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Tunable optical nonlinearity for transition metal dichalcogenide polaritons dressed by a Fermi sea
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We study the system of a transition metal dichalcogenide (TMD) monolayer placed in an optical resonator,
where the strong light-matter coupling between excitons and photons is achieved. We present a quantitative
theory of the nonlinear optical response for exciton-polaritons for the case of a doped TMD monolayer, and
analyze in detail two sources of nonlinearity. The first nonlinear response contribution stems from the Coulomb
exchange interaction between excitons. The second contribution comes from the reduction of Rabi splitting that
originates from phase space filling at increased exciton concentration and the composite nature of excitons. We
demonstrate that both nonlinear contributions are enhanced in the presence of free electrons. As free electron
concentration can be routinely controlled by an externally applied gate voltage, this opens a way of electrical
tuning of the nonlinear optical response.
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I. INTRODUCTION

Planar microcavities in the regime of strong light-matter
coupling represent a robust platform for nonlinear optics. The
hybridization of excitons with optical cavity photons leads
to the formation of ultralight interacting quasiparticles—
polaritons—that enable polariton lasing [1–4] and emergent
polariton fluid behavior [5–8]. For conventional quantum well
(QW) nanostructures in III-V and II-VI semiconductors in
this regime various nonlinear effects were studied, including
formation of solitons [9–12], vortices [13–17], polarization
multistability [18–24], and nontrivial polariton lattice dy-
namics [25–31]. These unique properties can be used for
experimental realization of ultrafast polariton-based nonlinear
optical integrated devices [32–38].

In these systems the nonlinear response mainly orig-
inates from the Coulomb-based exciton-exciton scattering
[39–45], typically observed at macroscopic mode occupa-
tions. For high-quality samples prerequisite signatures of a
quantum nonlinear behavior were recently observed [46,47],
thanks to outstanding fabrication advances. The limitations for
QW-based platforms come from low operation temperatures,
relatively small light-matter coupling (∼4 meV per QW), and
complex growth techniques [48].

Recent advances in the field of optically active two-
dimensional (2D) materials have largely increased capabilities
of polaritonics [49,50]. In this case excitons are hosted
by monolayers of transition metal dichalcogenide (TMD)
materials—atom-thick nanostructures with a direct optical
band gap [51–56] and excellent optical properties [57,58]. To
date light-matter coupling for TMD excitons was observed
in various configurations, including optical microcavities
[59–63], Tamm plasmon structures [64], photonic crystals

[65,66], surface plasmons [67–69], and nanoantennas [70,71].
Due to the relatively large electron/hole masses and reduced
screening, TMD exciton binding energy ranges in hundreds
of meVs, and multicharge bound complexes (trions [72–76],
biexcitons [77]) can be observed. Importantly, small exciton
volume leads to large Rabi frequency, and excitonic optical re-
sponse dominates already at room temperature [57]. A further
list of exceptional properties of TMD monolayers includes
strong spin-orbit interaction and valley-dependent physics
[78–80], peculiar exciton transport properties [81,82], and
strong dependence on dielectric properties for observed phys-
ical effects [83–85]. For doped and gated TMD samples band
gap renormalization was shown [86–89], which opens the
way to engineering of material properties. Finally, studies of
trapped excitons and strain-induced lattices revealed efficient
defect-based single-photon emission from two-dimensional
materials [90–93].

The natural next step in TMD polaritons is exploring
of the nonlinear response. This so far has proven to be a
nontrivial task, as the very same large binding leads to reduc-
tion of the exciton-exciton scattering cross section evidenced
theoretically [94] and experimentally [95]. However, the sit-
uation changes drastically once large light-matter coupling is
achieved and a TMD monolayer is doped with free carriers.
First, the deviation of excitonic statistics from ideal bosons
[96,97] leads to the nonlinear Rabi splitting behavior [43,98–
100]—optical saturation—that in the case of strongly coupled
TMD polaritons was shown to give significant contribution
[63]. Second, the presence of free electron gas (Fermi sea)
strongly modifies the optical response of TMD monolayers. It
depends on the density of the electrons, and leads to several
characteristic regimes [101,102]. At low free electron con-
centrations a sharp additional peak appears that is typically
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attributed to charged exciton complexes (trions), being bound
states of two electrons and one hole [63,72,75]. At high elec-
tron concentrations the broad spectral peak was observed and
attributed to an exciton polaron-polariton—a correlated state
of an exciton dressed by the Fermi sea [62,103–105]. In each
case the enhancement of the nonlinear response was reported
[63,105,106].

One should note, however, that besides formation of the
additional peak, corresponding to the appearance of new
quasiparticles, the presence of free electrons shall modify sub-
stantially the optical response of the exciton mode itself. This
is especially pronounced in the case of intermediate electron
densities, where excitons are spectrally separated from the
other modes. Differently from the cases of very low and high
electron densities, this region remains unexplored so far. In the
current paper we aim to bridge the gap between the regimes of
low and high electron densities, focusing on nonlinear optical
properties of the system. In particular, we demonstrate that the
Fermi sea strongly contributes to the screening of Coulomb
potential and the onset of additional correlations stemming
from the Pauli exclusion principle. These effects change both
light-matter coupling and exciton-exciton interactions, thus
resulting in renormalization of the strength of nonlinearity.
Our theory shows that the change of the free electron density,
which can be routinely realized in gated TMD samples, gives
a powerful tool for controlling the optical nonlinearity.

The paper is organized as follows. In Sec. II we present
the theory describing the behavior of an exciton in a TMD
monolayer in the presence of the Fermi sea. It accounts for
both screening (S) of the Coulomb potential and the Pauli
blocking (PB) effect. We study the modification of the ex-
citonic wave functions, excitonic binding energy, and Bohr
radius. In Sec. III we calculate exciton-exciton interaction po-
tentials in the presence of an electron gas. We demonstrate that
the screening and the Pauli blocking play opposite roles, the
former increasing and the latter decreasing effective exciton-
exciton interaction constant. We find that this counterintuitive
effect of the Pauli blocking comes from the mixing of exciton
ground and excited states. As a result of the competition of
these two mechanisms we report an overall increase of the in-
teraction constant with electron density. In Sec. IV we analyze
the impact of free electrons on nonlinear reduction of the Rabi
splitting in the system, and show that nonlinearity increases
with electron density. Section V summarizes our findings.

II. 2D EXCITONS IN THE PRESENCE OF A FERMI SEA

We study a transition metal dichalcogenide monolayer
where optical response is strongly dominated by tightly bound
neutral Wannier excitons. Considering a doped monolayer, we
account for the presence of the Fermi sea formed by the ex-
cessive charge. This can lead to the modification of an optical
response in several different ways, and dominant contributions
depend on the free electron density n and correspondingly
the location of the Fermi level EF . At low electron con-
centrations charged excitons—trions—are formed. In TMD
monolayers these three-particle bound states have binding
energy ET

b being much smaller than an exciton binding energy
EX

b . Therefore, in the low-density regime EF � ET
b trion-

and exciton-based responses are spectrally well separated.

PB

(a) (b)

FIG. 1. Sketch of the system. (a) Absolute value of an excitonic
wave function in a TMD monolayer that is strongly modified by the
free electron gas in the conduction band. (b) Sketch of the excitation
process where the Pauli principle excludes occupied states in the
conduction band preventing the exciton formation.

However, properties of excitons in doped monolayers are
modified by an electron gas through screening and Pauli
blocking (Fig. 1). In the high-density regime where EF ∼ ET

b
strong many-body correlations between excitons and elec-
trons become important, and the system is described in terms
of exciton-polarons [103] (dressed exciton-electron quasi-
particles). For instance, in the MoS2 monolayer with ET

b =
18 meV this corresponds to a concentration of excess carriers
n ∼ 1012–1013 cm−2.

In the present work we focus on the low- and intermediate-
density regime, where the exciton-based optical response is
modified by the Fermi sea through the exciton wave function
and energy renormalization. To account for electrons we solve
the Wannier equation for the eigenenergy EX and the momen-
tum space exciton wave function Cp that reads [103]

(
h̄2k2

2μ
+ �g

)
Ck −

∑
k′

BkVk−k′Bk′Ck′ = EXCk, (1)

where the exciton binding energy EX
b = |EX − �g| accounts

for the band gap renormalization �g caused by excessive
charge carriers. In Eq. (1) μ = mmv/(m + mv ) is an exciton
reduced mass, and m and mv stand for the conduction and va-
lence band effective mass, respectively. Bk = [1 − nF (Ec

k )]1/2

is the Pauli blocking factor that excludes filled electronic
states from the space available for exciton formation, Ec

k de-
notes an energy dispersion for the conduction band, and nF

is a Fermi-Dirac distribution. To account for the effects of
screening caused by the excess charge carriers [107,108] and
the atomic thickness of the material [109], we consider the
screened interaction potential

Vk = 2πe2

(4πε0κ )[k + ρ0k2 + ksc(k)]
, (2)

where ε0 is the vacuum permittivity, ρ0 is a screen-
ing parameter associated with the intrinsic polarizability
of the two-dimensional layer, ksc(k) = −2πe2�(k)/(4πε0κ )
is the screening momentum, and κ denotes a dielectric
constant of the surrounding media. We use the static po-
larization operator of two-dimensional electron gas [107]
�(k) = −m/(π h̄2)[1 − �(k − 2kF )(1 − 4k2

F /k2)1/2], where
the Fermi wave vector is kF = √

2mEF /h̄. �g accounts for
the band gap renormalization by carriers due to screening and
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phase space filling effects, and reads

�g = −
∑

k

VknF
(
Ec

k

) −
∑

k

(
V 0

k − Vk
)
nF

(
E v

k

)
, (3)

where Ec
k = h̄2k2/2m − EF and E v

k = h̄2k2/2mv − Eg − EF

denote the energies of conduction and valence bands, Eg is
the nonscreened band gap width, and V 0

k = 2πe2/[4πε0κ (k +
ρ0k2)]. For the sake of simplicity we neglect the renormaliza-
tion of electron masses in conduction and valence bands, and
retain only the band gap renormalization �g.

The rotational symmetry of the potential Vk allows one to
write the wave function in the form

Ck = Cn,mz (k)
eimzθ

√
2π

, (4)

where we use polar coordinates k = (k, θ ). Then the Wannier
equation (1) for Cn,mz (k) reads

EXCn,mz (k) =
(

h̄2k2

2μ
+ �g

)
Cn,mz (k)

+
∫ ∞

0

k′dk′

(2π )2
B(k)V1(k, k′)B(k′)Cn,mz (k′),

(5)

where V1(k, k′) is

V1(k, k′) = −
∫ 2π

0
dθV (

√
k2 + k′2 − 2kk′ cos θ )eimzθ . (6)

We solve Eq. (5) numerically for a transition metal
dichalcogenide monolayer. The structure parameters vary a
lot throughout the literature and depend on the choice of
both TMD monolayer material and its surroundings. Here we
set the screening length to r0 = 4 nm and the band gap to
Eg = 2.6 eV, which are typical for MoS2 layers [52,110,111].
We also fix equal effective masses, mv = m. As a reference,
we choose the case of freestanding monolayer (κ = 1), and
set m = 0.35m0 (m0 is a free electron mass), being typically
the case for TMD monolayers [112]. We consider only the
exciton ground state, so that we set mz = 0. The results of
calculations are shown in Fig. 2. In Fig. 2(a) we present the
momentum space distribution for the excitonic wave function.
We observe that the increase of free electron gas density leads
to the strong modification of the wave function as compared
to the standard two-dimensional hydrogen-like wave function
that has a form ∝[1 + (λk)2]−3/2. The quenching of the low-
momentum region stems from the Pauli blocking effect. In
order to extract the relative contributions of the Pauli blocking
factor and the screening of interaction induced by electron
gas, we simulate Eq. (5) in the regimes when one of the
factors is effectively turned off. At low density the impact
of both effects is small, and the wave functions plotted for
these two cases nearly coincide (not shown). At relatively
high density of the free electron gas the momentum space
wave function is shown in Fig. 2(c) (thick blue curve). We
see that the additional screening leads to rescaling of the wave
function [Fig. 2(c), green curve], while the Pauli blocking is
responsible for the suppression of the low-momentum region
[Fig. 2(c), red curve].

Plots in Figs. 2(b) and 2(d) illustrate the electron density
dependence of the exciton binding energy and Bohr radius.

FIG. 2. (a) Exciton wave function in the momentum space
shown for different electron gas density. The shift of wave function
maximum is caused by the increase of Fermi energy and the corre-
sponding wave vector. (b) Exciton binding energy as a function of
free electron concentration. Here the green curve corresponds to the
absence of Pauli blocking, the red curve corresponds to the absence
of interaction screening by electron gas, and the blue solid curve
accounts both effects. (c) The impact of screening and Pauli blocking
factors on exciton wave function at high density of free electron gas.
Colors are the same as in panel (b). Notably, screening by the free
electron gas leads to rescaling of hydrogen-like wave function (green
curve), whereas the Pauli blocking determines the modified shape of
the wave function (red curve). (d) Bohr radius shown as a function of
free electron concentration. Labeling is the same as in (b).

The latter is defined as an average electron-hole separation
aB(n) = 〈ψn(r)|r|ψn(r)〉, where ψn(r) is the exciton wave
function in real space, and we highlight that it depends on the
free electron gas density n. The growth of the electron concen-
tration leads to stronger interaction screening, which results
in weaker binding of excitons. In the absence of screening the
Pauli blocking factor becomes essential for larger values of
electron density, leading to reduction of binding energy and
corresponding increase for the exciton Bohr radius.

III. EXCITON-EXCITON INTERACTION

Next, we study the exciton-exciton interaction processes
for TMD monolayers that originate from Coulomb interaction
of electrons and holes. We use the standard scattering theory
approach [39–41] and exploit the calculated exciton wave
function to account for the presence of the electron gas. First,
we note that the direct interaction is suppressed due to the
electron-hole equal effective masses, mv = m [39]. Hence, the
total interaction constant gtot is determined by the electron and
hole exchange terms, which are identical due to equal effective
masses. Thus, gtot = 2ge

exch, with ge
exch denoting the electron
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FIG. 3. Exciton-exciton exchange interaction. (a) The depen-
dence of interaction constant on transfer momentum at different
densities of free electron gas. While the interaction maximum
demonstrates a moderate and nonmonotonic shift with the increase
of the free electron gas density, the shape for transfer momentum
dependence is nearly unaltered. (b) The maximum of interaction
constant as a function of free electron gas density. The inset illus-
trates zoomed-in region with the nonmonotonic dependence. (c) The
impact of screening and Pauli blocking factors on momentum depen-
dence of exciton-exciton interaction at high density of free electron
gas. Here the green curve corresponds to the absence of Pauli block-
ing, the red curve to the absence of interaction screening by electron
gas, and blue solid curve accounts for both effects. (d) The influence
of screening and Pauli blocking factors on the maximum of exchange
interaction vs the density of free electrons. Colors are the same as in
panel (c).

exchange interaction constant. The latter reads [41]

ge
exch(Q) = 2

A

∑
k,q

VqCk−q/2Ck−(Q−q)/2Ck+q/2

× [Ck+(Q−q)/2 − Ck+(Q+q)/2], (7)

where Q is an exchanged momentum, and A is the normaliza-
tion area.

In Fig. 3(a) we present the dependence of the electron
exchange interaction constant as a function of exchange mo-
menta. The maximum of interaction constant demonstrates
a moderate increase with increasing n, and the shape of
exchange momenta dependence is generally unchanged. Fig-
ure 3(b) presents the dependence of interaction maximum on
the electron density. Particularly one can see that the depen-
dence is nonmonotonic, with the local minimum appearing at
moderate electron densities. The latter stems from complex
interplay between multiple factors, discussed below.

In order to understand the origin of this nontrivial depen-
dence of interaction on the electron gas density, we perform
calculations (i) in the absence of the Pauli blocking factor, and
(ii) in the absence of effective screening. The corresponding
dependence on exchange momentum is shown in Fig. 3(c)

FIG. 4. (a) The maximum of exciton-exciton exchange interac-
tion and (b) exciton Bohr radius shown as a function of the free
electron gas density for different material parameters. Colors in both
panels correspond to parameters shown in panel (b). The increase of
the dielectric constant κ for surrounding media leads to the growth of
exciton Bohr radius, which is nearly compensated by the reduction
of interaction potential between excitons. Instead, the reduction of
effective mass leads to the increase of Bohr radius, which is not com-
pensated by change in interaction potential. This shows that for the
fixed effective mass the interaction constant has weak dependence on
the dielectric environment properties.

for n = 5 × 1011 cm−2 density of free electrons. We observe
that the interaction has its highest value when both effects
are accounted for (blue thick curve). In the absence of Pauli
blocking the screening leads to the slight decrease of inter-
action maximum [case (i), green curve]. In turn the Pauli
blocking leads to significant reduction [case (ii), red curve]. In
Fig. 3(d) we plot the maxima of interaction versus the density
of the electron gas. We observe that screening leads to the
monotonic enhancement of interaction [case (i), green curve],
and the Pauli blocking leads to its monotonic reduction [case
(ii), red curve].

The enhancement of the interaction coefficient due to the
interaction screening [case (i)] is caused by the enhancement
of exciton Bohr radius that dominates the weakening of in-
teraction potential. The origin of reduction due to the Pauli
blocking [case (ii)] stems from the fact that the Pauli blocking
leads to mixing of exciton ground and excited states. In its
turn, it was shown earlier that the interaction between excited
exciton states is of attractive nature [94,113], explaining the
overall decrease of repulsive interaction between excitons.
Here we find that the exciton wave function in the presence of
Pauli blocking can be expanded in terms of 1s, 2s, 3s exciton
states, and the calculation of exciton-exciton interaction in
terms of such functions agrees well with the one calculated
in the presence of Pauli blocking (see Fig. 6). The details
of the calculation are shown in Appendix A. The presence
of both Pauli blocking and screening leads to a complicated
dependence on the density of free electron gas, with regions
dominated by the reduction stemming from Pauli blocking
and the enhancement arising from screening, as depicted in
Fig. 3(d)].

We further analyze the dependence of the exciton-exciton
interaction on material and substrate parameters. The results
are shown in Fig. 4. We observe that the interaction con-
stant demonstrates nonmonotonic dependence with the local
minimum at intermediate density regardless of the structure
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parameters. The latter means that the observed effect is of
general character and does not depend qualitatively on the ma-
terial choice. It is remarkable that the growth of Bohr radius
due to increase of dielectric constant is nearly compensated by
the corresponding reduction of interaction potential, leading
to overall weak dependence of exciton-exciton constant on the
dielectric properties of surrounding media [cf. blue and black
curves in Fig. 4(a)]. On the other hand, the smaller effective
mass of electrons leads to larger Bohr radius, resulting in
enhancement of exchange interaction, as the increase of Bohr
radius here is not compensated by corresponding reduction of
interaction potential [cf. blue and green curves in Fig. 4(a)].
It should be mentioned that all the characteristic peculiarities
of the impact of free electron gas on the exciton Coulomb
nonlinearity remain unaltered in the case of unequal effective
masses of conduction and valence bands (see Appendix B for
details).

IV. SATURATION EFFECTS AND QUENCHING
OF THE RABI SPLITTING

We proceed with the discussion of the impact of the free
electron gas on the coupling between exciton and cavity
photon modes. For a TMD monolayer put in a microcavity
this corresponds to the electron-density-dependent Rabi fre-
quency. It can be expressed as

�0(n) =
√

EC

κε0LC
|ψn(0)|dcv, (8)

where EC is the cavity resonance energy, LC = π h̄c/(
√

κEC )
is the cavity length, and c is the speed of light. Here ψn(0) is
the real space exciton wave function at the origin that depends
on the free electron gas density. We note that the latter cannot
be approximated via conventional relation ψn(0) ∝ a−1

B due
to the Pauli blocking, leading to the mixing of exciton ground
and excited states. Finally, dcv denotes the dipole matrix ele-
ment for the optical interband transition.

We consider the case of the optical cavity being reso-
nant to the exciton transition in the absence of electron gas,
EC = E0

X (0). The exciton transition energy in the presence
of electron gas reads E0

X (n) = Eg + �g(n) − Eb(n), where we
recall that Eb = |EX − �g| is the exciton binding energy. It
should be noted, that the position of excitonic transition varies
very slowly with the increase of n, as the reduction of binding
energy is largely compensated by the corresponding band gap
renormalization. The latter is in good agreement with experi-
mental [87,114,115] and theoretical evidence [85].

The value of the dipole matrix element of interband
transition is set to dcv = 7 D, leading to Rabi splitting of
∼30 meV, in agreement with existing experimental results
[61]. Here we assume that the dependence of the interband
transition matrix element on the density of free electron gas is
negligible. Hence, the density of electron gas affects the
efficiency light-matter coupling only via the exciton wave
function [see Eq. (8)]. The dependence of light-matter cou-
pling �0(n) on the density of free electron gas is presented
in Fig. 5(a). The reduction of coupling with the increase of
electron density stems from the impact of Pauli blocking, and
the detailed analysis is presented in Appendix C.

FIG. 5. (a) Rabi splitting as a function of the free electron den-
sity in the weak-excitation regime. (b) Light-matter coupling as a
function of exciton density shown for different electron gas concen-
trations. (c) Polariton nonlinearity coefficient and its contributions
shown as a function of the free electron density. (d) Energy of the
lower polariton branch relative to the reference value E 0

LP(n0 ) as a
function of the exciton density at different n. Here the solid curves
correspond to Eq. (11), and the dashed curves to Eq. (12).

Next we study the nonlinear part of light-matter interaction
that is represented by optical saturation coming from the phase
space filling. Recently it was shown to provide a significant
nonlinear response contribution for TMD polaritons [63,106].
Together with nonlinear exciton-exciton interaction, the op-
tical saturation effect leads to the energy blueshift for the
lower polariton mode, coming from the renormalization of
Rabi splitting. It depends on the density of excitons nX and
the excitonic wave function. The generalized Rabi frequency
can be written as [99]

�(nX , n) ≈ �0(n)
√

1 − 2s(n)nX , (9)

where the saturation factor

s(n) =
∑

k |Ck|2Ck∑
k′ C∗

k′
(10)

accounts for the phase space filling arising from multiple
exchange diagrams. In particular, in the case of effectively
hydrogenic wave functions, this yields shyd = 8πa2

B/7, mean-
ing that the larger Bohr radius provides larger nonlinearity.
Here, however, the presence of Pauli blocking leads to a
moderate dependence of the saturation factor on the density
of free electron gas, discussed in Appendix C. As stated in
Eq. (9), for growing density of excitons the Rabi splitting ef-
fectively shrinks. The corresponding dependence is illustrated
in Fig. 5(b) for various values of free electron gas density.

The energy of the lower polariton branch reads as

ELP(nX , n) = 1
2 [EC + EX (n, nX )

−
√

[EC − EX (n, nX )]2 + �2(nX , n)], (11)
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where the exciton energy is EX (n, nX ) = E0
X (n) +

gtot (n)nX /2. Introducing the detuning between cavity and
exciton modes as 
(n) = EC − EX (n), and taking the limit of
low exciton density, the energy for the lower polariton mode
reads

ELP(nX , n) ≈ E0
LP(n) + geff (n)nX , (12)

which consists of the linear part equal to

E0
LP(n) = EC −


 +
√


2 + �2
0

2
, (13)

and nonlinear blueshift geff (n)nX . Here geff (n) is an effective
polariton nonlinearity coefficient that is a sum of Coulomb-
based interaction and saturative nonlinearity contributions,

geff (n) =
⎛
⎝1 + 
√

�2
0 + 
2

⎞
⎠gtot

4
+ �2

0

2
√

�2
0 + 
2

s

=: gC
eff (n) + gs

eff (n). (14)

For compactness we have omitted the electron density depen-
dence of the quantities 
, �0, s, etc.

The polaritonic nonlinearity coefficient and its parts are
shown in Fig. 5(c) as a function of free electron gas density.
Notably we observe that while the saturation coefficient s
increases more than the Coulomb interaction, the electron
density dependence of its prefactor diminishes its enhance-
ment, making it nearly flat (dotted curve). Instead, the increase
of Coulomb nonlinearity is further boosted by the correspond-
ing growth of its prefactor (the dashed curve).

In Fig. 5(d) the dependence of the lower polariton energy
on the exciton density is shown, where we plot its nonlinear
contribution [as compared to E0

LP(n0) with n0 = 107 cm−2].
At fixed density of free electrons the increase of the exciton
density leads to both reduction of light-matter interaction and
the blueshift of the exciton energy. In each this leads to the
blueshift of the lower polariton energy. With the increase of
free electron gas density both the exciton-exciton interac-
tion constant ge

exch and the saturation factor s are enhanced,
leading to the corresponding growth of the nonlinear optical
response. It should be mentioned that relation ELP(nX , n) ≈
E0

LP(n) + geff (n)nX is valid in the moderate excitation regime
nX � 1012 cm−2, as for higher intensities the quadratic terms
∝n2

X become relevant.
Finally, we discuss the impact of the trion on the exciton-

polariton nonlinear optical response. As stated in Sec. II, the
trion resonance is far detuned from the exciton and cavity
modes, and thus has limited impact on resulting polariton
modes at higher energy. Indeed, the estimate for the trion
binding energy for the considered case of the freestanding
monolayer is about 50 meV, and its mixing with polariton
branches is small (see Appendix D for details). The detailed
analysis of the electron density dependence of the trion non-
linear response for the case of the near-resonant cavity is
a separate research question, and will be studied in future
works.

V. CONCLUSIONS

In this paper we analyzed the behavior of exciton polari-
tons in a TMD monolayer in the presence of a gas of free
electrons. We revealed that the Fermi sea has a strong effect
on the nonlinear optical response of the system. We found
that the role of free electrons is twofold. First, doping leads
to screening of the Coulomb interaction, and results in the
increase of exciton Bohr radius and simultaneously the reduc-
tion of exciton-exciton interaction potential. Our calculations
show that the overall impact of the screening leads to the
enhancement of the exciton-exciton interaction coefficient.
Second, due to the Pauli exclusion principle, the presence
of the free electrons also dramatically modifies the structure of
the excitonic wave functions, suppressing the contribution of
the harmonics corresponding to small electron wave vectors.
Surprisingly the impact of the Pauli blocking factor leads to
the reduction of exciton-exciton interaction. We found that
the latter can be attributed to mixing of exciton ground and
excited states, caused by the Pauli blocking factor. It is known
that the interaction between excited exciton states is of at-
tractive type, which explains the reduction of exciton-exciton
repulsive interaction caused by the Pauli principle. Finally,
we showed that the combined impact of interaction screening
and Pauli blocking leads to the nonmonotonic dependence of
the exciton-exciton interaction constant as a function of free
electron gas density.

The presence of the Fermi sea substantially modifies also
the statistics-based renormalization of the Rabi splitting at
high exciton densities, which gives another contribution to the
enhancement of the optical nonlinearity. It is important to note
that both Coulomb nonlinearity and saturation-based nonlin-
earity generally grow with the increase of the free electron gas
density. As the latter can be easily controlled by application
of the external gate voltage, our findings pave the way to
accessible and experimentally friendly tuning of the degree
of optical nonlinearity in TMD-based samples.
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APPENDIX A: EXPANSION OF AN EXCITON WAVE
FUNCTION IN TERMS OF BASIS FUNCTIONS

We analyze the impact of the Pauli blocking factor on the
excitonic wave function that results in the reduction of the
exciton-exciton interaction for increasing electron gas density.
First, we simulate Eq. (5) of the main text in the absence of
both interaction screening and the Pauli blocking. We find the
wave functions for ground and excited exciton states (1s, 2s,
3s). Their real space distributions are shown in Fig. 6(a). Next,
for each value of n we expand the calculated wave functions
in the presence of Pauli blocking (but not screening) in terms
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FIG. 6. (a) The real space dependence of exciton wave func-
tion in the presence of Pauli blocking at density of free electrons
n = 5 × 1011 cm−2 (red solid curve), and the exciton ground and
excited state wave functions in its absence. Here we neglect the
impact of the interaction screening by free electrons. (b) Real and
(c) momentum space dependence of wave function (red solid curve)
and its expansion in terms of basis functions (black dashed curve).
The inset in panel (c) demonstrates the contribution of excited states
versus the density of free electron gas. (d) The maximum of exciton-
exciton interactions as a function of free electron density. The red
dots correspond to calculation using the actual wave functions, and
the black dots are calculated using the wave functions expanded in
terms of basis functions. The mismatch in the values is attributed to
the imperfection of the fitting procedure.

of bare basis functions. This procedure yields

ψn(r) = a1(n)ψ1s(r) + a2(n)ψ2s(r) + a3(n)ψ3s(r), (A1)

where coefficients ai(n) are found from

ψn(0) = a1(n)ψ1s(0) + a2(n)ψ2s(0) + a3(n)ψ3s(0),

ψn(r1) = a1(n)ψ1s(r1) + a2(n)ψ2s(r1) + a3(n)ψ3s(r1),

1 = |a1(n)|2 + |a2(n)|2 + |a3(n)|2, (A2)

and r1 corresponds to the first root of ψn. The results of fitting
for large density of the electron gas are shown in Figs. 6(b) and
6(c). We find that the fit is nearly exact at small r, but strongly
deviates at large distances (not shown). Correspondingly, for
the small momenta there is a strong deviation, while for larger
values there is a good agreement. Finally, in Fig. 6(d) we pro-
vide the comparison of the exciton-exciton interaction coeffi-
cient calculated from exact wave functions (red dots), and the
wave functions defined by (A1). Evidently, with the increase
of electron gas density Pauli blocking leads to a larger contri-
bution of excited states [see the inset in Fig. 6(c)], which inter-
act attractively [94,113], resulting in the corresponding reduc-
tion of the ground state exciton-exciton repulsive interaction.

σ=0.5, κ=1

σ=0.5, κ=1

FIG. 7. Exciton-exciton exchange interaction. (a) The depen-
dence of interaction constant on transfer momentum for different
dielectric screening and effective mass ratio σ . (b) The maximum
of interaction constant as a function of free electron density. (c) The
effective mass ratio dependence of exchange interaction constant.
Dashed black curve corresponds to an exponential fit. (d) The in-
fluence of screening and Pauli blocking factors on the maxima of
exchange interaction vs the density of free electrons.

APPENDIX B: THE DEPENDENCE OF
EXCITON-EXCITON INTERACTION ON

ELECTRON/HOLE EFFECTIVE MASS RATIO

The effective masses of conduction and valence bands in
TMD monolayers typically differ from each other [116]. Here
we study the impact of mass ratio σ = m/mv on the exciton-
exciton interaction strength. To do so, we fix the effective
mass of the hole as mv = 0.65m0, and consider the cases when
σ = 0.5, σ = 0.1. We also consider two values of surrounding
dielectric constant, κ = 1 and κ = 2. The results of calcu-
lations are shown in Fig. 7. It is evident that the absolute
values of interaction are strongly dependent on the effective
masses, and weakly dependent on the dielectric screening
[Fig. 7(a)]. Moreover, the maximum of interaction constant
demonstrates an exponential behavior on the effective mass
ratio σ [Fig. 7(c)]. However, the impact of Pauli blocking and
the interaction screening by free electrons together with the
nonmonotonic dependence of interaction on the free electron
gas density are qualitatively independent of the structure pa-
rameters [Figs. 7(b) and 7(d)].

APPENDIX C: THE DEPENDENCE OF RABI SPLITTING
SATURATION RATE ON THE FREE ELECTRON

GAS DENSITY

In Fig. 8(a) we present light-matter coupling at small ex-
citon densities, nX a2

B � 1, as a function of free electron gas
density n. In the absence of the Pauli blocking the screening
of Coulomb interaction leads to weaker binding of excitons,
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FIG. 8. (a) Light-matter coupling as a function of the free
electron gas density at low excitation regime. Here green curves
correspond to the absence of Pauli blocking, red curves correspond
to the absence of interaction screening, and blue curves account both
effects. (b), (c), (d) The saturation factor s(n) (solid curves) and
its hydrogen-like estimate shyd(n) (dashed curves) versus the free
electron gas density. Panel (b) corresponds to the presence of both
Pauli blocking and the interaction screening; panel (c) stands for the
absence of the interaction screening; panel (d) illustrates the absence
of Pauli blocking.

so that the wave function is less concentrated around the
origin. The latter results in the quenching of light-matter
coupling [Fig. 8(a), green curve]. On the contrary, in the
absence of screening the Pauli blocking leads to mixing with
excited exciton states, leading to the increase of wave function
amplitude at the origin [see Fig. 6(a)]. This results in the cor-
responding enhancement of light-matter coupling [Fig. 8(a),
red curve]. Yet, the impact of screening is much stronger, so
that the interplay of this counteracting effect leads to overall
reduction of light-matter coupling with the increase of free
electron gas density [Fig. 8(a), blue curve].

We further analyze the Rabi splitting saturation factor s(n).
Figure 8(b) illustrates its dependence on the density of free
electron gas. We observe a moderate enhancement of the
saturation rate with the growth of the electron gas density.
On the other hand, the estimate of the saturation factor for
the hydrogen-like exciton shyd(n) grows much faster [dashed
curve in Fig. 8(b)]. To get a better insight, we study the
impacts of the screening of interaction and Pauli blocking
separately.

In Fig. 8(c) we present the free electron gas density depen-
dence of the saturation factor and its estimate in the absence of
interaction screening. As the density increases, the saturation
factor is moderately reduced, while its estimate is enhanced.
This discrepancy with the hydrogen-based estimate stems
from the Pauli blocking, which leads to emergence of strongly
nonhydrogenic wave functions.

Figure 8(d) illustrates the case of the absence of Pauli
blocking and the presence of interaction screening. Here both
the saturation factor and its estimate increase nearly on equal
footing, indicating that in the absence of Pauli blocking effect
the hydrogen-like model is valid up to a constant. In total,
the interplay of these two counteracting impacts results in the
moderate enhancement of saturation efficiency, as depicted in
Fig. 8(b).

APPENDIX D: THE IMPACT OF TRION STATE
ON THE EXCITON-POLARITON SPECTRA

The binding energy of the trion can be estimated using
the variational energy minimization with Chandrasekhar-type
trial function in momentum space [63,117]

�T
k1,k2

= N
[
�k1 (λ1)�k2 (λ2) + �k2 (λ1)�k1 (λ2)

]
, (D1)

where �ki (λ j ) =
√

8πλ2
j [1+ (λ jki )2]−3/2, N = [2(1+

χ2)]−1/2, and χ = 4λ1λ2/(λ1 + λ2)2. The results for the
considered parameters of the freestanding monolayer are
ET

b = 52.83 meV, λ1 = 1.21 nm, λ2 = 3.06 nm. For an
estimate we neglect the screening of Coulomb interactions
by free electron gas, meaning that the position of the trion
resonance remains unaltered when the free electron density
changes. Though this treatment is simplistic, it allows us
to get in the first approximation the impact of trions on
exciton-polariton spectra.

The contribution of the trion resonance can be analyzed
within the model of three coupled modes, where together with
the dominant exciton-photon coupling there is an admixture
of the far-detuned trion mode. Polariton eigenmodes can be
obtained diagonalizing

ĤT =
( EC �X (n, nX ) �T (n, nX )

�X (n, nX ) EX (n, nX ) 0
�T (n, nX ) 0 ET

)
, (D2)

where ET = EC − ET
b , and the trion-photon coupling is calcu-

lated as [63]

�T (n, nX ) = 4N
(

λ1

λ2
+ λ2

λ1

) √
n

|ψn(0)|�X (n, nX ). (D3)

FIG. 9. (a) The fractions of photon (C), exciton (X), and trion (T)
modes in the middle polariton branch as a function of free electron
gas density. (b) Correction of middle polariton branch energy by
trions, plotted as a function of the exciton density.
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The eigenmodes of Hamiltonian (D2) correspond to three
polariton branches. Here we focus on the middle polariton
branch ET

MP, as it is dominated by the exciton mode with a
small admixture of trions, as depicted in Fig. 9(a). As the elec-
tron density increases, the trion contribution slowly increases
due to reduction of detuning and the enhancement of trion-
photon coupling. Figure 9(b) demonstrates the exciton density
dependence of the spectrum correction caused by trions. The

latter is defined as

ηT = ET
MP − ELP

ELP
. (D4)

We observe that even for large concentration of free electrons
the correction is minor and thus can be neglected in the de-
scription of the middle polariton branch.
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[5] A. Amo, J. Lefrŕe, S. Pigeon, C. Adrados, C. Ciuti, I.
Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Nat.
Phys. 5, 805 (2009).

[6] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet,
I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E.
Giacobino, C. Ciuti, and A. Bramati, Science 332, 1167
(2011).

[7] H. Terças, H. Flayac, D. D. Solnyshkov, and G. Malpuech,
Phys. Rev. Lett. 112, 066402 (2014).

[8] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[9] M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach,

R. Hartley, D. V. Skryabin, E. A. Cerda-Méndez, K. Biermann,
R. Hey, and P. V. Santos, Nat. Photonics 6, 50 (2012).

[10] R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese, T. Boulier,
D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech,
and A. Amo, Nat. Phys. 8, 724 (2012).

[11] J. K. Chana, M. Sich, F. Fras, A. V. Gorbach, D. V. Skryabin,
E. Cancellieri, E. A. Cerda-Méndez, K. Biermann, R. Hey,
P. V. Santos, M. S. Skolnick, and D. N. Krizhanovskii, Phys.
Rev. Lett. 115, 256401 (2015).

[12] A. Opala, M. Pieczarka, N. Bobrovska, and M. Matuszewski,
Phys. Rev. B 97, 155304 (2018).

[13] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.
Carusotto, R. Andre, L. S. Dang, and B. Deveaud-Pledran,
Nat. Phys. 4, 706 (2008).

[14] G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao,
Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Nat.
Commun. 3, 1243 (2012).

[15] T. Boulier, H. Tercas, D. D. Solnyshkov, Q. Glorieux, E.
Giacobino, G. Malpuech, and A. Bramati, Sci. Rep. 5, 9230
(2015).

[16] M.-S. Kwon, B. Y. Oh, S.-H. Gong, J.-H. Kim, H. K. Kang,
S. Kang, J. D. Song, H. Choi, and Y.-H. Cho, Phys. Rev. Lett.
122, 045302 (2019).

[17] D. Caputo, N. Bobrovska, D. Ballarini, M. Matuszewski, M.
De Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, and
D. Sanvitto, Nat. Photonics 13, 488 (2019).

[18] N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S.
Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and
G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).

[19] R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-
Genoud, M. T. Portella-Oberli, and B. Deveaud, Nat.
Commun. 4, 2008 (2013).

[20] S. S. Gavrilov, A. V. Sekretenko, S. I. Novikov, C. Schneider,
S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Appl.
Phys. Lett. 102, 011104 (2013).

[21] O. Kyriienko, E. A. Ostrovskaya, O. A. Egorov, I. A. Shelykh,
and T. C. H. Liew, Phys. Rev. B 90, 125407 (2014).

[22] M. Klaas, H. Sigurdsson, T. C. H. Liew, S. Klembt, M.
Amthor, F. Hartmann, L. Worschech, C. Schneider, and S.
Höfling, Phys. Rev. B 96, 041301(R) (2017).

[23] E. Z. Tan, H. Sigurdsson, and T. C. H. Liew, Phys. Rev. B 97,
075305 (2018).

[24] A. V. Yulin, V. K. Kozin, A. V. Nalitov, and I. A. Shelykh,
Phys. Rev. A 100, 043610 (2019).

[25] A. Askitopoulos, H. Ohadi, A. V. Kavokin, Z. Hatzopoulos,
P. G. Savvidis, and P. G. Lagoudakis, Phys. Rev. B 88,
041308(R) (2013).

[26] H. Ohadi, A. J. Ramsay, H. Sigurdsson, Y. del Valle-Inclan
Redondo, S. I. Tsintzos, Z. Hatzopoulos, T. C. H. Liew, I. A.
Shelykh, Y. G. Rubo, P. G. Savvidis, and J. J. Baumberg, Phys.
Rev. Lett. 119, 067401 (2017).

[27] H. Sigurdsson, A. J. Ramsay, H. Ohadi, Y. G. Rubo, T. C. H.
Liew, J. J. Baumberg, and I. A. Shelykh, Phys. Rev. B 96,
155403 (2017).

[28] T. Gao, O. A. Egorov, E. Estrecho, K. Winkler, M. Kamp, C.
Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya,
Phys. Rev. Lett. 121, 225302 (2018).

[29] H. Sigurdsson, O. Kyriienko, K. Dini, and T. C. H. Liew, ACS
Photonics 6, 123 (2018).

[30] P. Mietki and M. Matuszewski, Phys. Rev. B 98, 195303
(2018).

[31] O. Kyriienko, H. Sigurdsson, and T. C. H. Liew, Phys. Rev. B
99, 195301 (2019).

[32] For a review on early results, see T. C. H. Liew, I. A.
Shelykh, and G. Malpuech, Phys. E (Amsterdam) 43, 1543
(2011).

[33] A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino,
A. V. Kavokin, and A. Bramati, Nat. Photonics 4, 361
(2010).

[34] T. C. H. Liew, A. V. Kavokin, T. Ostatnický, M. Kaliteevski,
I. A. Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302
(2010).

115310-9

https://doi.org/10.1038/nature05131
https://doi.org/10.1126/science.1140990
https://doi.org/10.1038/nature12036
https://doi.org/10.1103/PhysRevLett.118.215301
https://doi.org/10.1038/nphys1364
https://doi.org/10.1126/science.1202307
https://doi.org/10.1103/PhysRevLett.112.066402
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphys2406
https://doi.org/10.1103/PhysRevLett.115.256401
https://doi.org/10.1103/PhysRevB.97.155304
https://doi.org/10.1038/nphys1051
https://doi.org/10.1038/ncomms2255
https://doi.org/10.1038/srep09230
https://doi.org/10.1103/PhysRevLett.122.045302
https://doi.org/10.1038/s41566-019-0425-3
https://doi.org/10.1103/PhysRevLett.98.236401
https://doi.org/10.1038/ncomms3008
https://doi.org/10.1063/1.4773523
https://doi.org/10.1103/PhysRevB.90.125407
https://doi.org/10.1103/PhysRevB.96.041301
https://doi.org/10.1103/PhysRevB.97.075305
https://doi.org/10.1103/PhysRevA.100.043610
https://doi.org/10.1103/PhysRevB.88.041308
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevB.96.155403
https://doi.org/10.1103/PhysRevLett.121.225302
https://doi.org/10.1021/acsphotonics.8b01017
https://doi.org/10.1103/PhysRevB.98.195303
https://doi.org/10.1103/PhysRevB.99.195301
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1103/PhysRevB.82.033302


V. SHAHNAZARYAN et al. PHYSICAL REVIEW B 102, 115310 (2020)

[35] H. Ohadi, A. Dreismann, Y. G. Rubo, F. Pinsker, Y. del Valle-
Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis,
and J. J. Baumberg, Phys. Rev. X 5, 031002 (2015).

[36] A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo,
R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z.
Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Nat. Mater.
15, 1074 (2016).

[37] A. Askitopoulos, A. V. Nalitov, E. S. Sedov, L. Pickup, E. D.
Cherotchenko, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin,
and P. G. Lagoudakis, Phys. Rev. B 97, 235303 (2018).

[38] A. Opala, S. Ghosh, T. C. H. Liew, and M. Matuszewski, Phys.
Rev. Appl. 11, 064029 (2019).

[39] C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P.
Schwendimann, Phys. Rev. B 58, 7926 (1998).

[40] F. Tassone and Y. Yamamoto, Phys. Rev. B 59, 10830 (1999).
[41] M. M. Glazov, H. Ouerdane, L. Pilozzi, G. Malpuech, A. V.

Kavokin, and A. D’Andrea, Phys. Rev. B 80, 155306 (2009).
[42] M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin,

A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech,
and A. V. Kavokin, Phys. Rev. B 82, 075301 (2010).

[43] A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D.
Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M.
Kamp, and A. Forchel, Phys. Rev. B 84, 195301 (2011).

[44] E. Estrecho, T. Gao, N. Bobrovska, D. Comber-Todd, M. D.
Fraser, M. Steger, K. West, L. N. Pfeiffer, J. Levinsen, M. M.
Parish, T. C. H. Liew, M. Matuszewski, D. W. Snoke, A. G.
Truscott, and E. A. Ostrovskaya, Phys. Rev. B 100, 035306
(2019).

[45] J. Levinsen, G. Li, and M. M. Parish, Phys. Rev. Research 1,
033120 (2019).

[46] G. Munoz-Matutano, A. Wood, M. Johnsson, X. Vidal, B. Q.
Baragiola, A. Reinhard, A. Lemaitre, J. Bloch, A. Amo, G.
Nogues, B. Besga, M. Richard, and T. Volz, Nat. Mater. 18,
213 (2019).

[47] A. Delteil, T. Fink, A. Schade, S. Hofling, C. Schneider, and
A. Imamoglu, Nat. Mater. 18, 219 (2019).

[48] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82,
1489 (2010).

[49] C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B.
Urbaszek, Nat. Commun. 9, 2695 (2018).

[50] P. A. D. Gonçalves, N. Stenger, J. D. Cox, N. A. Mortensen,
and S. Xiao, Adv. Opt. Mater. 8, 1901473 (2020).

[51] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys.
Rev. Lett. 105, 136805 (2010).

[52] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y.
Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F.
Heinz, Phys. Rev. Lett. 113, 076802 (2014).

[53] J. A. Miwa, S. Ulstrup, S. G. Sørensen, M. Dendzik, A. G.
Cabo, M. Bianchi, J. V. Lauritsen, and P. Hofmann, Phys. Rev.
Lett. 114, 046802 (2015).

[54] P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C.
Schüller, T. Korn, A. Chernikov, and R. Huber, Nano Lett. 17,
1455 (2017).

[55] H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F.
Guinea, Phys. Rev. B 92, 195402 (2015).

[56] S. Schwarz, S. Dufferwiel, P. M. Walker, F. Withers, A. A. P.
Trichet, M. Sich, F. Li, E. A. Chekhovich, D. N. Borisenko,
N. N. Kolesnikov, K. S. Novoselov, M. S. Skolnick, J. M.
Smith, D. N. Krizhanovskii, and A. I. Tartakovskii, Nano Lett.
14, 7003 (2014).

[57] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie,
T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001
(2018).

[58] U. Wurstbauer, B. Miller, E. Parzinger, and A. W. Holleitner,
J. Phys. D: Appl. Phys. 50, 173001 (2017).

[59] X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-
Cohen, and V. M. Menon, Nat. Photonics 9, 30 (2015).

[60] S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li,
M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D.
Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S.
Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, Nat.
Commun. 6, 8579 (2015).

[61] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet,
F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S.
Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I.
Tartakovskii, Nat. Photonics 11, 497 (2017).

[62] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M.
Kroner, E. Demler, and A. Imamoglu, Nat. Phys. 13, 255
(2017).

[63] R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan,
F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy,
M. S. Skolnick, A. I. Tartakovskii, I. A. Shelykh, and D. N.
Krizhanovskii, Nat. Commun. 11, 3589 (2020).

[64] N. Lundt, A. Marynski, E. Cherotchenko, A. Pant, X. Fan, S.
Tongay, G. Sek, A. V. Kavokin, S. Höfling, and C. Schneider,
2D Mater. 4, 015006 (2017).

[65] L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Nat.
Commun. 9, 713 (2018).

[66] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova,
A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov,
I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin,
V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M.
Walker, M. S. Skolnick, D. N. Krizhanovskii, and I. V. Iorsh,
Light Sci. Appl. 9, 56 (2020).

[67] M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C.
Carnegie, W. Deacon, A. Casalis de Pury, C. Grosse, B. de
Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, Nat.
Commun. 8, 1296 (2017).

[68] P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A.
Mortensen, Phys. Rev. B 97, 041402(R) (2018).

[69] M. Geisler, X. Cui, J. Wang, T. Rindzevicius, L.
Gammelgaard, B. S. Jessen, P. A. D. Gonçalves, F. Todisco, P.
Bøggild, A. Boisen, M. Wubs, N. A. Mortensen, S. Xiao, and
N. Stenger, ACS Photonics 6, 994 (2019).

[70] T. J. Antosiewicz, S. P. Apell, and T. Shegai, ACS Photonics
1, 454 (2014).

[71] M. Stüuhrenberg, B. Munkhbat, D. G. Baranov, J. Cuadra,
A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai,
Nano Lett. 18, 5938 (2018).

[72] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and
J. Shan, Nat. Mater. 12, 207 (2013).

[73] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G.
Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X.
Xu, Nat. Commun. 4, 1474 (2013).

[74] A. Singh, G. Moody, K. Tran, M. E. Scott, V. Overbeck,
G. Berghäuser, J. Schaibley, E. J. Seifert, D. Pleskot, N. M.
Gabor, J. Yan, D. G. Mandrus, M. Richter, E. Malic, X. Xu,
and X. Li, Phys. Rev. B 93, 041401(R) (2016).

[75] E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert,
F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre,

115310-10

https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1038/nmat4722
https://doi.org/10.1103/PhysRevB.97.235303
https://doi.org/10.1103/PhysRevApplied.11.064029
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.59.10830
https://doi.org/10.1103/PhysRevB.80.155306
https://doi.org/10.1103/PhysRevB.82.075301
https://doi.org/10.1103/PhysRevB.84.195301
https://doi.org/10.1103/PhysRevB.100.035306
https://doi.org/10.1103/PhysRevResearch.1.033120
https://doi.org/10.1038/s41563-019-0281-z
https://doi.org/10.1038/s41563-019-0282-y
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1038/s41467-018-04866-6
https://doi.org/10.1002/adom.201901473
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1103/PhysRevLett.114.046802
https://doi.org/10.1021/acs.nanolett.6b04422
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1021/nl503312x
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1088/1361-6463/aa5f81
https://doi.org/10.1038/nphoton.2014.304
https://doi.org/10.1038/ncomms9579
https://doi.org/10.1038/nphoton.2017.125
https://doi.org/10.1038/nphys3949
https://doi.org/10.1038/s41467-020-17340-z
https://doi.org/10.1088/2053-1583/4/1/015006
https://doi.org/10.1038/s41467-018-03188-x
https://doi.org/10.1038/s41377-020-0286-z
https://doi.org/10.1038/s41467-017-01398-3
https://doi.org/10.1103/PhysRevB.97.041402
https://doi.org/10.1021/acsphotonics.8b01766
https://doi.org/10.1021/ph500032d
https://doi.org/10.1021/acs.nanolett.8b02652
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/ncomms2498
https://doi.org/10.1103/PhysRevB.93.041401


TUNABLE OPTICAL NONLINEARITY FOR TRANSITION … PHYSICAL REVIEW B 102, 115310 (2020)

W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand,
and B. Urbaszek, Phys. Rev. B 96, 085302 (2017).

[76] N. Lundt, E. Cherotchenko, O. Iff, X. Fan, Y. Shen, P.
Bigenwald, A. V. Kavokin, S. Höfling, and C. Schneider, Appl.
Phys. Lett. 112, 031107 (2018).

[77] Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen,
D. R. Reichman, and T. F. Heinz, Nat. Phys. 11, 477
(2015).

[78] G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T.
Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek,
and X. Marie, Phys. Rev. Lett. 119, 047401 (2017).

[79] M. Manca, M. M. Glazov, C. Robert, F. Cadiz, T. Taniguchi,
K. Watanabe, E. Courtade, T. Amand, P. Renucci, X.
Marie, G. Wang, and B. Urbaszek, Nat. Commun. 8, 14927
(2017).

[80] N. Lundt, L. Dusanowski, E. Sedov, P. Stepanov, M. M.
Glazov, S. Klembt, M. Klaas, J. Beierlein, Y. Qin, S. Tongay,
M. Richard, A. V. Kavokin, S. Höfling, and C. Schneider, Nat.
Nanotechnol. 14, 770 (2019).

[81] M. Kulig, J. Zipfel, P. Nagler, S. Blanter, C. Schüller, T. Korn,
N. Paradiso, M. M. Glazov, and A. Chernikov, Phys. Rev. Lett.
120, 207401 (2018).

[82] J. Zipfel, M. Kulig, R. Perea-Causin, S. Brem, J. D. Ziegler, R.
Rosati, T. Taniguchi, K. Watanabe, M. M. Glazov, E. Malic,
and A. Chernikov, Phys. Rev. B 101, 115430 (2020).

[83] F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B 88,
245309 (2013).

[84] S. Latini, T. Olsen, and K. S. Thygesen, Phys. Rev. B 92,
245123 (2015).

[85] V. Shahnazaryan, O. Kyriienko, and H. Rostami, Phys. Rev. B
100, 165303 (2019).

[86] A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F.
Heinz, Nat. Photonics 9, 466 (2015).

[87] A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi,
A. Velauthapillai, J. Hone, and T. F. Heinz, Phys. Rev. Lett.
115, 126802 (2015).

[88] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P.
Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh,
A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Nat.
Mater. 14, 301 (2015).

[89] A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi,
T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls,
J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A.
Chernikov, Nat. Commun. 8, 15251 (2017).

[90] S. Kumar, M. Brotons-Gisbert, R. Al-Khuzheyri, A. Branny,
G. Ballesteros-Garcia, J. F. Sanchez-Royo, and B. D. Gerardot,
Optica 3, 882 (2016).

[91] A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Nat.
Commun. 8, 15053 (2017).

[92] C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M.
Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C.
Ferrari, and M. Atatüre, Nat. Commun. 8, 15093 (2017).

[93] L. C. Flatten, L. Weng, A. Branny, S. Johnson, P. R. Dolan,
A. A. P. Trichet, B. D. Gerardot, and J. M. Smith, Appl. Phys.
Lett. 112, 191105 (2018).

[94] V. Shahnazaryan, I. Iorsh, I. A. Shelykh, and O. Kyriienko,
Phys. Rev. B 96, 115409 (2017).

[95] F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B.
Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto,
and S. Kéna-Cohen, Nat. Nanotechnol. 13, 906 (2018).

[96] M. Combescot, O. Betbeder-Matibet, and F. Dubin, Phys. Rep.
463, 215 (2008).

[97] M. Combescot, O. Betbeder-Matibet, and F. Dubin, Eur. Phys.
J. B 52, 181 (2006).

[98] K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen,
Nat. Mater. 13, 271 (2014).

[99] T. Yagafarov, D. Sannikov, A. Zasedatelev, K. Georgiou, A.
Baranikov, O. Kyriienko, I. Shelykh, L. Gai, Z. Shen, D. G.
Lidzey, and P. G. Lagoudakis, Commun. Phys. 3, 18 (2020).

[100] S. Betzold, M. Dusel, O. Kyriienko, C. P. Dietrich, S. Klembt,
J. Ohmer, U. Fischer, I. A. Shelykh, C. Schneider, and S.
Höfling, ACS Photonics 7, 384 (2020).

[101] Y.-C. Chang, S.-Y. Shiau, and M. Combescot, Phys. Rev. B 98,
235203 (2018).

[102] S.-Y. Shiau, M. Combescot, and Y.-C. Chang, Europhys. Lett.
117, 57001 (2017).

[103] D. K. Efimkin and A. H. MacDonald, Phys. Rev. B 95, 035417
(2017).

[104] S. Ravets, P. Knüppel, S. Faelt, O. Cotlet, M. Kroner, W.
Wegscheider, and A. Imamoglu, Phys. Rev. Lett. 120, 057401
(2018).

[105] L. B. Tan, O. Cotlet, A. Bergschneider, R. Schmidt, P. Back,
Y. Shimazaki, M. Kroner, and A. Imamoglu, Phys. Rev. X 10,
021011 (2020).

[106] O. Kyriienko, D. N. Krizhanovskii, and I. A. Shelykh,
arXiv:1910.11294.

[107] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[108] M. Glazov and A. Chernikov, Phys. Status Solidi B 255,

1800216 (2018).
[109] L. V. Keldysh, JETP Lett. 29, 658 (1979).
[110] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett.

111, 216805 (2013); 115, 119901(E) (2015).
[111] A. V. Stier, N. P. Wilson, K. A. Velizhanin, J. Kono, X. Xu,

and S. A. Crooker, Phys. Rev. Lett. 120, 057405 (2018).
[112] S. Larentis, H. C. P. Movva, B. Fallahazad, K. Kim, A.

Behroozi, T. Taniguchi, K. Watanabe, S. K. Banerjee, and E.
Tutuc, Phys. Rev. B 97, 201407(R) (2018).

[113] V. Shahnazaryan, I. A. Shelykh, and O. Kyriienko, Phys. Rev.
B 93, 245302 (2016).

[114] M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y.
Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen,
F. Wang, S. G. Louie, and M. F. Crommie, Nat. Mater. 13,
1091 (2014).

[115] Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y.-H. Lee, J.
Kong, M. S. Dresselhaus, and T. Palacios, Nano Lett. 14, 5569
(2014).

[116] D. W. Kidd, D. K. Zhang, and K. Varga, Phys. Rev. B 93,
125423 (2016).

[117] G. Ramon, A. Mann, and E. Cohen, Phys. Rev. B 67, 045323
(2003).

115310-11

https://doi.org/10.1103/PhysRevB.96.085302
https://doi.org/10.1063/1.5019177
https://doi.org/10.1038/nphys3324
https://doi.org/10.1103/PhysRevLett.119.047401
https://doi.org/10.1038/ncomms14927
https://doi.org/10.1038/s41565-019-0492-0
https://doi.org/10.1103/PhysRevLett.120.207401
https://doi.org/10.1103/PhysRevB.101.115430
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.92.245123
https://doi.org/10.1103/PhysRevB.100.165303
https://doi.org/10.1038/nphoton.2015.104
https://doi.org/10.1103/PhysRevLett.115.126802
https://doi.org/10.1038/nmat4205
https://doi.org/10.1038/ncomms15251
https://doi.org/10.1364/OPTICA.3.000882
https://doi.org/10.1038/ncomms15053
https://doi.org/10.1038/ncomms15093
https://doi.org/10.1063/1.5026779
https://doi.org/10.1103/PhysRevB.96.115409
https://doi.org/10.1038/s41565-018-0219-7
https://doi.org/10.1016/j.physrep.2007.11.003
https://doi.org/10.1140/epjb/e2006-00277-7
https://doi.org/10.1038/nmat3874
https://doi.org/10.1038/s42005-019-0278-6
https://doi.org/10.1021/acsphotonics.9b01300
https://doi.org/10.1103/PhysRevB.98.235203
https://doi.org/10.1209/0295-5075/117/57001
https://doi.org/10.1103/PhysRevB.95.035417
https://doi.org/10.1103/PhysRevLett.120.057401
https://doi.org/10.1103/PhysRevX.10.021011
http://arxiv.org/abs/arXiv:1910.11294
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1002/pssb.201800216
https://doi.org/10.1103/PhysRevLett.111.216805
https://doi.org/10.1103/PhysRevLett.115.119901
https://doi.org/10.1103/PhysRevLett.120.057405
https://doi.org/10.1103/PhysRevB.97.201407
https://doi.org/10.1103/PhysRevB.93.245302
https://doi.org/10.1038/nmat4061
https://doi.org/10.1021/nl501988y
https://doi.org/10.1103/PhysRevB.93.125423
https://doi.org/10.1103/PhysRevB.67.045323

