the correlations between
different wave functions decay, resulting in the expression
that relates the measured currents to the diffusion propagator.
Finally, we apply the formalism to metallic nanoislands and
provide some numerical estimates that yield the required sizes
of the double tips.

A. Preliminaries

The scenario considered here consists of two tips held at
individual bias voltages Vi while measuring the individual
currents Ii. The sample is grounded, which considerably sim-
plifies the experiment. We assume a smart tip consisting of
two tips located at r1 and r2, with the distance between the tips
being much longer than the Fermi wavelength. As a starting
point for the theoretical description of the tunneling process
we consider the Tersoff-Hamann model of STM [35], with
the tunneling current from each tip to the substrate being [36]

I (r,V ) = B
∫ eV

0
ns(r, E )dE . (2)

Here E is the energy, and B is the tip-sample coupling, which
includes details of the tunneling process of the tip and is
exponentially dependent on the tip-to-sample distance. The
order of magnitude of B is GT /ν, with GT and ν being the
tunneling conductance (tip to substrate) and the density of
states (per volume) in the substrate. The information about
the substrate is encoded in the function ns,

ns(r, E ) =
∑

k

δ(E − Ek )|ψk (r)|2, (3)

where Ek and ψk are the exact eigenvalues and eigenfunctions
of an electron in the substrate.

In the following, we focus on weakly disordered metals,
where kF l � 1, with kF and l being the Fermi wave vector
and the mean free path, respectively. In this situation, the
exact energies and wave functions in Eq. (3) depend on the
disorder configuration, and one needs to look at the average
values.

Before treating the double-tip situation, we calculate the
disorder-averaged tunneling current for a single tip. The av-
erage square modulus of the wave function is a constant
and, due to the normalization condition, equal to the in-
verse area A of the substrate (assuming the geometry is 2D).
Then

〈ns(r, E )〉 = 1

A

〈∑
k

δ(E − Ek )

〉
= ν.

Note that the result does not depend on the position or on
the energy. This is the result of standard approximations we
implicitly made. The energy independence is guaranteed by
the fact the we are working close to the Fermi energy, where
the density of states is constant. The density of states can be
position dependent in a situation when electrons experience
some external position-dependent force, for example, in an
inhomogeneous sample. Whereas our method works for this
case as well, all estimates below are made for the homoge-
neous case.

For the average current we thus have 〈I (r,V )〉 = BνeV . It
is position independent and proportional to the voltage.

B. Correlations of the tunneling current

Next, we derive an expression for the current correlations
in a double-tip configuration. Our aim is to bring the expres-
sion to a form that relates it directly to the observables of
the experiment, which are the individual currents and their
cumulant,

J (r1, r2;V1,V2) = 〈〈I (r1,V1)I (r2,V2)〉〉

= B1B2

∫ eV1

0
dE1

∫ eV2

0
dE2〈〈ns(r1, E1)ns

× (r2, E2)〉〉. (4)

The double brackets 〈〈·〉〉 are defined by 〈〈UW 〉〉 ≡ 〈UW 〉 −
〈U 〉〈W 〉. We have introduced two different constants, B1 and
B2, for different tips. In this expression, the key term to calcu-
late is

〈〈ns(r1, E1)ns(r2, E2)〉〉 = −ν2 + δ(E1 − E2)
〈∑

k
δ(Ek − E1)|ψk (r1)ψk (r2)|2

〉
+ R(E1 − E2) ×

〈∑
k �=l

δ(E1 − Ek )δ(E2 − El )|ψk (r1)ψl (r2)|2
〉
, (5)

where R(ω) is the level-level correlation function. The first
term in Eq. (5) is just a product of the averages; it creates a
contribution to J which is proportional to V1V2 and is other-
wise position independent and can therefore be ignored. It is
the second term that is of interest here, and we will refer to it
as the same-level correlation term. It describes the correlations
of the same state at different points in space, and we will

estimate it in the following paragraphs. The last term describes
the correlations of different states and hence contains the
level-level correlation function. We show in the Appendix that
in diffusive systems it can also be neglected.

The averages that form the same-level correlation term
were calculated previously in the context of level and wave
function statistics [33,34], and we want to sketch only the
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main steps here. For low energies |E1 − E2| � Ec, with Ec ≡
2π h̄D/L2 being the Thouless energy, we obtain〈∑

k

δ(Ek − E1)|ψk (r1)ψk (r2)|2
〉

= �ν2

{
kd (r)[1 + �(r1, r2)] + �(r1, r2), η = 1,

[1 + 2kd (r)][1 + �(r1, r2)], η = 2,
(6)

and 〈∑
k �=l

δ(Ek − E1)δ(El − E2)|ψk (r1)ψl (r2)|2
〉

= ν2kd (r)η�(r1, r1). (7)

Here r = |r1 − r2|, D = v2
F τ/2 is the diffusion constant, vF

is the Fermi velocity, τ = l/vF is the scattering time of the
electrons, L ∼ √

A is the typical linear size of the substrate,
and � = (νA)−1 is the mean level spacing for electrons in
the substrate. In the metallic diffusive regime, we have L � l .
The short-range function kd (r) = exp(−r/l )J2

0 (kF r) decays at
the scale of the Fermi wavelength and, since the tips cannot
be arranged so closely, does not play a significant role in the
correlations. The propagator � can be expressed in terms of
the single-electron Green’s function as

�(r1, r2) = 2πν〈GR(r1, r2, ε)GA(r2, r1, ε)〉, (8)

where GR and GA denote retarded and advanced electron
Green’s functions, respectively. Note that the expression does
not depend on the energy ε as soon as it is taken close to
the Fermi surface. We focus here on the metallic diffusive
regime, when the diffusion propagator � is the solution of
the diffusion equation [33,34],

−D∇2
1�(r1, r2) = 1

πν

[
δ(r1 − r2) − 1

A

]
,

where ∇1 acts on r1. The equation is supplemented by
the boundary condition n∇1�(r1, r2) = 0, with n being the
normal to the boundary. However, it is also important that
Eqs. (6)–(8) are general and can be applied to any underlying
dynamic of electron motion, not just to the diffusive regime.
For example, in Ref. [37] they were used to describe the corre-
lation of wave functions in a ballistic system with a disordered
boundary. One can think of further applications, such as hy-
brid systems, including normal metals and superconductors.

Finally, the parameter η in Eq. (7) is responsible for the
magnetic field dependence. We discriminate between the two
situations, the case when the external magnetic field is present
to break the time-reversal symmetry (η = 1) and the case
where it is absent (orthogonal symmetry, η = 2). Whereas
the results for both symmetries do not have an explicit de-
pendence on the magnetic field, there is a crossover between
them which occurs roughly when the magnetic flux through
the system is equal to the flux quantum.

We disregard the terms with kd , and Eq. (6) becomes〈∑
k

δ(Ek − E1)|ψk (r1)ψk (r2)|2
〉

= η�ν2�(r1, r2). (9)

We will see below that the correlation function of the currents
is proportional to the voltage, allowing us to directly obtain
the diffusion propagator.

We now calculate the contribution of the term with δ(E1 −
E2) in Eq. (5). The frequency integral is easily evaluated to
give

J1(r1, r2;V1,V2)

= B1B2ν
2[η� min(eV1, eV2)�(r1, r2) − e2V1V2]. (10)

The second term is the product of average currents, and thus,
the first one (which is much smaller) contains information
about the electron states. Note that this term trivially depends
on the voltage and on the magnetic field. The presence of
the correlations proves that the states spatially extend from
r1 to r2. The dependence on the tip-to-tip distance given
by the diffusion propagator can be probed by repeating the
experiment with different double-tip separations.

As we are interested in the autocorrelations of the shared
energy levels between the two tips obtained from the current
on each of the individual tips, it is not necessary to measure
small currents like the transconductance suggested by Niu
et al. [1] and Byers and Flatté [2]. We normalize the corre-
lation function with the individual currents 〈Ii〉 = BiνeVi for
i = 1, 2, and setting V1 = V2 = V , Eq. (10) then reduces to
our final result:

J (r1, r2,V,V )

〈I1〉〈I2〉 = η�

eV
�(r1, r2) − 1. (11)

This equation directly relates the diffusion propagator to the
current correlation normalized by the individual currents. We
also note that while the correlations can be long range, one
needs nanometer range separation of the tips to measure the
diffusion propagator (see numerical estimates below).

To reiterate, Eq. (11) is valid in the metallic diffusive
regime, k−1

F � l � L, and under the condition that the volt-
age is lower than the Thouless energy, eV � Ec. These
conditions also imply that the dimensionless conductance g =
Ec/� is much greater than 1.

Whereas the above calculation is for zero temperature,
one can estimate the effect of temperature from Eq. (11). The
role of the temperature is to involve more electron levels in the
current by increasing their occupation. It is similar to the role
of the voltage, which increases the number of levels involved
by increasing the energy tunneling window. Therefore, the
temperature dependence of Eq. (11) is qualitatively the same
as the voltage dependence. In particular, for eV � kBT � Ec

we expect that the first term in Eq. (11) is proportional to T −1.

C. Numerical estimates and feasibility

Finally, we present some numerical estimates to show the
feasibility of our approach. We consider a Pb nanoisland on
which we scan with the two probes. We set the tip separation
distance to r = 20 nm, a spacing that we consider experi-
mentally viable in the near future and that fits well within
a 25-nm island. The small volume of islands gives rise to
the substantial level spacing that we require. Since we prefer
an atomically flat surface that fits both tips, we consider a
flat island of near-monolayer thickness previously obtained
[38] and studied by STM [39–41]. Here we use an already
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realizable 25-nm island that is three monolayers thick that has
a level spacing of 0.68 meV (for a circular geometry) [40,41].
Our aim is to find an estimate for the signal in Eq. (11) in such
a scenario.

We start by estimating the diffusion coefficient, D =
v2

F τ/2. From the residual resistivity ratio in the thin-film lead
we can determine its low-temperature resistivity [42], and
using Ohm’s law, we find the scattering time for Pb τ =
m/(ne2ρ4K ) = 5.3 × 10−13s. Here e is the electron charge,
and we used the low-temperature resistivity ρ4K = 9.7 ×
10−2 μ� cm, the effective electron mass m = 1.9me [43], and
the total density of valence electrons n = 13.2 × 1022 cm−3.
Taken together, these values give us a diffusion coefficient of
D = 223 cm2/s.

The size of the island and the diffusion constant, as calcu-
lated above, result in a Thouless energy Ec = (2π h̄D)/πL2 =
47 meV (we have assumed a circular shape of the substrate),
and together with the mean level spacing, the dimensionless
conductance g = EC/� = 206. This value satisfies the con-
dition g � 1 to make the approximation (see Eq. (3.56) in
Ref. [34]) �(r1, r2) ≈ (πg)−1 ln(L/r) = 3.5 × 10−4. Includ-
ing the prefactors, in the absence of a magnetic field and with
a bias voltage of 1.5 meV, we expect the measured ratio in
Eq. (11) to be of the order of 10−4, which can be increased by
almost an order of magnitude by moving to monolayer films.
We have thus shown that it is, in principle, possible to measure
the diffusion propagator using realistic double-tip parameters.
We would also like to note that this is only one example
of an experiment using the developed smart- and double-tip
platforms among many others [1–4,30–32].

IV. CONCLUSIONS

Motivated by the experimental progress on the realization
of double-tip STMs, we presented an alternative formalism
for probing such electron correlations on the atomic scale.
By calculating the current-current correlations between the
two tips for disordered metals we have shown that the spatial
overlap of the wave functions can, in fact, reach from one tip
to the other. In the diffusive limit we also notice that the decay
of the signal is logarithmic with increasing tip separation and
therefore slower in the ballistic limit [1]. To explore the fea-
sibility of the proposed experiment we performed numerical
estimates, and we showed that there is a significant signal
to detect. We believe this alternative approach for acquiring
electron correlation at the nanoscale may prove interesting
as the experiment becomes possible and could contribute to
reigniting interest in the largely unexplored possibilities of
double-tip STM.
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APPENDIX: LEVEL-LEVEL CORRELATIONS

This Appendix is to evaluate the contribution of the last
term in Eq. (5). We will show that its contribution to J is
less important than the first term in Eq. (10) but that it has
nontrivial voltage dependence. Since for a single experiment
the distance between the two tips is fixed, we can use this
nontrivial voltage dependence to look at correlations between
different states in the system.

The level-level correlation function R(ω) is, in the low-
est order, given by the Wigner-Dyson statistics. The theory
of random matrices, from which the Wigner-Dyson statistics
originates, discriminates between two situations: the absence
of external magnetic field (Gaussian orthogonal ensemble, or
GOE, η = 2) and the presence of magnetic field (Gaussian
unitary ensemble, or GUE, η = 1). In GUE we have

R(ω) = 1 −
(πω

�

)−2
sin2

(πω

�

)
. (A1)

We disregarded the contribution of Eq. (7) in the main text
due to the strong decay of kd with distance. However, there
is a long-range contribution to Eq. (7) which we have not
taken into account because it has a higher order in g−1 terms
in Eq. (7). Namely, we have [33,34]〈∑

k �=l

δ(Ek − E1)δ(El − E2)|ψk (r1)ψl (r2)|2
〉

→ η

2
ν2�2(r1, r2). (A2)

Furthermore, for energies ω exceeding the Thouless energy
Ec, |E1 − E2| � Ec � �, we have〈∑

k �=l

δ(Ek − E1)δ(El − E2)|ψk (r1)ψl (r2)|2
〉

= η

2
ν2Re

[
�2

ω(r1, r2) − 1

A2

∫
dr2dr2�

2
ω(r1, r2)

]
(A3)

and R2 ≈ 1. We again have discarded the short-range terms
proportional to kd , assuming that the distance between the tips
is much longer than the wavelength. Here

�ω(r1, r2) = 1

πν

∑
q

φq(r1)φq(r2)

h̄Dq2 − iω
, (A4)

where Dq2 and φq are the eigenfunctions and the eigenvalues
of the diffusion operator −D∇2 with appropriate boundary
conditions. Note that at ω = 0, �ω=0(r1, r2) = �(r1, r2).

To facilitate the calculations, we take V1 = V2 = V . Since
R(ω) and �ω are even functions of ω, we can reduce the
double integral to a single one using∫ eV

0
dE1dE2F (E1 − E2) = 2

∫ eV

0
(eV − ω)F (ω)dω, (A5)

where F is an arbitrary even function of ω. Due to nontrivial
dependences of our functions on ω, we consider different
regimes in voltage.
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1. Regime 1: eV � �

For eV � � in GUE we substitute Eq. (A1) for R(ω) and
calculate ∫ eV

0
(eV − ω)R(ω)dω ≈ π2

36�2
(eV )4 , (A6)

and the contribution to the current correlations from the last
term in Eq. (5) becomes

δJ (r1, r2;V,V ) = π2ν2B1B2

36�2
(eV )4�2(r1, r2). (A7)

This differs from Eq. (10) by a factor of g−1(eV/�)3 � 1.
For GOE, the level correlation function is cumbersome,

but we need only the low-energy behavior, which is R(ω) ≈
(π2|ω|)/(6�). Calculating the current correlation function,
we obtain

δJ (r1, r2;V,V ) = π2ν2B1B2

36�
(eV )3�2(r1, r2). (A8)

It is the same as Eq. (A7), except for the additional factor
�/eV � 1, making it bigger than Eq. (A7). It is still a factor
g−1(eV/�)2 � 1 lower than the contribution of correlations
of the same wave function.

2. Regime 2: � � eV � Ec

For � � eV � Ec we have R ≈ 1, and calculating the
integral again, we find in both GOE and GUE

δJ (r1, r2;V,V ) = π2ν2B1B2η

2
(eV )2�2(r1, r2), (A9)

which is again small compared with Eq. (10) as eV/Ec � 1.

3. Regime 3: Ec � eV � h̄D/r2

For eV � Ec, we still have R = 1 but now need to use
Eq. (A3) to calculate the current-current correlation. To get

the results, we now explicitly calculate �ω in two dimensions.
In (A4), we take φq(r) = A−1/2 exp(iqr) and replace the sum-
mation over q with integration. Integrating over the angle, we
get the Bessel functions, and subsequently, integrating over
the length of q, we obtain Kelvin functions kei and ker,

Re �ω(r1, r2)

= 1

4π6ν2 h̄2D2

[
kei2

(√
ω

h̄D
r

)
+ ker2

(√
ω

h̄D
r

)]
.

(A10)

In the case of Ec � eV � h̄D/r2, we can use the expansion of
the Kelvin functions at low arguments, kei, ker(x) = C,C′ −
(x/2)2 ln(x/2), where C and C′ are two constants of the order
of 1. We get

δJ (r1, r2;V,V ) ∼ (C + C′)ν2B1B2σ

2π4g2

(eV )3

h̄D/r2
ln

h̄D/r2

eV
.

(A11)
Comparing this with the first term in J , we get

δJ/J ∼ 1

π4

(eV )2

Ech̄D/r2
ln

h̄D/r2

eV
, (A12)

which in principle can become big but in practice is unlikely
due to the small factor π−4 in front of this ratio.

4. Regime 4: Ec � h̄D/r2

In this case, we can replace (eV − ω) with eV in
the integral over ω, and the remaining integral can
be calculated exactly. The result is exponentially small
(exp[−(2eV r2/h̄D)1/2]) and does not play any role.

Note that this regime makes sense only for r � l; then
h̄D/r2 � 1/τ , where τ is the momentum relaxation time for
scattering at impurities. If eV � 1/τ , the electron motion at
highest energies is not diffusive, and our approach is no longer
valid.
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