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Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective
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MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by
an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-
to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect
transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations
based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium
Green’s function techniques and our electric field gating method, enabled by a large-scale computational
approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p-i-n
junction configurations. We demonstrate the presence of negative differential resistance for both in-plane and
interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an
effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a
thorough understanding of Esaki diodes.
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I. INTRODUCTION

Following the advent of the tunnel diode, new efforts
emerged to identify candidate materials for such electronics.
Discovered by Esaki, these devices are valued for their possi-
ble applications in nanoscale circuitry [1]. Among these ben-
efits is their usage in tunnel field-effect transistors (TFETs),
which can have a lower theoretical subthreshold swing than
traditional metal-oxide-semiconductor field-effect transistors
(MOSFETs). The novel interlayer properties of atomically
thin heterostructures have made such configurations attractive
for TFET operation. The advantage in heterojunction-based
tunnel diodes is their difference in the band structure be-
tween layers. External bias allows for programmable band
alignment between layers, yielding nonlinear characteristics
in band alignment. In particular, graphene and transition-
metal dichalcogenides (TMDs) have been valued for their
suitable dimensionality and electronic structure [2–5]. One
such TMD is MoS2, having a direct band gap in a single-layer
configuration [6].

Recent experiments have shown a highly tunable band
gap in bilayer MoS2 under an external electric field [7].
Experimentally, there are difficulties in constructing hetero-
junctions using two-dimensional (2D) TMDs as leads [8].
Semiempirical studies have observed the presence of band-to-
band tunneling in a nanoribbon under strain [9]. In addition,
studies finding negative differential resistance in tunnel diode
MoS2 systems are a fairly recent phenomenon, most being
published within the past half decade [10,11]. Within these
studies, there has yet to be a comparison between planar
and interlayer transport properties. A first-principles-based
investigation is necessary to fully understand the electronic
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processes and the effects of band-to-band tunneling in p-i-n
configuration MoS2 diodes. Before introducing our model
for this study, we should mention that we previously have
developed and applied first-principles methods to investigate
field effects related to tunneling transistors [12,13]. A number
of systems were studied, focusing on different aspects of
physical processes. Some other groups have also performed
first-principles investigations to understand the field effects in
tunneling junctions [14–16]; however, this study is an attempt
that provides an analysis of interlayer band-to-band tunneling
in MoS2 bilayer systems in addition to a full analysis of band-
to-band tunneling in a planar monolayer junction. The two
types of junctions are prepared to separately quantify in-plane
and interlayer tunneling. The rest of the paper is organized as
follows: Section II describes theoretical approaches, computa-
tional details, and our simulation models; Sec. III presents our
major results; and Sec. IV concludes our investigations with a
discussion of some important issues.

II. METHODS

All of our calculations used a first-principles approach.
Transport calculations were performed using density func-
tional theory [17,18], with nonequilibrium Green’s functions
(NEGF + DFT) techniques as implemented in TRANSIESTA

[19,20], which accounts for core electrons via nonlocal, norm-
conserving pseudopotentials [21,22]. The self-consistent field
(SCF) approach yields the necessary Green’s functions to
employ the Caroli formula for electron transmission [23,24],

T (E ) = Tr[Ga�RGr�L], (1)

where Ga and Gr are advanced and retarded Green’s functions,
respectively, and �R and �L represent the level broadening
functions for the right and left leads, respectively. This ex-
pression for the transmission function allows us to obtain the
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FIG. 1. Atomic structure of two molybdenum disulfide junctions (with H- and O-terminated edges). (a) is the top view of a p-i-n junction of
single-layer MoS2 consisting of 10% niobium- and technetium-doped leads; (b) is the side view of a p-i-n junction of overlapping, semi-infinite
layers of MoS2 with overlap in the undoped region. The vertical black lines mark the boundary of the scattering regions. For (b), the left
electrode is connected to the lower layer while the right electrode is connected to the upper layer. Atomic positions are drawn with the VESTA

visualization software [37].

current across the scattering region via the usual Landauer
equation [25,26],

I = e

h

∫ μL

μR

dE [ fL(E ) − fR(E )]T (E ), (2)

where μL and μR are the chemical potentials of the left and
right reservoirs, and fL and fR are Fermi functions in the left
and right leads. For the basis set, we use a double-zeta plus
polarization (DZP) basis. We also employ the Monkhorst-
Pack method for sampling k points in the Brillouin zone
[27]. Our rectangular supercell uses a 1 × 11 × 1 grid for
SCF calculations and a 1 × 101 × 1 grid for all transmis-
sion calculations. We set the convergence requirement for
the probability density matrix to 1 × 10−3. Our functional
for the exchange-correlation energy is within the general-
ized gradient approximation (GGA), specifically, the Perdew-
Burke-Ernzerhof (PBE) form [18]. The applicability of this
functional to our systems will be discussed in a later section.

In the experiments led by Chen, the metal leads were made
by gating MoS2 layers either positively or negatively [7].
In our simulation, we used doped leads, which are achieved
by the virtual crystal approximation (VCA) as implemented
in SIESTA. The VCA is a good approximation when the
atomic number of the dopant atom is close to the atom it
replaces, the doping concentration is relatively small, and
wave functions spread over a large spatial region [28]. We
use neighboring atoms on the periodic table in our doping
scheme to comply with the former restriction and choose the
two elements Nb and Tc to mimic hole-doped and electron-
doped MoS2, respectively. The very nature of the transport
problem satisfies the latter. We apply this doping scheme to
linearly shift the band structure of our leads, achieving the
necessary nonequilibrium boundary conditions. However, the
VCA cannot capture all the physics of random doping, which
includes disordered scattering from random defects. Previous
calculations show these effects on spin transport in nano-
junctions [29]. Due to the nonlinear changes to conductance
arising from these effects, it is unclear to what degree the VCA
causes an overestimation or underestimation of transmission
at this particular doping concentration compared to random
doping. For the purposes of our study, we use the VCA to
model gated leads rather than randomly doped leads.

We calculated the complex band structure of pristine
monolayer and bilayer MoS2 using the PWCOND part [30,31]
of the QUANTUM ESPRESSO package [32,33]. During self-
consistent calculations with QUANTUM ESPRESSO, we uti-
lized the PBE exchange correlation energy functional [18]
together with projector augmented-wave (PAW) pseudopo-
tentials [34]. The pseudopotentials were generated using the
PSLIBRARY package version 1.0.0 [35,36]. We applied 500
and 80 Ry energy cutoffs for expanding the charge density
and the wave functions, respectively. The energy tolerance
for self-consistency was set to 1 × 10−8 Ry. During complex
band calculations with PWCOND, which is based on the self-
consistent field previously found in QUANTUM ESPRESSO, we
adopted an energy cutoff of 80 Ry for expanding the wave
functions in two-dimensional planes as well. The number of
subslabs was set to 30 to ensure high accuracy.

III. RESULTS

Figure 1(a) shows our monolayer structure that consists
of a central pristine armchair MoS2 ribbon of 18 unit cells
in width (or length in the transport direction), bracketed by
18 niobium- (10%) or technetium-doped (10%) MoS2 cells
on each side and then by the two leads. The 18 unit cells
right next to the pristine region or the scattering barrier serve
as a buffer zone that screens charge accumulated next to
the pristine region such that the whole scattering region is
charge neutral. The pristine MoS2 ribbon has a finite band
gap thus functioning as the tunneling barrier. The left and
right leads are also MoS2 doped with 10% Nb and Tc,
respectively, to create a p-i-n junction configuration. For this
doping concentration, we performed a test for the screening
length necessary for the transport calculation; we found that
the size of the buffer zone is of adequate length to satisfy the
charge neutrality condition and that the hopping parameters
between the leftmost/rightmost unit cell in the buffer zone
to the first unit cell of left/right lead is equal to the hopping
between two adjacent unit cells in the left/right lead.

We analyzed the partial density of states (PDOS) according
to

PDOS = 1

π

∫
dk Gr[�L + �R]Ga, (3)
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FIG. 2. Percent difference of the electrode and scattering region
partial density of states. The difference is a function of the number
of layers of unit cells from the pristine contact. This result shows
the length of the doped contact in the scattering region necessary to
approach bulklike PDOS.

in which the Green’s function and level broadening functions
are the same as those of the Caroli formula. A detailed
comparison of the PDOS of our buffer zone or depletion
region and electrode is illustrated in Fig. 2. Such a comparison
is necessary considering the need for exact matching of the
electronic density in the electrode and scattering region; this
test indirectly verifies this agreement. It is clear that beyond
9 unit cells, the difference in the projected density of states
between the buffer zone and a perfect lead is relatively small.

Figure 1(b) shows the configuration of our second junction.
Compared to the planar configuration in Fig. 1(a), there is
an overlapping region in the z direction that introduces a
complexity in the junction and also allows interlayer electron
tunneling. Again, the undoped insulating MoS2 functions as
the tunneling barrier. The configurations of the two junctions
allow us to separately quantify in-plane and interlayer trans-
port properties. Previous experimental studies have used sim-
ilar configurations with heterojunctions and homojunctions to
study the out-of-plane tunneling current [38,39]. Due to the

FIG. 3. The I-V curves for single-layer and overlap MoS2 junc-
tions, respectively. The scales for the two curves, left for the planar
and right for the overlap, differ by a factor of 50. Both junctions show
negative differential resistance.

FIG. 4. (a)–(d) The partial density of states of the planar junction
at biases V1–V4 in Fig. 3, respectively. The color bar shows the
magnitude of the PDOS for (a)–(d) in logarithmic scale. (e) Band
diagram at zero bias on a wider energy and position scale. VB and
CB represent the valence band and conduction band, respectively.

sheared edge of the interlayer junction, hydrogen and oxygen
serve as edge-terminating atoms. We will discuss edges and
edge termination in a later section.

Figure 3 shows the calculated I-V curves of both the planar
and the side-stacking or overlap junctions under low biases
at room temperature. The characteristics of both graphs are
similar, showing negative differential at biases higher than
approximately 0.05 eV. Above roughly 0.25 eV, the current
of both junctions drops by several orders of magnitude relative
to the maximum current. These I-V curves are consistent
with that of an Esaki diode in the forward-bias mode, con-
taining a local maximum at low bias followed by a negative
differential resistance regime [1]. The current in the planar
junction reaches a maximum value roughly 50 times that for
the junction of the side-stacking configuration, indicating the
tunneling barrier across the two MoS2 layers interacting by
a van der Waals force is substantially higher than that across
the 18 unit cells of MoS2. Using a partial density of states
analysis, we can evaluate the band character of the junctions
at biases of interest.

Using the GGA functional, we calculated the band gap
of monolayer MoS2 to be 1.59 eV. This result differs from
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FIG. 5. (a)–(d) The density of states of the interlayer junction
corresponding to biases V1–V4 in Fig. 3, respectively. The density
across the junction is separated into lower and upper layers. Band
alignment follows the same characteristics as that of the planar
junction.

the measured value of greater than 1.9 eV [6]. With such a
discrepancy, we expect an overestimation of tunneling current
within our junctions. However, if the current arises from band
to band tunneling effects, we do not expect the size of the band
gap to impact the overall character of our I-V curve. This is
due to band-to-band tunneling being driven by a relative band
alignment. Additionally, the measured band gap of monolayer
MoS2 can vary as much as 1.39–2.16 eV due to environmental
dielectric screening [40]. The discrepancy between measured
and our calculated band gap is within this range of variations
caused by environmental dielectric screening, which would be
present in many electronic system. Thus, our calculated band
gap could coincide with the measured band gap of monolayer
MoS2 in the presence of certain dielectrics. For these reasons,
we believe that the GGA is sufficient for our calculations.

By plotting the PDOS of our planar junction at the biases of
interest in Fig. 4 as a function of position along the transport
direction and energy, we illuminate the transport properties of
our systems. At V1, the valence bands of the left electrode and
the conduction bands of the right electrode are well aligned;
however, the bias window is relatively small. The bands
remain well aligned at V2 with bias significantly increased.
Further increases in bias skews the band alignment, as seen in
V3 and V4, with alignment completely lost at the latter bias.
Band-to-band tunneling can no longer contribute to current
for biases greater than V4. Band alignment within the bias
window correlates with a higher current, characteristic of an
Esaki diode.

In Fig. 5, we illustrate the PDOS as function of position
and energy of the interlayer junction at the biases of interest.
A comparison between PDOS and current indirectly shows
intralayer and interlayer band-to-band tunneling across our
junctions. Both planar and interlayer junctions share a similar

FIG. 6. The Hartree potential for both junctions. (a) The planar
averaged Hartree potential of the planar junction as a function of x
position. (b) The planar averaged Hartree potential of the interlayer
junction as a function of z position. (c) The average Hartree potential
for one unit cell of MoS2 in the interlayer junction as a function of x
position.

character in the density of states. However, the tunneling bar-
riers are quite different. Figure 6 demonstrates this difference
via the differing character of the Hartree potential between
the junctions. The Hartree potential of the planar junction,
seen in Fig. 6(a), can be plotted along the transport direction
without discontinuity. As illustrated in Figs. 6(b) and 6(c), the
interlayer junction has a potential barrier corresponding to the
van der Waals gap. Figure 6(c) shows the relative difference
in the Hartree potential between the two layers.

If band-to-band tunneling is the primary mechanism of
transport across our junctions, we expect that transmission
will coincide with the alignment of electrode bands. A
comparison of both the electrode band structure and the
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FIG. 7. (a) The valence band of the left electrode and the conduction band of the right electrode. (b) The transmission function of the
interlayer junction at zero bias. A maximum transmission of 3.6 × 10−11 occurs at the gamma point at −7.5 meV. The overlap of the electrode
bands coincides with the transmission of the junction. (c) Fat-band plots of the contribution to the local density of states of pristine MoS2 unit
cells: The fat bands of unit cells touching edge-terminating atoms and the fat bands of unit cells touching doped atoms. (d) The wave function
corresponding to high LDOS near the Fermi energy seen in Fig. 5(c). The state is localized to the edge atoms.

transmission function is seen in Figs. 7(a) and 7(b). We see
in the band structure of our electrodes an overlap around the
Fermi energy; the broadest energy range of this overlap is at
the � point in the first Brillouin zone. Alongside this band
structure is the transmission function of the interlayer junction
plotted in a logarithmic scaling. We illustrate the correlation
of the electrode band crossing and transmission function by
plotting both functions at the same energy and k path. Regions
of highest band crossing coincide with the regions of highest
transmission.

Previous studies show the effects of edge MoS2 atoms on
the electronic structure [41]. Charge accumulation on the edge
atoms leads to a deviation from the bulk electron density. In
order to mitigate these effects, we follow the edge-terminating
structure of relaxing H and O onto bare MoS2. We analyze
the contribution to the local density of states (LDOS) of edge
pristine MoS2 unit cells via fat bands. These are compared
to the LDOS of the unit cells adjacent to doped MoS2 in
Fig. 7(c). The edge unit cells show a high contribution to
the density of states at the bottom of the conduction band.
As these states fall within our bias window, we must ensure
that edge states do not connect to the electrodes. In Fig. 7(d),
we show the lowest-energy, conduction-band wave function
of the lower-layer edge unit cell. This state corresponds to
the highest local density of states near the Fermi energy on
these edge atoms. We can see that the wave function does not
connect to either electrode and is localized to the lower layer.
Sampling other wave functions along the k path, we see that
the states are likewise localized.

In order to understand the in-plane decay of the elec-
tron wave function into the intrinsic region of the two p-i-n
junctions, we calculated the complex band structure of both
monolayer and bilayer MoS2. Figure 8(a) shows the complex
band structure of monolayer MoS2 to exhibit the evanescent
states that decay in the transport direction of the planar
junction. The reader may recall that the planar junction is in
the x-y plane and electron transport is along the x direction.
The wave vector ky for the periodic y direction is set to zero
here since the electron transmission at this point is highest
at the Fermi energy. There are eight species of evanescent
states at Fermi energy for Im kx < 0.3(2π/Tx ), in which Tx

is the period of monolayer MoS2 in the transport direction of
the planar junction. Two of them consist of slowly decaying
states near the top of the valence band or the bottom of the
conduction band. They are marked as species I and II in
Fig. 8(a). Hereafter, a valence top refers to a local maximum
of the valence band under the constraint that ky is zero, and
similarly for a conduction bottom. This is for the convenience
of describing the connectivity between complex bands and
real bands. Species I derives from a valence top, and it is
almost flat before Im kx ∼ 0.15(2π/Tx ). The band flatness
indicates that this species quickly becomes decaying states
as the energy increases from the valence top. After Im kx ∼
0.15(2π/Tx ), species I splits into two, an upper part and a
lower part, with the upper part connecting to an unoccupied
band much higher above the conduction bottom. Species II
connects a valence top and a conduction bottom, enclosing
an area over the band gap. This area is minimal among all
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(a)

(b)

FIG. 8. Complex band structure for (a) monolayer and (b) bilayer
MoS2 as in the planar and the interlayer junctions, respectively. ky

equals zero for both (a) and (b). The Fermi level is set to zero and
marked by a gray solid line.

areas that are enclosed by complex bands over the forbidden
gap. Within the Wentzel-Kramers-Brillouin approximation,
the band-to-band tunneling probability decays exponentially
with such a minimum area [42,43].

Figure 8(b) shows the complex band structure of a bilayer
MoS2. In this case, there are three species of complex bands
which consist of slowly decaying states around the valence
top or the conduction bottom. They are marked again by
species I, II, and III in Fig. 8(b). Species I of bilayer MoS2

is similar to species I of monolayer MoS2 in three aspects: (1)
Both of them are derived from the top of a valence band; (2)
a single band splits into two bands at Im kx ∼ 0.15(2π/Tx );
and (3) Re kx equals zero before the band splitting. Note
that Tx of bilayer MoS2 is the same as that of monolayer
MoS2. Species II of bilayer MoS2 contains two copies of the
domelike complex band, each of which resembles species II
of monolayer MoS2. Species III of bilayer MoS2 is derived
from the conduction bottom, and it extends into energies much

lower than the valence top. For bilayer MoS2, the minimum
area of complex bands over the band gap is enclosed by both
species I and II. When species I crosses species II, an electron
may transit between the two species with the aid of phonons
since the two species are different in crystal momentum Re kx

and momentum is conserved during the transition. Phonon-
assisted scattering may reduce the electron transmission and
thus degrades the performance of the relevant electronic
device [44].

IV. CONCLUSION

We simulated armchair monolayer and interlayer MoS2

p-i-n junctions consisting of doped MoS2 leads. Simulations
were performed using NEGF + DFT in order to account
for nonequilibrium conditions in the leads. Both junctions
showed an initial positive differential resistance followed by
a transition to negative differential resistance past a current
maximum. An analysis of the partial density of states at dif-
ferent biases revealed a band alignment consistent with Esaki
diode behavior. Furthermore, the band structures of both leads
intersected at the same energy and k points comprising the
transmission of the interlayer junction. These results confirm
band-to-band tunneling as the primary mechanism of charge
transfer in the low-bias regime. Additionally, in-plane and
interlayer band-to-band tunneling yields the same I-V curve
character, differing only in magnitude. However, the two junc-
tions significantly differ in Hartree potential, the interlayer
junction having a large tunneling barrier in the van der Waals
gap. The planar junction, being continuous in the transport
direction, has no such electrostatic barrier. Our complex band
analysis reveals the slowest decaying evanescent states that
contribute the most to the band-to-band tunneling probability.
Phonon-assisted electron tunneling is more likely to occur in
the interlayer junction than in the planar junction, degrading
the performance of electronic devices based on bilayer MoS2.

Due to the known issues with edge termination in MoS2

simulations, we used a H and O edge-terminating scheme.
The local density of states, obtained via fat-band calculations,
shows edge states near the Fermi energy. These states, how-
ever, are shown to have no effect on transport properties,
as they are wholly localized to the edges of the interlayer
junction.
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