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Curl maps in nanowires
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Nonconservative current-induced forces (NCIFs) in nanowires have attracted attention both as a failure
mechanism and as a driver for atomic-scale motors. Here we investigate the view that the nonconservative
character of the electron wind force is an intrinsic property of the electron flow. To this end we consider the curl
of the force on a noninvasive test scatterer immersed in the electron current. Using a free-electron Hamiltonian,
we find nonzero curls at the opening of conductance channels due to variations in the local density of states.
Current vortices are observed in these simulations, and one would naively expect them to give rise to large curls.
However, this is not always the case. We find two types, low- and high-curl current vortices. Bouncy patterns,
the ‘snaking’ of the current flow through the wire, are a prominent effect that gives rise to large curls. Ultimately
NCIFs reduce the stability of nanowires and therefore it is crucial to study their origin to manage their effects.
This approach enhances our understanding of NCIFs by going beyond forces on individual nuclei.
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I. INTRODUCTION

Over the past 50 years, the size of electronic devices
has decreased in accordance with Moore’s law [1]. A key
challenge has been improving their structural stability and
suitability for applications in industry [2]. Electromigration
is the atomic diffusion and rearrangements of atoms in a
conductor and was initially thought of as a thermally ac-
tivated process [3]. However, Sorbello proposed a thought
experiment, illustrated in Fig. 1, to show that the underlying
driving electron wind force (EWF) is nonconservative [4].
This nonconservative current-induced force (NCIF) can do net
work on the nuclei around closed paths. The resultant energy
transfer to the atomic motion can itself become an activation
mechanism for electromigration.

The EWF is only one of the several forces experienced by
nuclei in atomic wires. Other contributions include velocity-
dependent forces and the force noise, responsible for inelastic
scattering and Joule heating [5–8]. The EWF results funda-
mentally from the mean momentum transfer in elastic electron
scattering by nuclei and forms the focus of the present work.

An initial debate whether this current-induced force [9]
could be nonconservative was finally resolved by explicitly
evaluating its curl and showing it to be nonzero even under
ideal steady-state conditions [10]. It has since received fresh
attention due to its nonconservative character [10–17]. The
EWF has been shown to drive the motion of the nuclei in a
manner similar to a waterwheel being driven by a river [10],
opening up the possibility of using an applied bias to drive
and control the motion of an atomic motor [10,14,15,18].
As a failure mechanism, the EWF is potentially fatal. The
current densities in nanowires can be many orders of magni-
tude larger compared to their ohmic counterparts. These high
current densities can result in substantial NCIF [19,20] and
violent dynamics of the nuclei. Under certain conditions, the
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nonconservative EWF could be a more powerful activation
mechanism of electromigration than Joule heating [21].

The concept of NCIF is more general than forces on
nuclei. By considering the force on a noninvasive test scatterer
immersed at an arbitrary point in the steady-state electron
current of a wire, we obtain a quantity that is an intrinsic
property of the flow [22]. In this paper, we adopt this view to
investigate how the curl of the EWF on a test particle behaves
throughout the interior of nanoscale wires. We present our
results in the form of curl maps, analogous to power maps
for current-carrying nanostructures [23]. On the boundary
between the wire and the vacuum, it is easy to demonstrate
the presence of nonzero curls from a pen-and-paper inspection
of the current density [12]. However, the behavior of the curl
within the wire is not so readily understood from the current
density alone. In these regions, the curl is determined by the
interplay between the local density of states and the current
density. This paper offers fresh insight into the behavior of the
curl of the EWF. By considering its geometry—and energy—
dependence, we provide a way in principle for this behavior
to be controlled. Extending our investigation from the sample
into the adjoining leads reveals exciting behavior. We have

J

FIG. 1. Sorbello’s thought experiment: a scatterer (black circle),
immersed in current density, J, follows a closed path. Inside the wire
the scatterer experiences the EWF. Outside the wire there is no force
on the scatterer. In this way the EWF does net work on the scatterer
around this closed path.
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observed bouncy patterns in the current density along the
leads and reconstriction of the current flow, in a quasiperiodic
fashion. These effects are potentially a disastrous cause of
electromigration in the leads.

The rest of the paper is organized as follows. Section II
presents the method used to calculate the electronic properties
of the systems of interest, and Sec. III discusses our findings
in three systems with methods to control the formation of
these large curls. Finally, we give a discussion and concluding
comments in Sec. IV and Sec. V.

II. METHOD

We investigate a current-carrying conductor using a free-
electron Hamiltonian. Noninteracting electrons are considered
throughout. The current flows through a sample connected
to two leads, under an applied electrochemical bias, in the
absence of magnetic fields. To gain insight into the behavior
of the curl of the EWF, described in Sec. II D, we neglect the
velocity-dependent forces [22] and consider ideal steady-state
conditions. The quantities needed to investigate the curl—the
current density and the local density of states—are obtained
with the aid of the Landauer picture of transport expressed in
terms of Green’s functions.

A. Landauer picture of transport

The conductor of interest is connected to, in this case, two
semi-infinite perfect leads as shown in Fig. 2. The left and
right leads are connected to particle reservoirs with electro-
chemical potentials μL and μR, respectively. eW = μL − μR

is the applied bias. A group of right-traveling states {|ψL〉}
with energies {EL} are partially transmitted into lead R and
partially reflected back. The converse happens for the left-
traveling group of states {|ψR〉} with energies {ER}. The partial
density of states operators D̂L(E ) and D̂R(E ) are defined by

D̂L(E ) =
∑

L

|ψL〉 δ(E − EL ) 〈ψL| , (1)

D̂R(E ) =
∑

R

|ψR〉 δ(E − ER) 〈ψR| . (2)

ψL

lead L sample lead R

W

ψR

μL

μR
eW

FIG. 2. Landauer picture of electronic transport: the system can
have an arbitrary geometry and composition. Details are discussed in
the text.

B. Discretizing the Hamiltonian

A finite-difference approximation is employed to discretize
space and approximate the Hamiltonian of the system. This
discretization allows the properties of the current-carrying
electronic system to be probed throughout a given region of
interest. The Hamiltonian, Ĥ , for the system is given by

Ĥ = − h̄2

2m
∇2 + U (r). (3)

We consider only the two-dimensional case with a Cartesian
coordinate system with a uniform grid spacing a. Let the po-
sition on the computational mesh be labeled with index i, and
let ψi and Ui be the state-vector amplitude and potential at the
mesh point i, respectively. The time-independent Schrödinger
equation then takes the matrix form

∑
j

Hi jψ j = Eψi, (4)

where

Hii = 2h̄2

ma2
+ Ui ≡ Ei,

Hi j = − h̄2

2ma2
= γ ∀ nearest neighbors,

Hi j = 0 otherwise. (5)

This discretized Hamiltonian is physically distinct from
a nearest-neighbor orthogonal single-orbital tight-binding
model but the two are similar mathematically [24–26].

C. Dyson equation and Green’s function

The retarded surface Green’s function for the left and right
leads, ĝ+

L and ĝ+
R , are equal and analytically known [26,27].

The element connecting mesh point i to mesh point j is
given by

[g+
L (E )]i j = 2

N + 1

N∑
p=1

sin
( pπ i

N + 1

)
sin

( pπ j

N + 1

)
g0(E , p),

(6)
where N is the number of grid points in the cross section of
the lead and

g0(E , p) = E − E (p) ±
√

[E − E (p)]2 − 4γ 2

2γ 2
, (7)

E (p) = −2|γ | cos
( pπ

N + 1

)
, (8)

where p labels the channels in the leads. We choose the
solution in Eq. (7) with the minus sign in front of the square
root if the expression under the square root is negative, while if
this expression is positive, we choose the solution with the
minus sign if E − E (p) > 0 and the solution with the plus
sign if E − E (p) < 0 [26,27]. The Green’s function for the
disconnected sample is given by

[g+
s (E )]ii = 1

E − Ei + iε
, (9)

[g+
s (E )]i j = 0 ∀ i �= j, (10)
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FIG. 3. Schematic of the layer-by-layer growth procedure, with
a representing the grid spacing of the mesh. (a) The Green’s function
is known on the surface of the leads shown by the thick black line and
at the mesh points (black circles) being bonded to the leads. (b) Once
the potential is turned on and the Dyson equation solved, the new
surface Green’s function is found. (c) This process is repeated on
both the left and the right leads until the two are connected.

where iε is an infinitesimal complex energy. The unperturbed
Green’s function for the system, ĝ+, is given by ĝ+(E ) =
ĝ+

L (E ) + ĝ+
R (E ) + ĝ+

s (E ). The potential connecting the sam-
ple and leads together is given by

Vi j =
⎧⎨
⎩

γ ∀ i and j nearest neighbors in the sample,
γ ∀ i and j connecting the lead to the sample,
0 otherwise.

The Green’s function for the bonded system, Ĝ+, can then
be found by solving the Dyson equation in one step, but
a more efficient way is the layer-by-layer growth method
[26,27] shown in Fig. 3. At each growth stage, a layer is added
onto the left and right leads and the Dyson equation is solved:

(Î − ĝ+V̂ )Ĝ+ = ĝ+. (11)

This process calculates the new Green’s function on the
surface of the lead. Once the two leads meet, the Dyson
equation is solved again, and the Green’s function for the
connected system is found for the desired two layers. This
process is carried out along the sample, building up the
Green’s function for the coupled system. The geometry of the
wire can be altered by setting the on-site energy, Ei, of chosen
mesh points to inaccessible levels. Instabilities in calculating
the Green’s function can occur when the Green’s function is
singular. This is avoided by moving the electron energy off
the real axis through an infinitesimal complex energy, iε. This
complex energy needs to be large enough so that numerical
truncation does not put the energy back on the real axis but
also small enough to avoid current leakage [26].

To express the density of states in terms of the Green’s
function, we introduce an arbitrary cut, S, across the coupled

system [24]. This separates the system into two parts, A and B.
We define P̂A as the projection operator for part A and P̂B as the
projection operator for part B. We can now write the density
of states emanating from the left and right leads [24] as

2π iD̂L = P̂AĜ− − Ĝ+P̂A + Ĝ+(V̂ P̂A − P̂AV̂ )Ĝ−, (12)

2π iD̂R = P̂BĜ− − Ĝ+P̂B + Ĝ+(V̂ P̂B − P̂BV̂ )Ĝ−, (13)

where Ĝ− is the advanced Green’s function and given by
Ĝ− = Ĝ+†. The full density of states, D̂(E ), for the lead-
sample-lead system is given by

D̂ = D̂L + D̂R. (14)

To obtain the local density of states (LDOS) per unit energy
interval, per unit area, the diagonal elements of D̂ in the
real-space basis need to be divided by a2. The particle current
density, Ji, at a point i needs to be constructed next [24]. The
bond current from site i to site j is given by

Ji j = 4eW γ

h̄
Im[DL(E )i j]. (15)

However, we need the flow at site i. This can be calculated by
averaging the bond current in and out of a site to build up a
vector, Ji, for the current density at point i. To normalize the
current density, Ji needs to be divided by a.

D. Curl of the electron wind force

The curl, C(R), of the EWF at a general point R can be
defined as the curl of the force on a noninvasive test scatterer
immersed in the current flow at that point. Let the potential,
v, of the probe be v(R) = ζ δ(r − R), where ζ is the coupling
constant. We neglect the influence of phonons and operate at
length scales below the electron inelastic mean free path. To
lowest order in ζ , in the low-bias limit, the curl of the EWF
on the test scatterer is given by

C(R) = 2πmζ 2

h̄
{∇r × [D(r, E )J(r)]}r=R, (16)

where D(r, E ) is the LDOS at the Fermi level, E , and J(r) is
the current density in the absence of the test scatterer [22].
Ignoring prefactors, the curl in Eq. (16) can be expanded
out into the two contributions [∇rD(r, E )]r=R × J(R) and
D(R, E )[∇r × J(r)]r=R. The latter is arguably the more in-
tuitive; the former captures the effect of spatial variations in
the LDOS.

E. Convergence

In the two-dimensional systems explored in this paper
we consider the z component of the curl. Care needs to
be taken when employing a mesh to test the convergence
of the calculation. To conserve the physical dimensions of
the wire, the mesh must be constructed according to Fig. 4.
Three different methods were used to give a measure of the
convergence for each system studied. The first and simplest
was to compare the conductance as a function of the energy
for different mesh sizes. The conductance quickly converges
for decreasing mesh size for each system. However, it falls
short in answering how the curl, the main quantity of interest,
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a

N ′L

a/2}

N

FIG. 4. When reducing the mesh size of the computational grids
care needs to be taken to ensure that the physical dimensions of
the system are conserved. The ghost sites (gray circles) represent
the length, L, between the hard walls. Ghost sites are used in the
formulation of the Green’s function, and the boundary of the wire
must not be confused with the edge of the mesh. Here the mesh
size goes from a to a/2. The number of mesh points in the cross
section goes as N ′ = 2N + 1, where N is the number of mesh points
in the larger mesh, thereby conserving the cross-sectional length,
L = (N + 1)a = (N ′ + 1)a/2.

behaves with the mesh size. A more rigorous method involves
calculating the fractional percentage difference, La(E ),

La(E ) = 1

M

∑
i ∈A

∣∣∣∣∣
Ca

i − C
a
2

i

Ca
i + C

a
2

i

∣∣∣∣∣, (17)

where A are the elements common to both meshes and with a
magnitude larger than 1% of the maximum curl at each energy,
M is the number of elements in A, and Ca

i is the curl element i
from mesh a. Neglecting elements with a magnitude less than
the 1% cutoff helps avoid including entries with near-zero
curl. The curl was found to converge slowly with decreasing
mesh size. This is due in part to the ability of the curl to change
sign, which can allow the denominator in Eq. (17) to tend
to 0, the compounding of error from the current density and
LDOS and from using finite differences to evaluate Eq. (16).
At energies where the definition of La(E ) proved particularly
problematic, a side-by-side visual comparison was used to
judge the convergence. More information on the convergence
of the curl and plots of the conductance, La(E ), and visual
comparison are provided in Appendix A.

III. RESULTS

Simple systems, namely, the perfect wire, the 90◦ S-bend
shown in Fig. 5, and the constriction shown in Fig. 6 were
investigated. These systems were chosen to aid the under-
standing of the behavior of the curl. In each system, hard walls
were used to mark the boundary of the wire. The Fermi energy
was measured relative to the bottom of the conduction band,
−4|γ |. The perfect wire (Sec. III A) was investigated first and
gave a yardstick for other systems. This yardstick is a natural
one, as it rests on the same foundation as Sorbello’s thought
experiment. The 90◦ S-bend (Sec. III B) and the constriction
(Sec. III C) both showed exciting features in the curl.

4.37 Å

14.29 Å
20.24 Å

20.24 Å

FIG. 5. Schematic: 90◦ S-bend. Large curls are observed when
standing waves in the LDOS (dashed line) are present in the lower-
left, upper-right and middle sections. The on-site energy within the
wire is set to 0 eV and the outside is set to 54 400 eV.

A. Perfect wire

The perfect wire is solvable analytically and can serve as
a benchmark to test the method. Here a perfect wire of width
L = 16.27 Å is investigated. Large curls are observed at the
surface and within the body of the wire at energies where a
conductance channel opens. In Fig. 7, standing waves in the
LDOS have formed in the cross section, in conjunction with
the current density, giving rise to large curls within the wire
and even larger ones near the surface. Large curls due to the
opening of conductance channels are observed in all systems
studied. The opening of a conductance channel can, at least
in theory, be controlled geometrically by altering the cross
section of the sample, thereby mitigating this effect.

B. 90◦ S-bend

The geometry of the S-bend, shown in Fig. 5, has point
inversion symmetry, which can be used to test the calculation.
Like the perfect wire in Sec. III A, large curls are observed
at the opening of conductance channels and when LDOS
standing waves are formed in the wire.

Bouncy patterns are regions where the current ‘snakes’
along the wire, causing large curls in its wake. In Fig. 8,
there is a bouncy pattern with a high curl in the lower-left and
upper-right sections of the wire. These patterns are formed
from the mixing of different conducting modes open in the 90◦
S-bend. An argument for this can be found in Appendix B. At
this energy, there are two conductance channels open in the

16.27 Å

15.48 Å
5.95 Å

5.95 Å

FIG. 6. Schematic: Constriction connected to perfect leads.
Large curls are found in the constriction when standing waves in the
LDOS are formed in the cross section. The on-site energy within the
wire is set to 0 eV and the outside is set to 54 400 eV.
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FIG. 7. Perfect wire: Plot of curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) at EF = 2.28 eV. The length of the arrows represents the
magnitude of the current density. The background color, black to copper, represents the LDOS. At this energy another mode is opening up in
the wire. Standing waves form in the LDOS, giving rise to these large curls. Along the edges we can see even larger curls than in the interior
of the wire as the LDOS and current drop to 0.

FIG. 8. 90◦ S-bend: Plot of curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) with E = 8.16 eV and conductance 0.97 (2e2/h). The
length of the arrows represents the magnitude of the current density. At this energy, there are two channels open that can mix to form the
bouncy pattern. The current ‘snakes’ along long sections of the wire, and the changing direction results in a nonzero curl. The standing waves
in the LDOS help amplify the curl. A lone-pair current vortex is also evident in the middle section of the wire.
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FIG. 9. 90◦ S-bend: Plot of the curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) with E = 5.44 eV and conductance 0.84 (2e2/h). The
length of the arrows represents the magnitude of the current density. The curl at this energy is particularly high due to the presence of the
current vortex. The presence of the lobe of high LDOS in the corners amplifies the curl in these regions.

sample. The formation of bouncy patterns can be controlled
by reducing the cross section so that only one conductance
channel can open in the sample. Bouncy patterns can be con-
trolled in theory by rounding the corners [28] or by increasing
the radius of curvature [29]. This helps reduce mode mixing
at energies with multimode transport.

The presence of current vortices allows for the circula-
tion about a vortex center to be many times larger than the
net current across the sample. Current vortices are formed
in regions where closed classical paths can be constructed
[30,31]. Vortices can occur as a lone pair, shown in Fig. 8
and Fig. 9, or in larger groups, as in Fig. 10. Two types of
vortices have been observed, high and low curl. In Fig. 9 we
see an example of a large curl vortex located in the corners
of the wire. Nonzero curls are expected with the formation of
current vortices. Large curls in the presence of current vortices
are not, however, the norm. Current vortices alone cannot give
rise to large curls in the absence of a sizable LDOS and current
flow. Evidence of this can be seen in Fig. 10, a quartet vortex.
Despite the large internal local currents relative to the net
current, they are tiny relative to the currents in Fig. 9, which
accounts for the low curl in Fig. 10.

C. Constriction

The constriction, shown in Fig. 6, is geometrically simpler
than the 90◦ S-bend and has symmetry about the horizontal
axis of the wire. We have observed large curls at the opening
of conductance channels in the sample and leads just like in
Sec. III A. However, extending the investigation into the leads
uncovers interesting behavior in the current flow and curl. In
Fig. 11, we see that the current flow reconstricts along the
length of the leads after leaving the constriction [32]. This

effect can be viewed in a classical picture with the electrons
emerging from the constriction with some momentum k and
repeatedly scattering off the walls of the lead in a ballistic
fashion.

In Fig. 12, we can see the bouncy pattern behavior which
was observed in the 90◦ S-bend. At this energy, there is
only one conductance channel open in the sample. At first
glance, it seems that the bouncy pattern cannot form without
at least another channel open. However, the fifth conductance
channel is opening in the leads. The mode traveling through
the constriction transforms into modes open in the lead. The
modes in the leads mix to give the bouncy pattern. Both
the bouncy patterns and the reconstricting current flows are
quasiperiodic along the length of the lead. In Fig. 13, we can
see these effects repeating up to a length of at least 300 Å.
The repeated appearance of these two effects extends over
lengths less than the inelastic mean free path for metals, of the
order of 50 lattice parameters, at the melting temperature, in
the bulk [33]. Beyond such lengths, phase-breaking scattering
ought to wash out such behavior in the curl patterns [32].
The reconstricting flows and bouncy patterns are potentially
hazardous for the stability of the leads due to their ability to
extend over long sections of a conductor.

IV. DISCUSSION

The curl of the EWF has been calculated on a notional
test scatterer up to this point. In a laboratory setting the
test scatterer, for example, could represent a scanning tun-
neling microscope tip weakly coupled to the sample. An
important feature of the curl maps that needs to be in-
vestigated further is the physical size the regions of high
curl need to be for the nuclei to gain enough angular
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FIG. 10. 90◦ S-bend: Plot of the curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) with E = 6.83 eV and conductance 1.55 ×
10−5 (2e2/h). The length of the arrows represents the magnitude of the current density. Despite the presence of eight current vortices and
large internal currents relative to the net current, the curl is orders of magnitude lower than in Fig. 9. This low curl is due in part to the small
internal currents relative to Fig. 9 and the lower LDOS.

FIG. 11. Constriction: Plot of the curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) with E = 2.34 eV and conductance 0.75 (2e2/h).
The length of the arrows represents the magnitude of the current density. The background color, black to copper, represents the LDOS. The
flow reconstricts after it passes the constriction in the wire from ballistic collisions with the walls of the leads. This reconstriction repeats itself
along the length of the wire.
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FIG. 12. Constriction: Plot of the curl of the EWF in units of 2πe W mζ 2/(h̄2 eV Å4) with E = 3.56 eV and conductance 0.98 (2e2/h).
The length of the arrows represents the magnitude of the current density. The background color, black to copper, represents the LDOS. The
curls are just as significant in the leads as the constriction, owing to the bouncy pattern coupled with the formation of standing waves in the
LDOS in the leads. At this energy, only one channel is open in the constriction but there are five channels open in the leads. The modes in the
leads mix and give rise to the bouncy pattern effect. The effect is quasiperiodic and repeats along the length of the leads.

momentum to cause electromigration. Also, large positive
curls often are seen in conjunction with a large negative
curl nearby. In a dynamical simulation, they could, in theory,
counteract each other, with one curl doing work on a nucleus
and the other draining it away. These problems require further
work, with an explicit description of the dynamics [10].

V. CONCLUSIONS

The curl of the EWF under steady state conditions has
been evaluated in the following systems: a perfect wire, a

90◦ S-bend and a constriction. In perfect wires, at energies
where a conductance channel opens, the curl within the wire
becomes large. This is due to the variation and magnitude in
the LDOS. The 90◦ S-bend has demonstrated more complex
behavior. The bouncy pattern is particularly interesting, as
it leads to high curls that can extend over long segments of
the wire. These bouncy patterns could significantly impact
the structural integrity of a nanowire. We have also observed
high- and low-curl current vortices. The occurrence of these
vortices is potentially destructive and possibly a cause of elec-
tromigration. In the investigation of the simple constriction,

FIG. 13. Constriction: Plot of the curl in the leads in units of 2πe W mζ 2/(h̄2 eV Å4). The curl in the reconstricting current shown
previously in Fig. 11 is on top and the bouncy pattern from Fig. 12 is on the bottom.
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FIG. 14. 90◦ S-bend: Plot of conductance and energy. The sharp
peaks in the conductance are examples of resonances.

we found exciting behavior in the leads. We have observed
the reconstriction of the current along the length of the leads.
This effect can give rise to large curls in the leads at regions
far away from the constriction. The bouncy patterns have also
been observed and, like the reconstricting current flow, are
quasiperiodic along the length of the leads, resulting in large
curls in its wake.

It is hoped that the quantity studied in this paper—the curl
of the EWF—will be of interest to other researchers, both
experimentalists and theorists, as a way to map out regions
where the nonconservative character of current-induced forces
becomes important. Although for convenience our calcula-
tions assume a free-electron Hamiltonian, the method remains
valid for an arbitrary one-electron potential. The strength of
these effects in systems with varying levels of disorder is
an interesting avenue for further work [34]. The influence of
magnetic fields on the curl is also of interest and potentially
opens up mechanisms to control it.
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APPENDIX A: CONVERGENCE

The investigation into the convergence involved the
following mesh sizes: an = a0/2n, where a0 = 0.397 Å and
n = 0, 1, 2, 3. A mesh size of a = 0.053 Å was chosen
to balance the trade-off between computational cost and
accuracy. While all calculations are performed in atomic
units, we have listed the parameters in SI units. A plot of the
conductance for the 90◦ S-bend and constriction is shown
in Fig. 14 and Fig. 15. The conductance quickly converges
with the mesh size. However, at energies where quasibound
states are formed, convergence of the conductance is difficult
to achieve. Take, for example, the sharp peaks in Fig. 14.
Zooming in on the peaks reveals that they are offset ever

FIG. 15. Constriction: Plot of conductance and energy.

so slightly in energy. Due to the sharpness of the peaks,
this energy offset gives significant disagreement in the
conductance. These energies are close to a pole in the Green’s
function [26]. The investigation of the convergence with mesh
size was extended to measure how the curl behaves spatially,
in both a quantitative and a qualitative sense.

The convergence of La(E ) is slow, both for the 90◦ S-bend
shown in Fig. 16 and for the constriction shown in Fig. 17,
but a definite trend demonstrating convergence can be seen
as the mesh size decreases. A visual comparison was used
to ascertain convergence at energies where particularly poor
values of La(E ) were calculated. These poor values of La(E )
constitute small regions in the curl that cause the denominator
in Eq. (17) to tend to 0, giving a singularity and thereby
masking an overall converged result. However, as the mesh
size diminishes, it can still be difficult to achieve low values
with La(E ). An example of this can be seen in Fig. 18 at an
energy with a large La(E ). Here, we find that the patterns
in the curl match up, but there is a significant disagreement

FIG. 16. 90◦ S-bend: At first glance, it appears that the conver-
gence of the sample is very poor. However, this is mainly due to
the definition of La(E ). Visually comparing the curl reveals that the
meshes start to converge nicely.
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FIG. 17. Constriction: The convergence of the constriction is
quicker than that of the 90◦ S-bend.

in the magnitude of the curl between the two meshes. This
behavior occurs in the antiresonance just above 6.8 eV for the
90◦ S-bend, for example. There, the poor convergence of the
curl comes not from the denominator but from the numerator
in Eq. (17).

A similar comparison between mesh sizes was made for the
LDOS using Eq. (17). The LDOS was found to converge more
quickly than the curl, in part due to the LDOS coming directly
from the calculation of the Green’s function and having a
lower bound of 0. The convergence of the curl and LDOS at
quasibound states, like the conductance, is poor. The conver-

gence can be improved by increasing the value of ε. However,
the system no longer conserves current with a large ε.

APPENDIX B: BOUNCY PATTERNS

We give an argument for the necessary conditions for
the bouncy pattern to occur. The bouncy patterns have a jy
component that varies between positive and negative along
the x direction. The wave function of the electron in the wire
can be expressed as a superposition of η orthogonal wave
components,

ψ =
η∑

i=1

aiφi(y) exp(ikix), (B1)

where exp(ikix), φi(y), and ai are the right-traveling wave, the
transverse mode, and the amplitude, respectively. Setting h̄ =
m = e = 1, the current density is given by

J = 1

2i
(ψ∗∇ψ − ψ∇ψ∗). (B2)

Considering only the y component and expressing Eq. (B2) in
terms of the real and imaginary part of ψ we have

Jy = Re[ψ]∂yIm[ψ] − Im[ψ]∂yRe[ψ]. (B3)

Substituting Eq. (B1) into Eq. (B3) gives

Jy =
η∑

i=1

aiφi(y) cos(kix)
η∑

j=1

a jφ
′
j (y) sin(k jx)

−
η∑

i=1

aiφi(y) sin(kix)
η∑

j=1

a jφ
′
j (y) cos(k jx). (B4)

FIG. 18. 90◦ S-bend: Comparison between the curl, in units of 2πe W mζ 2/(h̄2 eV Å4), at EF = 6.83 eV of a2 and a3, respectively, at a
value with a very large percentage difference. Despite the large value of La(E ), there is good agreement matching the patterns in the curl
between the two meshes. The large value of La(E ) arises from the difference in magnitude between the two plots.
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Letting aiφi(y) = Ai, aiφ
′
i (y) = Bi, Ci = cos(kix), and Si =

sin(kix), Eq. (B4) can be expressed as

Jy =
η∑

i=1

η∑
j=1

AiCiB jS j −
η∑

i=1

η∑
j=1

AiSiB jCj . (B5)

Collecting terms together we have

Jy =
η∑

i=1

η∑
j=1

AiBj (CiS j − SiCj ). (B6)

Equation (B6) can be written as

Jy =
η∑

i=1

η∑
j=1

AiBj sin((ki − k j )x). (B7)

Swapping i and j and adding the right-hand side to both sides,
Eq. (B7) gives

2Jy =
η∑

i=1

η∑
j=1

AiBj sin((ki − k j )x) + AjBi sin((k j − ki )x),

(B8)
which can be written as

Jy =
η∑

i=1

η∑
j=1

1

2
(AiBj − AjBi ) sin((ki − k j )x). (B9)

Letting Di j = −Dji = 1
2 (AiBj − AjBi ) we have

Jy =
η∑

i=1

η∑
j=1

Di j (y) sin((ki − k j )x). (B10)

Inspecting Jy for η = 1 we can see that Jy is 0. Therefore, at
least two modes are needed for a bouncy pattern to form. The
periodicity of the bouncy pattern emerges from the sine terms
in Eq. (B10).
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