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Nonlinearity induced topological physics in momentum space and real space
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Nonlinearity induced topological properties in nonlinear lattice systems are studied in both momentum space
and real space. Experimentally realizable through the Kerr effect on photonic waveguide systems, our working
model depicts onsite nonlinearity added to the Su-Schrieffer-Heeger (SSH) model plus a chiral-symmetry-
breaking term. Under the periodic boundary condition, two of the nonlinear energy bands approach the energy
bands of the chiral-symmetric SSH model as nonlinearity strength increases. Further, we account for a correction
to the Zak phase and obtain a general expression for nonlinear Zak phases. For sufficiently strong nonlinearity,
the sum of all nonlinear Zak phases (not the sum of all conventional Zak phases) is found to be quantized. In real
space, it is discovered that there is a strong interplay between nonlinear solitons and the topologically protected
edge states of the associated chiral-symmetric linear system. Nonlinearity can recover the degeneracy between
two edge soliton states, albeit a chiral-symmetry-breaking term. We also reveal the topological origin of in-gap
solitons even when the associated linear system is in the topological trivial regime. These momentum-space and
real-space results have clearly demonstrated new topological features induced by nonlinearity, indicating that
topological physics in nonlinear lattice systems is far richer than previously thought.
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I. INTRODUCTION

Topological phases of electronic systems and metamateri-
als have recently been a subject of tremendous theoretical and
experimental interests [1–18]. Although studies in noninter-
acting systems have been extremely fruitful, our knowledge of
topological physics in interacting systems [19–27] is impor-
tant for both academic pursuit and future innovations. Indeed,
even excluding the Coulomb interaction in solid-state sys-
tems, controllable interaction is also ubiquitous in a variety of
platforms exploited to synthesize artificial topological matter,
such as the Hubbard interaction in cold-atom systems as well
as the Kerr effect in optical and acoustic setups. However, an
apparent and inherent difficulty in treating interacting systems
lies in the computational complexity of many-body systems,
and as such examining topological effects in interacting sys-
tems can be theoretically challenging and computationally
costly, often requiring the use of advanced many-body tech-
niques and/or sophisticated numerical methods.

In this paper, we adopt a reserved mean-field approach such
that many-body interacting problems are reduced to single-
particle nonlinear ones, whose behavior is then governed
by certain nonlinear Schrödinger equations. Such treatment
is well known, e.g., in handling the mean-field behavior of
Bose-Einstein condensates of bosonic cold atoms [28–31]
where the nonlinear Schrödinger equation is known as the
Gross-Pitaevskii (GP) equation [32,33]. Studies of nonlinear
problems of this type have been extensively made over recent
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years, in cold-atom systems [34–36] and photonic metama-
terials with optical Kerr effects [37–44]. Important physical
features unique in nonlinear systems have been found, such as
the emergence of looped structures in their nonlinear energy
bands [30,31,45–47] and the existence of strongly localized
solitons [29].

Given that nonlinear lattice systems are closely related to
available experimental platforms, nonlinear lattice systems
are hence not just mean-field approximations of certain com-
plex many-body systems, they offer important opportunities
to explore novel physics in their own right. Indeed, recent
years have witnessed a shifted interest toward the topolog-
ical aspects of nonlinear lattice systems [48], with early
investigations mostly made through the dynamics of edge
states therein [42–44,49]. One exception is a study by two
of the present authors and others, where a topological invari-
ant associated with the bulk [50] was used to characterize
a novel type of Dirac cones induced by nonlinearity. Moti-
vated by these recent developments, here we aim to advance
current understanding of nonlinear topological systems by
looking into one-dimensional (1D) nonlinear lattices, with
both momentum-space and real-space treatments.

Specifically, we consider a nonlinear SSH model with on-
site nonlinearity and a chiral-symmetry-breaking term. This
system can be realized via photonic systems assembled by
waveguides with a Kerr medium. Our key findings are as
follows.

First, the system is investigated in the momentum space
under periodic boundary condition (PBC). Instead of using
the conventional Zak phase associated with an energy band to
seek possibly new topological features due to nonlinearity, we
advocate to use the so-called nonlinear Zak phase, which can
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account for an additional geometric contribution arising from
the adiabatic following of a nonlinear system. Remarkably, it
is found that the nonlinear Zak phases, though not quantized
individually, can still yield a quantized value when summed
over all the nonlinear energy bands, for sufficiently large non-
linear strength. This result unexpectedly reveals a quantized
quantity in nonlinear lattice systems, suggesting a possible
topological characterization unique to nonlinear systems.

Second, the system is examined in real space under open
boundary condition (OBC). As the strength of nonlinearity
increases, we observe that the original linear energy spectrum,
which comprises delocalized bulk states and localized edge
states, breaks down into soliton states, localized either in the
bulk or at the lattice edges. Interestingly, the emergence of
these solitons can be explained by the idea of self-consistent,
nonlinearity induced edges inside the bulk, leading to fascinat-
ing examples featuring the interplay between nonlinearity and
topology. Consequently, the behavior of such nonlinear sys-
tems can be now largely understood in terms of the topological
properties of the associated chiral-symmetric linear system.
Solitons existing in the energy gap are particularly engaging,
as they exist in a regime where nonlinearity is strong enough
to have an effect, but does not completely overrun the features
of the original linear model. In this case, the induced edge
in the bulk is found to accommodate edge states on each of
the two sides of the soliton, in the same fashion as in the
linear chiral-symmetric SSH model. Related to this key in-
sight, we observe and explain how nonlinearity with moderate
strength leads to the recovery of edge-state degeneracy despite
chiral-symmetry breaking. The breakdown of bulk-boundary
correspondence due to nonlinear effects is finally discussed.

This paper is organized as follows. In Sec. II, we introduce
our major theoretical and computational tools respectively
for momentum-space and real-space treatments. Of particular
interest is the introduction of a rather general theory of non-
linear Zak phase. In Sec. III we describe our working model
as a nonlinear SSH model with chiral symmetry breaking.
The main results are presented in Secs. IV and V from both
momentum-space and real-space perspectives. Major results
from the momentum-space treatment include nonlinear band
structure, behavior of nonlinear and conventional Zak phases,
the recovery of quantized Zak phases over a summation over
all bands for sufficiently strong nonlinearity, and an analy-
sis of the dynamical stability of the nonlinear energy bands.
Major results from the real-space treatment include analysis
of the OBC spectrum, localization properties of soliton so-
lutions, the relevance of topological edge states in the linear
limit to the interesting profile of in-gap solitons, and a recov-
ery of degeneracy between edge soliton states at the two ends
of the nonlinear lattice despite chiral-symmetry breaking. Sec-
tion VI summarizes the main findings of this paper, along with
suggestions for possible further studies.

II. THEORETICAL AND COMPUTATIONAL TOOLS

A. Theory of nonlinear Zak phase

We begin by introducing a general theoretical tool to treat
nonlinear lattice systems in the momentum space under PBC.
Consider first topological properties of 1D chiral-symmetric

linear systems, which can be well characterized by the Zak
phase [51] of their bulk energy bands. Here, the Zak phase
is defined as the Berry phase associated with the adiabatic
evolution of a bulk energy eigenstate as the quasimomentum k
is scanned over the Brillouin zone k = 0 → 2π . In particular,
for a two-band system described by the general Hamiltonian

H =
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
, (1)

where θ and φ are the angles used to represent the eigenstates
on the Bloch sphere (which generally depend on k), its Zak
phases can be immediately obtained as γ± = ±�

2 , where � is
the solid angle covered by one of its eigenstates as k varies
from 0 to 2π , and ± labels its two eigenstates. In the presence
of chiral symmetry such that σzHσz = −H , cos(θ ) is neces-
sarily 0, and the eigenstates are then bound to evolve in the
x, y plane, i.e., on the equator of the Bloch sphere, which yield
a quantized Zak phase equal to an integer n multiple of π ,
where n represents the number of times the azimuthal angle
φ winds around the origin as k varies from 0 to 2π . Note that
in general, the Zak phase depends on the choice of origin in
the unit cell. Here and in the rest of this work, we choose
the inversion center origin, so that the quantity we compute
does not relate to a filling anomaly, but only to a topological
number [52].

The direct connection between Zak phase and winding
number above, which highlights the topological nature of
such a system, relies heavily on the presence of the chiral
symmetry. Perturbations of the form vσz suffice to break such
a symmetry and subsequently the quantization of the Zak
phase. In this case, the Zak phase can take any value in
[0, 2π ) and thus no longer describes a topological quantity. As
shown later, an intriguing interplay between nonlinearity and
chiral-symmetry breaking can be examined via the recovery of
almost quantization or even exact (up to a numerical error of
10−7) quantization of a different geometric phase accounting
for contributions from nonlinearity.

To generalize the definition of Zak phase in 1D nonlinear
two-band systems, we first recall that as the quasimomentum
k adiabatically runs over one cycle in the Brillouin zone, the
total phase acquired by an eigenstate is the sum of two terms,
the dynamical phase and the geometric phase. The dynamical
phase is identified as the term arising due to the contribution
from the state’s time evolution which thus depends on the
total time taken to complete the adiabatic cycle, whereas the
geometric phase is independent of such a total time and solely
depends on the closed path in parameter space (e.g., θ and
φ). Interestingly, such a natural division between the geo-
metric phase and the dynamical phase becomes problematic
in nonlinear systems. In particular, though the conventional
Zak phase in a two-band system (determined by the solid
angle traced out by the adiabatic nonlinear eigenstates) still
contributes to the geometric phase as in linear systems, the
dynamical phase in nonlinear systems also accumulates a
geometrical phase contribution [50,53]. For this reason below
we explicitly develop a theory of nonlinear Zak phase.

Consider a nonlinear time-dependent Schrödinger equation

ih̄
∂

∂t
	 = H (
)	, (2)
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where we have defined a nonlinear (state-dependent) “Hamil-
tonian”

H (
) = hxσx + hyσy + h(
)σz, (3)

	 = (	1, 	2)T , 
 = |	2|2 − |	1|2, hx and hy are assumed
to be state independent for simplicity, whereas h can be any
function of 
. By writing the solutions to Eq. (3) as 	(t ) =
ei f (t )�(t ) with f (t ) being the total phase resulting from time
evolution, we identify �(t ) as an element of a projective
Hilbert space. By multiplying Eq. (2) from the left with 	†

and simplifying it, we obtain (summation of repeated indices
is implied)

df

dt
= i�∗

a

d�a

dt
− �∗

aHab�b. (4)

Upon integrating the above with respect to time, the first
term on the right-hand side is what we normally identify as
the Aharonov-Anandan (AA) phase [54], which is usually
associated with the (nonadiabatic) geometric phase in linear
systems. In nonlinear systems, however, the second term may
contain additional geometric contribution. In the adiabatic
limit, this in turn modifies the general form of the system’s
Zak phase.

By perturbatively expanding both f and 	a under an adia-
batic parameter ε as

df

dt
= α0 + α1ε + α2ε

2 + · · · ,

�a = �(0)
a + ε�(1)

a + ε2�(2)
a + · · · ,

(5)

we choose a state initially in a stationary state �(0) = �E such
that H�E = E�E . During an adiabatic process, the trajectory
of the state 	 (0) gives rise to the conventional Zak phase
defined in linear systems. In linear systems, this is also the
only geometric contribution since variations in the dynamical
phase contribution of Eq. (4) will only yield terms that are at
least of order ε2, which vanish in the adiabatic limit. On the
other hand, since H is state dependent in nonlinear systems,
its variation induced by the time evolution of the state yields
a term in the dynamical phase contribution of Eq. (4) that
is of first order in ε, thus giving rise to another geometric
contribution. In particular, by substituting Eq. (5) into Eq. (4),
then evaluating zeroth- and first-order terms in ε, we obtain

α0 = −E ,

εα1 = i�(0)∗
a

d�(0)
a

dt︸ ︷︷ ︸
Original Berry

connection

−ε�(0)∗
a H (1)

ab �(0)
a︸ ︷︷ ︸

Geometric contribution
from dynamical phase

,
(6)

where H (1) = dh
d


|

=
(0)

d

dε

|
ε=0

σz, and the absence of ε in the
first term on the right-hand side of εα1 in Eq. (6) is due to

the fact that d�(0)
a

dt ∝ ε in the adiabatic limit. For the two-level
nonlinear Hamiltonian described in Eq. (3), this means

α0 = −E ,

εα1 = i�(0)∗
a

d�(0)
a

dt
− 4ε

dh

d


∣∣∣∣

(0)


(0) Re
(
�

(0)∗
1 �

(1)
1

)
,

(7)

where 
(0) = |�(0)
2 |2 − |�(0)

1 |2 and normalization condition
Re(�(1)∗

a �(0)
a ) = 0 has been employed in the above. The

stationary state �E can further be written without loss of
generality [55] in the form

�E =
(

cos θ
2

sin θ
2 eiφ

)
. (8)

After substituting it into Eq. (7), and doing some algebra
detailed in Appendix A, we obtain the first-order term of df

dt
as a Berry connection modified by a kernel K deforming a
familiar intergral:

εα1 = iK�(0)∗
a

d�(0)
a

dt
,

K =
(

1 +
dh
d


∣∣

(0) cos θ (1 + cos θ )

E + dh
d


∣∣

(0) sin2 θ

)
.

(9)

Consequently, the nonlinear Zak phase for any 1D two-band
systems with diagonal nonlinearity h(
) is given by

γNL =
∫ 2π

0
iK(k)�(0)

a (k)∗
d�(0)

a (k)

dk
dk, (10)

which reduces to the conventional Zak phase expression in
the linear limit dh

d

→ 0. It is remarkable that the nonlinear

Zak phase introduced here can be expressed as a single k
integral involving the kernel K(k). That is, the conventional
Zak phase and the nonlinear Zak phase can be, respectively,
obtained by excluding or including the kernel K(k). Finally, it
is also important to note that the kernel K(k) does not depend
on the choice of origin in the unit cell. This can be understood
from the fact that shifting the origin of the unit cell by a
distance x is simply done by multiplying the Bloch state by a
phase eikx as momentum is a generator of the space translation
operator. From Eq. (9), we can see that the deforming kernel
only depends on E and cos θ , which are both unchanged by
multiplications by an arbitrary phase. Therefore, while we
have assumed a specific origin to ensure that the computed
nonlinear Zak phase is directly proportional to the topological
winding number [52], Eq. (10) is expected to hold for other
choices of origin. In general, such a nonlinear Zak phase can
be broken down into intracell and intercell contributions by
generalizing the work of Ref. [52]. In this case, the nonlinear
intercell Zak phase is independent of the origin and represents
a valid topological invariant.

B. Iterative approach to real-space solutions under OBC

The previous subsection on nonlinear Zak phase is one
major tool we adopt to investigate momentum-space features.
For real-space solutions, especially when the system is under
OBC, we can only find the real-space solutions by brute-force
computational tools. To complete our methodology descrip-
tion, we briefly describe here an iterative approach. For a
nonlinear (state-dependent) Hamiltonian HOBC, the iteration
process from state |	n〉 to state |	n+1〉 is as follows:

(i) Compute Hn = HOBC(|	n〉), the nonlinear state-
dependent Hamiltonian of the system under OBC, evaluated
at the state |	n〉.

115411-3



TULOUP, BOMANTARA, LEE, AND GONG PHYSICAL REVIEW B 102, 115411 (2020)

(ii) Solve Hn for its eigenstates |�i〉 with i = 1, . . . , 2N .
Note that we have even number of lattice sites.

(iii) We then choose the new state |	n+1〉 as the special
eigenstate |�i〉 closest in distance to the previous |	n〉, i.e., the
state which minimizes ‖|	n〉 − |�i〉‖, where we have defined
the norm ‖|ψ〉‖ = |〈ψ |ψ〉|. In other words, |	n+1〉 = |�i0〉
where ‖|	n〉 − |�i0〉‖ � ‖|	n〉 − |�i〉‖ for all i.

To execute the above-described iteration method, one also
needs to choose the starting point of the iteration. In our
studies, we choose the initial states to be the bulk eigenstates
and the edge states of our model in the linear limit. We then
iterate until the distance between old and new state is less than
an arbitrary ε, i.e., ‖|	n〉 − |	n+1〉‖ < ε. Throughout this
work, we take ε = 10−10. Since the aforementioned iterative
approach can only capture a limited number of stable sta-
tionary state solutions, and many choices of trial initial states
may converge to the same state, we select only a subset of
representative bulk eigenstates of the underlying linear model
that converge to distinct solutions for numerical efficiency to
obtain the energy spectra shown in Figs. 6 and 12, and the
inverse participation ratios shown in Fig. 8.

III. NONLINEAR SSH MODEL

This work focuses on a nonlinear SSH chain of N dimers
as a case study. Such a model is described by the following set
of nonlinear Schrödinger equations:

i
d	A, j

dt
= J1	B, j + J2	B, j−1 + v	A, j + g|	A, j |2	A, j,

i
d	B, j

dt
= J1	A, j + J2	A, j+1 − v	B, j + g|	B, j |2	B, j,

(11)

where J1 and J2 describe the intracell and intercell hopping
amplitudes, respectively, v is a staggered onsite potential
strength which breaks the system’s chiral symmetry, 	A, j and
	B, j , respectively, denote the sites A and B of the jth cell,
which satisfy 	B,−1 = 	A,N+1 = 0 under OBC or 	A,N+1 =
	A,1 and 	B,−1 = 	B,N under PBC.

In the linear limit, i.e., g = 0, Eq. (11) under PBC is gov-
erned by the momentum-space Hamiltonian

H (k) = [J1 + J2 cos(k)]σx + J2 sin(k)σy + vσz. (12)

If v = 0, which we will refer to as the unperturbed or chiral-
symmetric SSH model in the rest of this paper, it satisfies
�H (k)�† = −H (k) with � = σz being the chiral symmetry
operator, which as discussed earlier leads to the quantized
Zak phase γ = π

1+sgn(J2−J1 )
2 ∈ {0, π}. The case γ = 0 (γ =

π ) corresponds to a topologically trivial (nontrivial) regime,
where the system does not host (hosts) zero-energy end states
under OBC. That whether boundaries host edge states can
be determined solely from the bulk properties represents
an instance of the so-called bulk-boundary correspondence
[56,57]. In this case, since γ is only quantized to either 0 or π

if the chiral symmetry is respected, the presence of a chiral-
symmetry-breaking term generally causes these edge states (if
they exist) to lose their topological protection. In particular,
taking v 	= 0 in Eq. (12) in the regime γ = π (J2 > J1) leads
to unequal shifts of the two end states to energy ±v, so that
one may then continuously tune v to remove these edge states
without closing the bulk energy gap.

It should be highlighted that the nonlinear lattice model
system depicted above is experimentally realizable in sev-
eral existing experimental platforms. For example, within the
framework of topological photonics [58], such a model can
be realized by considering a one-dimensional (1D) array of
waveguides, where each waveguide has unequal distances
to its left and right adjacent waveguides so as to gener-
ate dimerized nearest-neighbor couplings J1 and J2 in the
paraxial wave equation simulating Eq. (11) above. A chiral-
symmetry-breaking term can be induced when waveguides
with alternating refractive indices are arranged in the chain.
Finally, onsite nonlinearity is naturally formed via the Kerr
mechanism. Alternatively, the same model may also be qual-
itatively replicated with electrical circuit setups containing
nonlinear diodes [44,59].

In the following sections, we shall extensively study the
role of nonlinearity in recovering some intriguing topological
properties despite the chiral symmetry being broken. Repre-
sentative results include a recovery of quantization regarding
nonlinear Zak phases when PBC are applied and a recovery of
degenerate edge states under OBC.

IV. MOMENTUM-SPACE RESULTS

In this section we investigate our nonlinear SSH model
under PBC, where a nonlinear Hamiltonian of the form Eq. (3)
can be obtained from Eq. (11) by further assuming Bloch state
solutions

	A, j = �Aeik j,

	B, j = �Beik j,
(13)

which gives us the nonlinear eigenvalue problem H (
)� =
E�, with the pseudospinor � = [�A,�B]T and a two-band
Gross-Pitaevskii (GP) Hamiltonian

H (
) = (J1 + J2 cos k)σx + J2 sin kσy + h(
)σz + g

2
I2,

(14)
where h(
) = v − g

2
, 
 = |�B|2 − |�A|2 is the population
difference between the two pseudospinor components, I2 is a
2 × 2 identity matrix, and σx,y,z are the Pauli matrices acting
on the [�A,�B] basis.

A. Nonlinear band structure

In Fig. 1, we show the system’s band structures vs non-
linearity strength, and compare them with the energy bands
of the associated SSH model with g = 0, with and without
chiral-symmetry breaking. As the nonlinearity strength in-
creases, a “looped” band structure eventually emerges, which
corresponds to additional energy bands that exist only within
some region in the Brillouin zone, as depicted in Fig. 1 for
g = 5 and 7. The region in the Brillouin zone for which these
additional bands exist enlarges as g increases, eventually span-
ning the entire Brillouin zone at large enough nonlinearity, as
Fig. 1 shows for g = 9 and 11. That is, at very large values of
g, four well-defined energy bands exist in the system, two of
which being really close to the bands of the chiral-symmetric
linear SSH model. To understand this, note that as g 
 v, the
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FIG. 1. The energy bands of nonlinear chiral-symmetry-broken
SSH model vs nonlinearity strength g (values of g are indicated on
figure subpanels). The red dashed lines indicate the energy bands
of the associated chiral-symmetric linear SSH model, described by
the Hamiltonian of Eq. (14) with h(
) = 0. The blue dashed-dotted
lines depict the energy bands of the associated linear SSH model with
chiral symmetry broken, i.e., h(
) = v. The black continuous lines
represent the energy bands of the nonlinear SSH model with both
chiral symmetry breaking and Kerr-type nonlinearity, i.e., h(
) =
v − g

2 
. All quantities shown in the pictures are given in units of J1,
with parameter values J2 = 2 and v = 0.5.

Hamiltonian is approximately

H ≈
( g

2 − g
2
 J1 + J2e−ik

J1 + J2eik g
2 + g

2


)
, (15)

which allows for two eigenstates satisfying |�(0)
2 |2 = |�(0)

1 |2.
These two eigenstates then cancel the nonlinear term and
hence coincide precisely with that of the chiral-symmetric
SSH model. Thus, in spite of a chiral-symmetry-breaking
term, these two nonlinear energy bands are in fact very
close to the bands of the unperturbed linear SSH model,
suggesting the possibility of nonlinearity induced recovery
of some topological features originally defined in the linear
limit.

FIG. 2. Bloch sphere representation of the adiabatic evolution of
the system’s stationary states 	i as k is scanned over the Brillouin
zone, with E1 < E2 < E3 < E4. System parameters are J2 = 2 and
v = 0.5 in units of J1.

B. Zak phase results

The conventional Zak phase reflects the geometrical path
of adiabatic eigenstates. The geometric paths of the adiabatic
eigenstates can be best shown in the Bloch sphere represen-
tation, for both linear and nonlinear SSH models. To that
end, we first show in Fig. 2 the Bloch sphere representation
of the system’s stationary states adiabatic evolution as the
quasimomentum k is scanned over the Brillouin zone. In the
chiral-symmetric linear SSH model, the evolution of these
states forms a closed loop along the equator of the Bloch
sphere, which corresponds to a quantized π Zak phase. In the
presence of a chiral-symmetry-breaking term, such a loop is
deformed away from the equator, thus breaking the quantiza-
tion of the Zak phase. This feature persists in the presence
of weak nonlinearity, as depicted in Fig. 2(a). Remarkably,
as the strength of nonlinearity continues to increase, one of
these loops tends to move back toward the equator, while the
other moves even farther away. As the looped band struc-
ture emerges and enlarges to become two additional energy
bands, they individually trace out a closed loop on the Bloch
sphere, which further approaches the equator as the nonlin-
earity strength further increases [see Figs. 2(b)–2(d)]. At very
large nonlinearity strength, there are thus two nonlinear bands
with almost π -quantized Zak phase. These two bands are
precisely those observed in Fig. 1 at g = 9 and 11 that closely
resemble the two bands of the unperturbed linear SSH model.

One may wonder how the concept of nonlinear Zak phase
introduced in Sec. II helps us to appreciate the physics here
further. Let us now quantitatively examine the nonlinear or
conventional Zak phases associated with all the system’s
available energy bands, accomplished by adapting the scheme
presented in Ref. [60]. The results are presented in Fig. 3,
where Zak phases associated with the energy bands E1 <
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FIG. 3. Conventional Zak phases and nonlinear Zak phases of
each band vs nonlinear strength. The continuous (dashed) lines rep-
resent nonlinear (conventional) Zak phases computed by including
(excluding) the deforming kernel K in Eq. (9). Note that each Zak
phase converges to a quantized value of either 0 or π in the large-g
limit. The Berry phase of one cycle around the looped structure is
also included. System parameter values are J2 = 2 and v = 0.5, in
units of J1.

E2 < E3 < E4, with and without the kernel K derived in
Sec. II A, are plotted vs nonlinearity strength g. Regarding the
looped band structures that represent two incomplete energy
bands, they together form a closed loop on the Bloch sphere
representation. Hence, it is also of some interest to evaluate
the Berry phase associated with this peculiar looped structure
when it exists. This is done by scanning the system from the
smallest quasimomentum for which the incomplete band ex-
ists, going all the way to the other extremity of the incomplete
band, before coming back to the starting point by scanning the
other incomplete energy band, thus performing a closed path.

Our main findings from Fig. 3 are as follows. As nonlinear-
ity strength increases, the nonlinear or the conventional Zak
phases of energy bands E1 and E2, which resemble those of
the chiral-symmetric linear SSH model, become closer to π ,
though they are never exactly quantized. It is further observed
that the nonlinear Zak phases can be significantly different
from the conventional Zak phases. In particular, the nonlinear
Zak phases for bands E1 and E2 at large nonlinearity strength
are closer to a quantized π value than the conventional Zak
phases. More importantly, an exact quantization of the sum-
mation over the four nonlinear Zak phases at 0 modulo 2π is
recovered in the regime where four well-defined energy bands
exist, as shown in Fig. 4(b). This quantization is broken at
low nonlinearity strength, due to the presence of incomplete
energy bands. It is also interesting to notice that the Berry
phase associated with the looped band structure gradually
changes from 0 to π , as the peculiar loop band structure first
emerges and disappears at large nonlinear strength.

To better understand the recovery of quantization of the
summation of all nonlinear Zak phases at 0 modulo 2π , we

FIG. 4. (a) Sum of the Zak phases of the two outermost energy
bands E1 and E4 and of the two innermost energy bands E2 and E3.
(b) Sum of the Zak phases of all four energy bands. For both panels,
the continuous (dashed) lines represent the nonlinear (conventional)
Zak phases computed with (without) the kernel K in Eq. (9). System
parameters are J2 = 2J1 and v = 0.5J1.

have also applied a perturbation theory to obtain approxi-
mate expressions for the four nonlinear or conventional Zak
phases for large nonlinearity strength. As further detailed in
Appendix B, by treating 1

g as a perturbative parameter and
making simplifying assumptions that J1 = 0, the nonlinear
Zak phases γ1, γ2, γ3, and γ4 associated with energy bands
E1 < E2 < E3 < E4 are found to be

γ1 = π

(
1 − 4vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

γ2 = π

(
1 + 4vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

γ3 = −2π

(
J2

g

)2

+ O
(

vJ2
2

g3

)
,

γ4 = 2π

(
J2

g

)2

+ O
(

vJ2
2

g3

)
. (16)

Clearly, the sum of these four nonlinear Zak phases is
quantized. This further confirms our computational findings,
though our computational findings are valid to higher orders
of 1/g. By contrast, the four conventional Zak phases γ ′

1,
γ ′

2, γ ′
3, and γ ′

4 associated with the same energy bands [that
is, excluding geometric phase contributions from the Kernel
K(k)] are obtained as

γ ′
1 = π

(
1 − 2

v

g
+ 4

vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

γ ′
2 = π

(
1 − 2

v

g
− 4

vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

γ ′
3 = 2π

(
J2

g

)2

+ O
(

vJ2
2

g3

)
,

γ ′
4 = −2π

(
J2

g

)2

+ O
(

vJ2
2

g3

)
. (17)

The sum of these conventional Zak phases is clearly not
quantized. That only nonlinear Zak phases may recover quan-
tization is a remarkable observation. This finding also echoes
with an early study by two of the present authors and others
[50], where it was found that only a nonlinearity corrected
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Aharonov-Bohm phase is quantized around nonlinear Dirac
cones. Topological characterization of nonlinear lattice sys-
tems hence has unique features absent in linear systems.

C. Dynamical stability of solutions

We will now investigate the dynamical stability of the ob-
tained nonlinear energy bands above. To this end, we evaluate
the time evolution of a state initially prepared slightly away
from a stationary state, assuming for simplicity that such a
state also respects the translational symmetry of the system,
which is obtained by solving the time-dependent GP equation
in the momentum space

i
∂

∂t
|	(k, t )〉 = H (k, 	(k, t ))|	(k, t )〉, (18)

where H is given by Eq. (14). Such a state |	(k, t )〉 can be
written as a sum of a stationary state |ψ (k, t )〉 with energy
E (k) and a small perturbation of the form

|δψ (k, t )〉 =
(

δψ1(k, t )
δψ2(k, t )

)
. (19)

We then define the stationary solution |ψ (k, t )〉 to be dynam-
ically stable if the norm of |	(k, t )〉 = |ψ (k, t )〉 + |δψ (k, t )〉
does not go to ∞ as t → ∞ for sufficiently small |δψ (k, 0)〉.
For clearer calculations, we separate the “dynamical phase”
from |	(k, t )〉 as

|	(k, t )〉 = e−iEt |�(k, t )〉,
|ψ (k, t )〉 = e−iEt |ψ (k, 0)〉,

|δψ (k, t )〉 = e−iEt |δφ(k, t )〉,
(20)

so as to form a resultant state |�(k, t )〉 = |ψ (k, 0)〉 +
|δφ(k, t )〉 that separates into a time-independent part |ψ (k, 0)〉
plus a time-dependent part |δφ(k, t )〉. With some algebra,
Eq. (18) can be written in the form

i
∂

∂t

⎛
⎜⎝

δφ1

δφ2

δφ∗
1

δφ∗
2

⎞
⎟⎠ = L

⎛
⎜⎝

δφ1

δφ2

δφ∗
1

δφ∗
2

⎞
⎟⎠, (21)

where

L =
[

Hgp + A B
−B† −Hgp − A∗

]
,

Hgp = H (k, ψ (k, 0)) − EI2,

A = g

2

( |ψ1(k, 0)|2 −ψ1(k, 0)ψ2(k, 0)∗

−ψ1(k, 0)∗ψ2(k, 0) |ψ2(k, 0)|2
)

,

B = g

2

(
ψ1(k, 0)2 −ψ1(k, 0)ψ2(k, 0)

−ψ1(k, 0)ψ2(k, 0) ψ2(k, 0)2

)
.

(22)
As Eq. (21) resembles the time-dependent Schrödinger equa-
tion in linear quantum mechanics, its time evolution is
governed by the operator e−iLt . However, since L is not a Her-
mitian operator, eigenvalues of L can in general be complex.
It follows that in order for |φ(k, t )〉 to be dynamically stable,
all eigenvalues λn of L must satisfy [61]

Im(λn) = 0, ∀ n. (23)

FIG. 5. max | Im(λn)| for the nonlinear energy bands E1 < E2 <

E3 < E4. The blue, magenta, cyan, and red lines correspond to E1, E2,
E3, and E4, respectively. System parameters are J2 = 2 and v = 0.5
in units of J1.

Figure 5 shows the maximum imaginary component of all
the eigenvalues of L for all the nonlinear bands, from which it
follows that the highest- and lowest-energy bands, the former
being the band that closely resembles chiral-symmetric linear
SSH model and possesses an almost π -quantized Zak phase at
large nonlinearity strengths, are dynamically stable through-
out the Brillouin zone. On the other hand, the second lowest
band E2 is dynamically unstable whenever it exists, whereas
the second largest band E3 shows instability for some values
of k when the looped structure exists, which becomes fully
stable once the nonlinearity strength is large enough for four
complete bands to exist.

V. REAL-SPACE RESULTS

A. Spectrum and eigenstates under OBC

We now shift our focus to the real-space behavior of
nonlinear lattice systems under OBC, using again the model
described by Eq. (11). Computationally, we use the iterative
method already introduced in Sec. II, taking both the bulk
eigenstates and edge states of the chiral-symmetry-broken
SSH model as initial trial states. We then numerically obtain
the energy spectrum under OBC, for different values of g, as
shown in Fig. 6.
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FIG. 6. Energy spectrum solved from Eq. (11) under OBC,
showing three different regimes (i), (ii), and (iii). All quantities
shown are given in units of J1, with parameter values J2 = 2, v =
0.5, and N = 100 unit cells. Under these parameters, the associated
chiral-symmetric SSH model with g = 0 would be in the topological
nontrivial regime.

We may separate the typical energy spectrum as depicted in
Fig. 6 into three different regimes, depending on the strength
of nonlinearity. Each regime accommodates different types
of states, which are presented in Fig. 7. As the nonlinearity
strength increases, we observe a progressive break down of

FIG. 7. Wave-function profiles of different types of states exist-
ing in each regime, with system parameters given by J2 = 2 and
v = 0.5 in units of J1. (a) Illustrates one edge state on site 1A for
g = 1, (b) one delocalized bulk state for g = 1, (c) one edge soliton
localized at site 2A for g = 3.5, (d) one in-gap soliton solution for
g = 3.5, (e) one edge soliton localized at site 1A for g = 7, and (f)
one bulk soliton state for g = 7. A value of g = 1 places the system
in regime (i), g = 3.5 in regime (ii), and g = 7 in regime (iii).

the energy bands obtained under PBC, as delocalized states
disappear and are replaced by soliton states. Here, we use the
term “soliton” loosely, to refer to any localized states that may
not reduce to edge states in the linear limit. This applies to
any state existing in regimes (ii) and (iii) in Fig. 6, where
nonlinearity plays a substantial role. In the low nonlinearity
regime (i), the original two bands of the linear SSH model
remain occupied by delocalized bulk states such as the ones
shown in Fig. 7(b). We also observe two edge states localized
at sites 1A and NB [cf Fig. 7(a)], and these two edge states
are nondegenerate due to the chiral-symmetry-breaking term
we introduced to the system. However, these edge states are
simply remnants of those present in the linear model and thus
do not fit our definition of solitons above. As the nonlinearity
strength increases, both edge states are pushed toward one of
the bulk bands and disappear once they reach it (see Fig. 6).
The disappearance of the last edge state marks the end of the
low nonlinearity regime (i). On the other hand, if we consider
the strong nonlinearity regime (iii), where the nonlinearity is
dominant over other energy scales, the only type of states
that can be observed is two highly degenerate, large-energy
solitons, located at any single site in the bulk [e.g., Fig. 7(f)] or
at an edge [e.g., Fig. 7(e)]. These solitons are nontopological,
as they are simply the consequence of nonlinearity strength g
being much larger than all other energy scales of the system.
They are related to the trivial single-site solutions in the limit
g → ∞, where all nonlinear eigenstates are exactly supported
by only a single site (whose energy depends on whether
sublattice A or B is occupied). This understanding is further
supported by studying the inverse participation ratio (IPR) of
the states, as shown in Fig. 8. The IPR of a state |	〉 is defined
by

IPR(|	〉) = 1∑N
n=1 |	n|4

, (24)

and is small for localized states, but large (∼N) for bulk
delocalized states. It is seen that as the nonlinearity strength
becomes large, all the nonlinear eigenstates become more
and more localized, going toward an IPR of 1 (supported by
a single site) as g → +∞. The existence of nontopological
solitons on both edges of the system delimits the boundary of
the strong nonlinearity regime (iii).

To further confirm that the peculiar soliton solution profiles
are related to a single-site solution due to a self-consistent ef-
fective edge, we now compare the strong nonlinearity regime
soliton solutions with states in a linear chiral-symmetric SSH
model plus an impurity in the bulk. Specifically, we consider
then a chiral-symmetric linear SSH model with an additional
impurity potential barrier of intensity g, placed only on one
site in the system first (hence also playing the role of an
effective edge inside the bulk). The model in real space can
be described by

i
d	A, j

dt
= J1	B, j + J2	B, j−1 + v	A, j if j 	= j0,

i
d	A, j0

dt
= J1	B, j0 + J2	B, j0−1 + (v + g)	A, j0 ,

(25)
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FIG. 8. Inverse participation ratios of different types of localized
states in the three nonlinearity regimes for system parameters in
the topological nontrivial regime of the associated chiral-symmetric
linear SSH model. The delocalized bulk states are not shown, as their
IPR is greater than 100. System parameter values are J2 = 2J1 and
v = 0.5J1.

and

i
d	B, j

dt
= J1	A, j + J2	A, j+1 − v	B, j, (26)

with 	B,−1 = 	A,N+1 = 0 under OBC (the impurity poten-
tial can be placed on sublattice B to obtain the solitons of
corresponding energy). We further set v = 0 above for a
linear chiral-symmetric SSH model. Remarkably, by setting
the impurity potential at site 50A (we consider an example
with N = 100 unit cells) and solving for the eigenstates, we
find one eigenstate highly resembling to one type of soliton
solutions observed in our nonlinear model [see Fig. 7(f)]. This
comparison is presented in Fig. 9.

FIG. 9. Comparison of a nontopological soliton solution ob-
tained from our nonlinear models with the corresponding localized
eigenstates in the linear chiral-symmetric SSH model with with a
single-site impurity potential on site 50A. System parameters are
J2 = 2, v = 0.5, and g = 3.5 in units of J1.

B. Soliton solutions with topological origin

There is, however, an intermediate regime (ii) of nonlin-
earity strength, where both nonlinear effects and topological
properties of the linear model become important. This unique
interplay between nonlinearity and topology can be under-
stood by studying a special kind of bulk solitons whose energy
is in the gap between the original linear energy bands [the
energy of the edge states in regime (i) is also in the gap]. The
profile of one such gap soliton is shown in Fig. 7(d). This
profile indicates that on two respective sides of the soliton
peak, there are two edge states emerging due to this effective
nonlinearity induced “edge” inside the bulk. This insight of an
“effective edge” in the bulk can be one main feature through
which nonlinearity and topology can work conjointly in the
system. That is, because the Hamiltonian here depends on the
state, a wave function strongly localized at one site increases
the potential energy there, effectively creating a potential
barrier, which can be a large onsite potential for strong nonlin-
earity strength, thus effectively behaving like a physical edge.
In turn, as fingerprints of the underlying topological phase of
the associated chiral-symmetric SSH model, such an effective
edge admits a strongly localized wave function, whose proba-
bility density exponentially decays with the distance from this
effective edge. These two feedback mechanisms thus allow
such solitons of a topological origin to exist self-consistently.

To further confirm the above argument, we accordingly in-
troduce two impurity potentials to the linear chiral-symmetric
model, with strength g

2 and next to each other, the left one
being on sublattice B and the right one on sublattice A. The
model in real space can be described by

i
d	A, j

dt
= J1	B, j + J2	B, j−1 + v	A, j if j 	= j0,

i
d	B, j

dt
= J1	A, j + J2	A, j+1 − v	B, j if j 	= j0 − 1,

(27)

as well as

i
d	A, j0

dt
= J1	B, j0 + J2	B, j0−1 +

(
v + g

2

)
	A, j0 ,

i
d	B, j0−1

dt
= J1	A, j0−1 + J2	A, j0 +

(
−v + g

2

)
	B, j0−1

(28)

with 	B,−1 = 	A,N+1 = 0 under OBC. As shown in Fig. 10,
we again obtain spatial profiles of localized states very close
to the soliton solutions we found from the nonlinear model.

Our impurity model can be also used to confirm that an
effective edge on sites 1A or NB indeed, respectively, destroys
the existence of physical edge states on sites 1A or NB, with
a topological explanation. We consider then two impurity
potentials of strength g added to sites 1A and NB, set the
chiral-symmetry-breaking term v to a nonzero value, and then
look into the energy spectrum of the linear system. The results
in Fig. 11 show that, as the strength of impurity increases, the
two edge states are pushed away from zero energy until they
merge with the bulk, after which they then disappear. Then, as
the impurity strength further increases, two eigenstates with
highest-energy values are seen to emerge out of the bulk, a
behavior akin to the edge solitons encountered in the high
nonlinearity regime (iii) seen above. At intermediate impurity
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FIG. 10. Comparison of an in-gap soliton solution obtained from
our nonlinear models with one localized eigenstate in the linear
chiral-symmetric SSH model with two-impurity potential of height
g
2 introduced on sites 32B and 33A. System parameters are J2 = 2,
v = 0.5, and g = 3.5 in units of J1.

amplitudes, we also identify a regime for which the model
does not yield any edge states.

With the physical insights developed above, we are now
ready to digest the recovery of the degeneracy of two edge
solitons, in spite of the chiral-symmetry-breaking term. In
particular, the intermediate regime (ii) identified in Fig. 6 is
analogous to that for which our impurity model description
does not exhibit edge states. Consequently, self-consistent
edge solitons with peaks at site 1A or NB cannot exist. As
sites A and B, respectively, bear the potential +v and −v,
a 2v energy difference exists between the states localized at
these different sites, and this is the very reason why there
is a splitting in the energy values of edge states localized at
the leftmost (1A) and rightmost (NB) sites. However, in this
particular intermediate nonlinearity regime, the leftmost and
rightmost localized states that do exist are respectively local-
ized on sites 2A and NA [e.g., Fig. 7(c)], effectively bypassing

FIG. 11. Energy spectrum of the linear SSH model with two
potential barriers on sites 1A and NB, as a function of the strength
g of impurity potential introduced. All quantities shown are given in
units of J1, with parameter values J2 = 2 and v = 0.5.

FIG. 12. Energy spectrum of the originally topologically trivial
(J1 > J2) model under OBC, which can be also divided into three
regimes of nonlinearity strength. All quantities shown are in units of
J2, with parameter values J1 = 2, v = 0.5, and N = 100 unit cells.

the energy splitting due to the broken chiral symmetry (since
they are both localized on sublattice A).

Finally, we note that the discussion above also applies
when the corresponding linear system is topologically trivial.
Consequently, analogous soliton solutions can be expected at
intermediate nonlinearity strength even when the correspond-
ing linear system is in the topologically trivial regime. This is
clearly evidenced in Fig. 12. In particular, it is seen that even if
the edge states originating from the linear model do not exist,
in-gap solitons can be found. Due to the interchange between
the roles of J1 and J2, the shape of such solitons mirrors that in
the system whose linear limit is topologically trivial, as shown
in Fig. 13. Nonlinearity can thus not only recover topological
properties destroyed by a chiral-symmetry-breaking term, but
also effectively induce topological features absent in the non-
interacting limit. In practice, such topological edge solitons
may also offer clear, experimentally detectable signatures of
systems exhibiting topological characterization.

C. Breakdown of bulk-boundary correspondence

As discussed earlier, the linear, chiral-symmetric SSH
model exhibits an instance of bulk-boundary correspondence
[56,57], as the quantized Zak phase γ ∈ {0, π}, which is a
property of the bulk, is directly linked to the presence of
edge states on the boundaries of the system under OBC. This
relation can already be lost in the linear case, by introduc-
ing a chiral-symmetry-breaking term, i.e., by taking v 	= 0 in
Eq. (12). In this case, the Zak phase is no longer quantized,
so the edge states, if they exist, are no longer related to a
topological number.
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FIG. 13. Wave-function profiles of in-gap solitons when the
associated chiral-symmetric linear system is in the topologically
nontrivial and trivial regimes. System parameters in (a) are J2 = 2,
v = 0.5, and g = 3.5 in units of J1. In (b), the values of J1 and J2

are exchanged but leaving all other parameters unchanged, in order
to connect with the topologically trivial case in the linear chiral-
symmetric SSH model.

We have previously demonstrated how nonlinear effects
recover some topological features of the chiral-symmetric-
broken SSH model by analyzing the system separately under
PBC and OBC. That is, under the assumption of translation-
ally invariant Bloch wave solutions, we observed how the
Zak phases of the resulting bands are modified toward values
that are very close to either 0 or π . On the other hand, in
the presence of system boundaries, our extensive numerical
calculations show a regime for which the degeneracy between
the system’s two edge states is almost fully recovered.

Despite the above encouraging observations, we are un-
fortunately unable to recover bulk-boundary correspondence.
That is, we found that the nonlinearity strengths for which
the bands’ Zak phases are closest to being quantized may not
be directly correlated to the regime for which the system’s
edge states are closest to being degenerate. Moreover, even
the presence of topological edge solitons in the intermediate
regime (ii), which results from the interplay between nonlin-
earity and the system’s two distinct topological phases, may
not be linked to a single topological number. This is evidenced
by the fact that such topological edge solitons exist regardless
of whether the underlying linear model is topologically trivial
or nontrivial (see Fig. 13). On the other hand, we found that
the system’s nonlinear Zak phases tend to get closer to 0 (π )
if the underlying linear model is topologically trivial (nontriv-
ial).

We identify two main factors that contribute to the failure
of bulk-boundary correspondence. First, due to the effective
nonlinear Hamiltonian being state dependent, the difference in
normalization condition between the OBC (over the whole
lattice) and PBC (over a single unit cell) setups may affect
such a Hamiltonian at the fundamental level, leading to two

completely different sets of stationary state solutions. Second,
as we have elucidated in our PBC studies, not all of the
observed bulk bands are dynamically stable. Consequently,
the system’s energy spectra under OBC, which are obtained
numerically via iterative method, may not be fully exhaustive.
Finally, we note that while the usual notion of bulk-boundary
correspondence seems to break down in nonlinear systems,
it might be possible to establish a new generalized bulk-
boundary correspondence for which OBC features observed
at some nonlinearity strength g may be correlated to PBC
features observed at some other g′. We leave the study of this
interesting aspect for future work.

VI. CONCLUDING REMARKS

In this work, we have carefully investigated the interplay
between topology and nonlinearity in a simple SSH model
with onsite nonlinearity and chiral symmetry breaking, with
both momentum-space and real-space studies. The focus is on
how nonlinearity may recover topological features analogous
to a linear chiral-symmetric SSH model. We demonstrate that
in the regime of strong nonlinearity, the nonlinear Zak phases
(not the conventional Zak phases) of the nonlinear energy
bands sum up to a quantized value. This indicates that the
geometric contributions from the unique aspects of nonlinear
adiabatic following can be important for topological charac-
terization of nonlinear lattice systems. Equally interesting,
as nonlinearity strength increases, the individual nonlinear
Zak phases, though not quantized, may become closer to a
quantized value of either 0 or π than the conventional Zak
phases. This further suggests that nonlinearity can assist in
recovering topological effects already destroyed by a chiral-
symmetry-breaking term. Furthermore, for moderate to strong
nonlinearity, clear fingerprints of topological features in the
nonlinear system under OBC can be identified. In-gap local-
ized stationary states (solitons) present nonlinearity induced
effective edges inside the bulk. With this understanding, the
topological origin of the spatial profiles of such localized so-
lutions can be identified by comparing them with eigenstates
of the corresponding linear model under the addition of certain
impurity potential. This insight also explains well the recovery
of degeneracy of edge solitons localized at opposite ends of
the lattice.

While nonlinear effects yield signatures of recovered topo-
logical features in the presence of chiral-symmetry-breaking
perturbations, the usual notion of bulk-boundary correspon-
dence seems to be broken. In the previous section, we have
identified some factors that contribute to its failure and sug-
gested a possible avenue for its generalization as a potential
future work. Alternatively, one may also envision the pos-
sible connection between the breakdown of bulk-boundary
correspondence observed here with that typically found in
non-Hermitian systems, which is known as the skin effect
[62–66]. This potential connection is further supported by
the fact that the stability matrix L of Eq. (22) is generally
non-Hermitian.

As another possible future direction, the interplay be-
tween topology and other types of nonlinearity, such as
off-diagonal nonlinearity, can be considered as well. We ex-
pect that the recovery of topological features in the presence
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of chiral-symmetry breaking may also be present in such
cases, with other potentially more intriguing features yet to
be discovered. Moreover, recent years have seen new va-
rieties of exotic topological phases beyond those originally
envisioned over two decades ago. These include topological
phases in nonequilibrium settings (single-body [62–65,67–
77], many-body [78–82] non-Hermitian and/or periodically
driven systems [83–97]), as well as higher-order topological
phases [98–105] characterized by the presence of states local-
ized at the boundaries of their boundaries (hinges/corners).
Investigating interaction/nonlinear effects in such systems
will be timely and fruitful.
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APPENDIX A: NONLINEAR ADIABATIC
PERTURBATION THEORY

We consider a two-level Gross-Pitaevskii Hamiltonian

H (|	〉) = h1σx + h2σy + h(
)σz, (A1)

where 
 = |	2|2 − |	1|2. We start by defining a state �a =
e−i f 	a with a = 1, 2, which corresponds to an element of a
projective Hilbert space. The total phase f is taken to cap-
ture both dynamical and geometric phases of the state |	〉.
Substituting in Eq. (A1) and applying

∑
a �∗

a . . . we obtain
(summation of repeated indices being implied)

df

dt
= i�∗

a

d�a

dt
− �∗

aHab�b. (A2)

In this case, the nonlinearity may cause the second term to also
contribute to the geometrical phase. We perturbatively expand
both f and �a under an adiabatic parameter ε as

df

dt
= α0 + α1ε + · · · ,

�a = �(0)
a + ε�(1)

a + · · · ,

(A3)

and since the nonlinear Hamiltonian is also state dependent,
we will also have

H = H (0) + εH (1) + · · · . (A4)

We now attempt to derive the total phase f acquired by the
system in the adiabatic limit for a state initially in a stationary
state �(0) such that H (0)�(0) = E�(0), which corresponds to
finding α0 and α1 in Eq. (A3). We obtain

α0 = −E ,

εα1 = i�(0)∗
a

d�(0)
a

dt
− ε�(0)∗

a H (1)
ab �(0)

a ,
(A5)

where the first term in the right-hand side of the bottom
line corresponds to the conventional Berry connection, and

the second term is the geometric contribution coming from
the dynamical phase, due to nonlinear dynamics. In our
case, we have H (1) = dh

d

|

=
(0)

d

dε

|
ε=0

σz. Using the nor-
malization condition Re(�(0)∗

a �(1)
a ) = 0, we have d


dε
|
ε=0

=
−4 Re(�(0)∗

1 �
(1)
1 ) so

H (1) = −4
dh

d


∣∣∣∣

=
(0)

Re
(
�

(0)∗
1 �

(1)
1

)
σz. (A6)

The general formula for α0 and α1 given in Eq. (A5) becomes
then

α0 = −E ,

εα1 = i�(0)∗
a

d�(0)
a

dt
− 4ε

dh

d


∣∣∣∣

(0)


(0) Re
(
�

(0)∗
1 �

(1)
1

)
. (A7)

On the other hand, if we consider only ε1 terms in df
dt �1, we

have

4ε
dh

d


∣∣∣∣

(0)

Re
(
�

(0)∗
1 �

(1)
1

)
[1 + 
(0)]�(0)

1

= −i
(
δ1a − �

(0)
1 �(0)∗

a

)d�(0)
a

dt
− ε

(
Eδ1b − H (0)

1b

)
�

(1)
b . (A8)

For a two-level system, the stationary state |�E 〉 can be writ-
ten without loss of generality in the form

|�E 〉 =
(

cos θ
2

sin θ
2 eiφ

)
, (A9)

so that we can simplify Eq. (A8) by taking its real
part, and making use again of the normalization condition
cos θ

2 Re(�(1)
1 ) + sin θ

2 Re(e−iφ�
(1)
2 ) = 0 to get

4ε
dh

d


∣∣∣∣

(0)

cos2 θ

2
Re

(
�

(1)
1

)
[1 − cos θ ]

= i cos
θ

2
�(0)∗

a

d�(0)
a

dt
− ε

(
E − H (0)

11 + cot
θ

2
H (0)

12 eiφ

)
× Re

(
�

(1)
1

)
. (A10)

Now, we can notice that

|�(0)⊥〉 =
(

sin θ
2

− cos θ
2 eiφ

)
(A11)

is an (hidden) eigenstate1 of H (0) with eigenvalue −E ,2 and
using this property we obtain after multiplication by sin θ

2

ε Re
(
�

(1)
1

) = cos θ
2

2E + 2 dh
d


∣∣

(0) sin2 θ

i�(0)∗
a

d�(0)
a

dt
, (A12)

so subbing in this to Eq. (A7) gives us the result obtained in
Eq. (9).

1|�(0)⊥〉 is, however, not a stationary state of the system, as H (0) is
state dependent, and |�(0)⊥〉 is an eigenstate of H (0)(|�(0)〉), but not
necessarily of H (0)(|�(0)⊥〉)

2If we consider the full Bloch space Hamiltonian including the g
2 I2

term, |�(0)⊥〉 then has eigenvalue −E + g, which after calculations,
replaces E by E − g

2 in Eq. (9), effectively canceling the contribution
of the energy shift in the deforming kernel.
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APPENDIX B: NONLINEAR PERTURBATION THEORY

We consider the nonlinear SSH model whose Hamiltonian
is given by Eq. (14), and we write it as the sum of a Hamilto-
nian H0 and a perturbation V � H0:

H = hxσx + hyσy + h(
)σz︸ ︷︷ ︸
H0

+ vσz︸︷︷︸
V

, (B1)

where hx = J1 + J2 cos k, hy = J2 sin k, and h(σ ) = − g
2


where 
 = |	2|2 − |	1|2. Considering a stationary state |	〉
such that H |	〉 = E |	〉, we perturbatively expand both E and
|	〉 under the parameter v as

E = E (0) + vE (1) + · · · ,

|	〉 = |	 (0)〉 + v|	 (1)〉 + · · · . (B2)

Moreover, since H0 is state dependent, we also need to pertur-
batively expand H as

H = H (0)
0 + vH (1)

0 + vσz + · · ·

= H (0)
0 + v

dH0

dv

∣∣∣∣
v=0

+ vσz + · · ·

= H (0)
0 + v

[
1 + 2gRe

(
	

(0)∗
1 	

(1)
1

)]
σz + · · · . (B3)

Using these perturbative expansions we get by considering
only the v0 terms

H (0)
0 |	 (0)〉 = E (0)|	 (0)〉, (B4)

and by considering only the v1 terms

(
H (0)

0 − E (0)
)|	 (1)〉

= (E (1) − [
1 + 2gRe

(
	

(0)∗
1 	

(1)
1

)]
σz )|	 (0)〉. (B5)

Equation (B4) is a nonlinear eigenvalue equation that can be
solved using the self-consistency equation(

h2
x + h2

y + h(
(0) )2)
2 − h(
(0) )2 = 0 (B6)

which has Four solutions:


(0) = 0 with E (0) = ±
√

h2
x + h2

y ,


(0) = ±
√

g2 − 4
(
h2

x + h2
y

)
g2

with E (0) = g

2
. (B7)

The two 
(0) 	= 0 solutions are physical only if g >√
h2

x + h2
y , which we assume to be true as we are interested

in the large nonlinearity regime. We can now, without loss of
generality, write |	 (0)〉 in the form

|	 (0)〉 =
(

cos θ
2

sin θ
2 eiφ

)
, (B8)

and plugging this in Eq. (B5) after multiplying by 〈	 (0)| gives

E (1) = cos θ

(
1 + 2gcos

θ

2
Re

(
	

(1)
1

))
. (B9)

Plugging back in Eq. (B5) and focusing on the first coefficient,
we get (implying summation of repeated indices)

cos
θ

2
cos θ

(
1 + 2g cos

θ

2
Re

(
	

(1)
1

))
= E (0)	

(1)
1 − H0

0,1a	
(1)
a , (B10)

and taking the real and making use of the normalization con-
dition cos θ

2 Re(	 (1)
1 ) + sin θ

2 Re(e−iφ	
(1)
2 ) = 0 gives us

Re
(
	

(1)
1

) = cos θ
2 (1 − cos θ )

E (0) − g sin2 θ − g
2 cos θ + cot θ

2

√
h2

x + h2
y

,

(B11)

so plugging in Eq. (B9), we have the first-order correction to
the energy

E (1) = cos θ

⎛
⎝1 + g sin2 θ

E (0) − g sin2 θ − g
2 cos θ + cot θ

2

√
h2

x + h2
y

⎞
⎠. (B12)

Now for |	 (1)〉, we have

|	〉 = |	 (0)〉 + v|	 (1)〉,(
cos θ ′

2

sin θ ′
2 eiφ

)
=

(
cos θ

2

sin θ
2 eiφ

)
+ v

(
	

(1)
1

	
(1)
2

)
(B13)

so cos θ ′
2 = cos θ

2 + v	
(1)
1 tells us that 	

(1)
1 is real, i.e., 	 (1)

1 =
Re(	 (1)

1 ). We then consider once again Eq. (B10), this time
taking the imaginary part, to show that Im(e−iφ	

(1)
2 ) = 0, so

	
(1)
2 can be written 	

(1)
2 = sin θ1

2 eiφ . Using the normalization
condition, we get sin θ1

2 = − cot θ
2 Re(	 (1)

1 ). This gives us the

first-order correction to the stationary state

(
	

(1)
1

	
(1)
2

)
=

⎛
⎜⎝

cos θ
2 (1−cos θ )

E (0)−g sin2 θ− g
2 cos θ+cot θ

2

√
h2

x+h2
y

− cot θ
2 cos θ

2 (1−cos θ )

E (0)−g sin2 θ− g
2 cos θ+cot θ

2

√
h2

x+h2
y

eiφ

⎞
⎟⎠. (B14)

Now that E (1) and |	 (1)〉 have been determined, we can com-
pute the nonlinear Zak phase. In order to make it analytically
calculable, we assume J1 = 0 and J2 � g, doing all the per-

turbative expansions up to O( vJ2
2

g3 ). This way it is possible to
determine the new states |	〉 and the new energy E , along
with the deforming kernel K. After some analysis, we get for
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the different energy bands E1 < E2 < E3 < E4,

K1 = 1 + 2
v

g
− 8

vJ2

g2
+ O

(
vJ2

2

g3

)
,

K2 = 1 + 2
v

g
+ 8

vJ2

g2
+ O

(
vJ2

2

g3

)
,

K3 = −1 − 4
v

g
− 2

(
J2

g

)2

+ O
(

vJ2
2

g3

)
,

K4 = 1 + 2

(
J2

g

)2

+ O
(

vJ2
2

g3

)
,

i
〈
	E1 (k)

∣∣∇k

∣∣	E1 (k)
〉 = 1

2

(
1 − 2

v

g
+ 4

vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

i
〈
	E2 (k)

∣∣∇k

∣∣	E2 (k)
〉 = 1

2

(
1 − 2

v

g
− 4

vJ2

g2

)
+ O

(
vJ2

2

g3

)
,

i
〈
	E3 (k)

∣∣∇k

∣∣	E3 (k)
〉 =

(
J2

g

)2

+ O
(

vJ2
2

g3

)
,

i
〈
	E4 (k)

∣∣∇k

∣∣	E4 (k)
〉 =

[
1 −

(
J2

g

)2]
+ O

(
vJ2

2

g3

)
, (B15)

which gives the nonlinear Zak phases presented in Eq. (16).
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši
et al., Phys. Rev. Res. 2, 023265 (2020).

[19] A. Lopez and E. Fradkin, Phys. Rev. B 44, 5246 (1991).

[20] A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett.
94, 086803 (2005).

[21] B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett. 102,
066802 (2009).

[22] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
[23] A. Seidel, Phys. Rev. Lett. 105, 026802 (2010).
[24] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.

Lett. 106, 236804 (2011).
[25] C. Wang, A. C. Potter, and T. Senthil, Science 343, 629 (2014).
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[71] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18,
783 (2019).

[72] S. Longhi, Europhys. Lett. 120, 64001 (2017).

[73] K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and
M. Ueda, Nat. Commun. 10, 297 (2019).

[74] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[75] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev.

X 9, 041015 (2019).
[76] L. Li, C. H. Lee, and J. Gong, Phys. Rev. B 100, 075403

(2019).
[77] C.-H. Liu and S. Chen, Phys. Rev. B 100, 144106 (2019).
[78] T. Yoshida, K. Kudo, and Y. Hatsugai, Sci. Rep. 9, 1 (2019).
[79] T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai,

arXiv:2005.12635.
[80] C. H. Lee and S. Longhi, Commun. Phys. 3, 147 (2020).
[81] D.-W. Zhang, Y.-L. Chen, G.-Q. Zhang, L.-J. Lang, Z. Li, and

S.-L. Zhu, Phys. Rev. B 101, 235150 (2020).
[82] C. H. Lee, arXiv:2006.01182.
[83] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev.

B 82, 235114 (2010).
[84] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[85] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys. Status

Solidi (RRL) 7, 101 (2013).
[86] A. Gómez-León and G. Platero, Phys. Rev. Lett. 110, 200403

(2013).
[87] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev.

Lett. 112, 156801 (2014).
[88] L. Zhou, H. Wang, D. Y. Ho, and J. Gong, Eur. Phys. J. B 87,

204 (2014).
[89] P. M. Perez-Piskunow, L. E. F. Foa Torres, and G. Usaj, Phys.

Rev. A 91, 043625 (2015).
[90] J. K. Asbóth, B. Tarasinski, and P. Delplace, Phys. Rev. B 90,

125143 (2014).
[91] D. Y. H. Ho and J. Gong, Phys. Rev. Lett. 109, 010601

(2012).
[92] R. W. Bomantara, G. N. Raghava, L. Zhou, and J. Gong, Phys.

Rev. E 93, 022209 (2016).
[93] C. H. Lee, W. W. Ho, B. Yang, J. Gong, and Z. Papić, Phys.

Rev. Lett. 121, 237401 (2018).
[94] L. Li, C. H. Lee, and J. Gong, Phys. Rev. Lett. 121, 036401

(2018).
[95] L. Zhou and J. Gong, Phys. Rev. B 98, 205417 (2018).
[96] X. Zhang and J. Gong, Phys. Rev. B 101, 045415 (2020).
[97] C. H. Lee and J. C. Song, arXiv:2002.11726.
[98] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).
[99] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys.

Rev. B 96, 245115 (2017).
[100] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Phys.

Rev. B 92, 085126 (2015).
[101] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.

Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346
(2018).

[102] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

[103] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

[104] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803
(2017).

[105] E. Khalaf, Phys. Rev. B 97, 205136 (2018).

115411-15

https://doi.org/10.1103/PhysRevB.93.155112
https://doi.org/10.1038/s41928-018-0042-z
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1088/1367-2630/10/7/073008
https://doi.org/10.1103/PhysRevA.101.053623
https://doi.org/10.1103/PhysRevLett.123.053902
https://doi.org/10.1103/PhysRevB.96.121406
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1103/PhysRevA.81.052112
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1016/0550-3213(94)90442-1
https://doi.org/10.1002/lpor.201970053
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1209/0295-5075/120/64001
https://doi.org/10.1038/s41467-018-08254-y
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevB.100.075403
https://doi.org/10.1103/PhysRevB.100.144106
https://doi.org/10.1038/s41598-018-37186-2
http://arxiv.org/abs/arXiv:2005.12635
https://doi.org/10.1038/s42005-020-00417-y
https://doi.org/10.1103/PhysRevB.101.235150
http://arxiv.org/abs/arXiv:2006.01182
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1038/nphys1926
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1140/epjb/e2014-50465-9
https://doi.org/10.1103/PhysRevA.91.043625
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1103/PhysRevLett.109.010601
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevLett.121.237401
https://doi.org/10.1103/PhysRevLett.121.036401
https://doi.org/10.1103/PhysRevB.98.205417
https://doi.org/10.1103/PhysRevB.101.045415
http://arxiv.org/abs/arXiv:2002.11726
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevB.97.205136

