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Hall resistance anomalies in the integer and fractional quantum Hall regime
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Experimental evidence of resistance anomalies in the high-mobility two-dimensional electron gas (2DEG)
formed in the GaAs/AlGaAs heterostructure, in the integer and fractional quantized Hall regime, is shown. The
data complement to a good approximation the semianalytic calculations used to describe the formation of integral
and fractional incompressible strips. The widths of current-carrying channels were calculated by incorporating
the screening properties of the 2DEG and the effect of a magnetic field in the perpendicular mode. The many-
body effects of the composite fermions are taken into consideration for the energy gap for the fractional states.
It is shown that incompressible strips at the edges for both integer and fractional filling factors coexist in their
evanescent phase for a particular range of magnetic fields, resulting in overshoot effects at the Hall resistance.
Specifically, anomalous Hall resistances were noticed for filling factors ν = 4

3 , 3
2 , 5

3 , 8
3 , 3, 10

3 , 7
2 , and 5. This

effect is explained and discussed using the screening theory.
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I. INTRODUCTION

Since the discovery of the integer/fractional quantum Hall
effect (IQHE/FQHE) [1,2], the study of quantum states in the
two-dimensional electron gas (2DEG) systems has sparked
great interest, particularly utilizing its quantum-mechanical
properties for applications in quantum computing [3]. How-
ever, a universal theory has still not materialized to explain
the various anomalous phenomena that appear in experimental
studies such as the anomalous Hall resistance (overshoot-
ing) [4–6]. The resistance overshooting is the observance of
an anomalous increase in resistance at a plateau corresponding
to a specific filling factor ν observed within the transverse
resistance of the IQHE/FQHE. The importance of studying
this phenomenon is that it can clarify our understanding of
the formation of quantum states within these regimes. Over
the years there has been development of a theoretical ex-
planation of this phenomenon, with data eventually showing
great similarities between experimental and theoretical work
for IQHE. However, for FQHE, although theories predicted
overshooting in the fractional states, the phenomenon has not
been observed or studied extensively. In this paper we show
the observation of overshooting or anomalous Hall resistance
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in the FQHE regime and present a theoretical model based on
compressible/incompressible states. These states are areas of
different characteristics which appear within the system as a
consequence of the screening effect, with properties similar
to those of conducting and insulating regions. Within this
framework electron interaction effects, specifically Coulomb
interactions, are included, providing a close match between
theoretical and experimental work.

This paper has been arranged in the following manner: In
Sec. II the sample’s structure and geometry and the experi-
mental setup and methods are presented. Section III covers
the explanation of the anomalous resistance overshoot and the
various theories surrounding it. In Sec. IV, a discussion com-
paring theory and experimental results from other groups with
data collected from our sample is given. Section V concludes
our findings.

II. SAMPLE AND METHODS

In the present work we have utilized the
GaAs/Al0.33Ga0.67As heterostructure grown by molecular-
beam epitaxy. A 2DEG is formed at the interface of GaAs and
AlGaAs at a depth of around 100 nm from the surface of the
heterostructure. The electron carrier density was calculated
in the dark (light) to be n0 = 1.6 × 1011 cm−2 (4.45 × 1011

cm−2), and its mobility μe = 0.37 × 106 cm2/V (1.05 × 106

cm2/V s). A red light-emitting diode was used to illuminate
the experimental device. The heterostructure was converted
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FIG. 1. Plot of conductance G in units of 2e2/h versus Vsg, with
the signature quantized conductance plateaus for a 1D system. The
insets are schematics of the device used in this paper. The upper inset
shows the Hall bar. The dark yellow rectangles are the Ohmic con-
tacts, and the bright yellow structures are the titanium/gold optical
gates. These are used to create contact with the split gates and top
gates, seen in a zoomed-in picture in the lower inset. The width of
the Hall bar is WH = 80 μm, and the length is LH = 1400 μm. The
split gates (shown in yellow) are 700 nm apart and have a width of
400 nm. The top gate (dark brown) is separated from the split gates
via PMMA.

into a Hall bar, as shown in Fig. 1. A pair of split gates
was fabricated through the standard lithographic methods
(photo- and electron-beam lithography) [7,8], insulated by
poly(methyl methacrylate) (PMMA) from the top gate. The
width of the top gate is the same as the split gates (drawn
smaller in Fig. 1 in order to make the design clearer). The
distance between the split gate and the Rxy contacts is 300
μm. The distance between the Rxx contacts is 1080 μm;
the distance between the split gates and the left Rxx Ohmic
is 230 μm, and the distance to the right Ohmic is 850
μm. The split gates and the top gate are used to create a
quasi-one-dimensional (1D) channel using the 2DEG [7,8].
The magnetotransport measurements were performed in a
dilution refrigerator at a base temperature of 10 mK, unless
stated otherwise.

The conductance as a function of voltage applied on the
split gates Vsg is shown in Fig. 1. This was used as the ref-
erence for Vsg applied in the measurements described in the
following sections. The longitudinal, Rxx, and transverse, Rxy,
resistances of the sample were measured using the standard
four-terminal method.

III. HALL RESISTANCE ANOMALY (OVERSHOOT)

The study of QH effect is of vital importance due to its
importance in metrology as a standard of resistance. Nonethe-
less, although the IQHE is explained satisfactorily, to some

extent, by the 1D Landauer-Büttiker formalism [9,10] of
edge states, it is limited in describing various experimental
phenomena that contradict it. One such phenomenon is the
resistance overshoot in the IQHE which has been extensively
studied, both experimentally and theoretically. Resistance
overshooting is the observation of nonmonotonic increase
of Hall resistance at the lower end of the magnetic field
of the quantized plateaus, forming at integer filling factors
which are defined by the number of occupied quantized (spin-
resolved) Landau levels (LLs) below the Fermi energy. Over
the years various explanations for this phenomenon have
been provided but have failed to provide strong evidence for
their validity. Some examples are the suggestion of nonideal
probes [10–12], the decoupling between the magnetic fields
of the two edge states associated with the topmost spin-split
LL [13], and the nonequilibrium population of electrons at
sample boundaries due to bulk properties causing scattering
between edge states together with spin-orbit interactions [14].

In contrast, the screening theory which takes into account
the Coulomb interactions between charged carriers seems to
illustrate this phenomenon within a framework which follows
closely the experimental observations and how it changes with
strong magnetic fields [15–19]. This was initially proposed
in a qualitative manner by Beenakker [20] and Chang [21]
considering the electron gas being divided into strips which
alternate between incompressible (IS) and compressible (CS)
states. However, Beenakker stated then that this would not
be the case for fractional states [20]. In strong contrast,
Chklovskii et al. [22] argued that these states can successfully
explain the IQHE. Today, however, it is understood that a
similar model can explain these states as well by taking into
consideration the composite fermion (CF) model.

The CS and IS are formed at magnetic fields for a spatially
constrained 2DEG, resulting in the Fermi energy alternating
between a position that overlaps with the LL and regions
where it lies between the consecutive energy levels, respec-
tively. The latter IS is comparable to an insulating region
which is formed at the plateaus of the quantum Hall resistance
corresponding to specific filling factor ν and separated by the
conducting, metal-like, CSs. From the screening theory the
overshooting is thought to be a consequence of the decaying
IS near the edges of the plateaus; that is, they become evanes-
cent and coexist with ISs from adjoining filling factors which
are also in the evanescent regime, leading to current leakage
and causing the overshoot effect.

The framework for this model was given a more quantita-
tive explanation of the effect of screening on the edge states
when a magnetic field is present by Chklovskii et al. [22]
for both integral and fractional states. The main point from
this model is that for overshooting to occur the ISs have to
enter the evanescent regime [23]. That is, their widths WIS

must satisfy the condition lB < WIS < λF . The length scales
defining this regime are the magnetic length lB and the Fermi
wavelength λF . The former is given by lB = √

h̄/eB, with h̄
being the reduced Planck’s constant, e being the elementary
charge, and B being the magnetic field, and the latter is defined
as λF = √

2π/n0, with n0 being the bulk electron density of
the 2DEG. If WIS is less than lB, then the ISs collapse; if WIS >

λF , then the ISs are well defined. However, within this frame-
work the calculations are performed in a non-self-consistent
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manner. Additionally, assumptions like the 2DEG being lo-
cated at the plane of z = 0 and the electrons being depleted
by in-plane metallic gates on the same plane and generally
having an oversimplified picture on the boundary conditions
lead to an unrealistic model with wide ISs [17,23].

Subsequent work from Lier and Gerhardts [24] and Siddiki
et al. [25] combat this by modifying the Chklovskii model
with self-consistent calculations and taking into account the
Hall bar geometry and chemical etching of the mesa struc-
tures, matching, to a great extent, the experimental work in
the regime of the IQHE. Examples of experimental work on
the IQHE can be found in the works of Sailer et al. [15]
and Kendirlik et al. [6], where Si/SiGe and GaAs/AlGaAs
heterostructures were used, respectively. Some varied results
on the temperature behavior of the resistance overshoot effect
have been noticed which can be explained by two types of
screening models, “the bulk” and “the edge” models [15]. Fur-
thermore, through the theoretical work by Salman et al. [17]
the model is extended to include fractional states. Experimen-
tally, the behavior of ISs for fractional states has been studied
before, but only in the context of magnetocapacitance [26] and
edge magneto-plasmon [27] measurements. Consequently, the
aim of this paper is to present this framework for fractional ISs
in the context of magnetoresistance measurements, specifi-
cally the effect on Hall resistance overshooting. A comparison
of the Hall resistance anomalies found not only in the IQH
regime but also in the FQH regime between the theory of
self-consistent calculations and experimental data obtained is
discussed in Sec. IV.

A. Electron density model

In order to calculate WIS , first, the depletion layer’s width
ld , i.e., the area between the edge of the mesa and the bound-
ary of the 2DEG, a compressible region, has to be calculated.
This is given by the empirical formula defined by Salman
et al. [23] as

ld = π

n0a∗
B

(
d2deg−srf

dsample

)[
c3 − ddnr−srf

c3a∗
B

e
(− de

10a∗
B

)
]
. (1)

From Eq. (1), a∗
B is the effective Bohr radius given by a∗

B =
h̄2ε

m∗
e e2 , with an effective mass m∗

e = 0.067 calculated using the
method described in Ref. [28] and a permittivity for GaAs
given by ε = εrε0 = 12.4ε0, with ε0 being the permittivity of
free space [17]. The constant c3 is referenced as ∼4.5 from
Salman et al. [23]. In addition d2deg−srf = 100 nm is the depth
of the 2DEG from the surface of the mesa, dsample = 500 μm
is the thickness of the wafer, ddnr−srf = 60 nm is the depth
at which the donors are located from the surface, and de =
130 nm is the depth by which the sample was chemically
etched in order to form the mesa for the Hall bar. For this
sample the depletion length was estimated as ld � 20 nm.

Then by using the self-consistent calculations which take
into account the geometry of the Hall bar the electron density
distribution is estimated by [17]

nel (x) = n0(1 − e−(|x−|WH −ld ||)/t ), (2)

where x is the position along the width, WH = 80 μm, of
the Hall bar and t � 10a∗

B is an empirical parameter which
specifies the slope of the electron density profile [17]. An

FIG. 2. Density profile of the sample shown as a plot of the
density ratio nel (x)/n0 versus x/WH . The solid lines are for the Hall
bar with WH = 80 μm, and the dashed ones are for WH = 0.5 μm.
The inset shows a zoomed-in section of the density profile for the
WH = 80 μm Hall bar. For each WH the effect of a couple of
t-parameter values are also shown.

example of how the density profile varies with different Hall
bar widths and t-parameter values is shown in Fig. 2. The local
filling factor ν at both the integer and fractional ISs is specified
by

ν(xk, f ) = π l2
Bnel (xk, f ) = {k, f }, (3)

where k = 1, 2, 3, . . . , as it represents the integer values, and
f takes fractional values corresponding to the respective frac-
tional states [17]. Furthermore, by using Eqs. (2) and (3) the
expression for the central position of the ISs can be estab-
lished as

xk, f = |WH − ld | + t ln(1 − {k, f }/ν0) (4)

if the {k, f } < ν0 condition holds, with ν0 = π l2
Bn0 being the

bulk filling factor [17].

B. Finite wave functions and integer states’ widths

The analytical expression for calculating the IS widths with
integer ν is provided by [17,22]

ak =
√

2ε�E

π2e2dnel (x)/dx|x=xk

, (5)

where dnel (x)/dx|x=xk is the derivative of the density and �E
is the energy gap between the adjacent quantized levels. The
expression can be modified by taking into consideration the
Thomas-Fermi approximation (TFA) and the modified density
profile, as explained in Refs. [17,29], to give the equation

aTFA
k =

√
4αka∗

Bt

π (ν0 − k)
, (6)

where αk is a dimensionless strength parameter and gives the
ratio of �E between consecutive ν (different for odd and even
ν) by taking into account the Zeeman energy g∗μBB and the
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cyclotron energy h̄ωc, with ωc being the angular frequency of
the electrons [17,22]. The αk parameter is given as [23]

αk = �Ek

h̄ωc
=

{
(g∗μBB)/h̄ωc, k = odd,

(h̄ωc − g∗μBB)/h̄ωc, k = even.
(7)

The effective Landé g∗ factor used in the calculations was
estimated as g∗ = 10.95 using the method described in
Refs. [30,31]. Additionally, μB is the Bohr magneton.

By using the TFA to calculate the widths of the ISs, it
should be noted that the finite widths of the wave functions are
neglected. Therefore, it is feasible for only slowly changing
potentials on the magnetic length scale. In contrast to this,
for the condition aTFA

k � lB the TFA is invalid. In order
to counterbalance this, Refs. [17,29,32] proposed the use of
the quasi-Hartree approximation (QHA), as finite widths of
the wave functions can be included through substitution of
the δ function TFA with Landau wave functions. By doing
this, however, the energy eigenvalues are still described as
in the TFA. The widths of the ISs, within the QHA, can be
approximated by [17,29,32]

aQHA
k =

(
1 − lB

aTFA
k

)
aTFA

k . (8)

By comparing the widths calculated by the two different
approximations with the lB scale, three regimes can be iden-
tified. The first regime is under the condition that aTFA

k < lB
is satisfied and the cyclotron motion of the electron loses
its quantization; hence, the system exhibits classical Hall ef-
fect characteristics [17]. In contrast under the conditions of
aQHA

k > lB, the IS with ν = k becomes wider than the extent
of the wave, resulting in the bulk and the opposing sample
edges decoupling, and the IQHE is observed [17]. However,
this is valid only as long as ν0 < k. Last but not least,
under the circumstances that aTFA

k < lB < aQHA
k the IS

enters the evanescent phase [17]. As mentioned earlier, in this
situation the electrons are able to tunnel across the strip, with
the backscattering being enhanced. Consequently, the Hall
resistance displays a deviation from the quantized resistance
value, i.e., overshooting. This theoretical concept applies to
the fractional states as well, but with slight modifications,
which will be discussed in the following section.

C. Fractional states’ widths

For the fractional states the CF picture by Jain [33] is used
for this study. The filling factors ν of electrons and CFs are
linked by the equation [17]

ν = ν∗

2pν∗ ∓ 1
, (9)

where ν∗ stands for the filling factor of the CFs and p is an
integer determining the order of the fractional state [17,33].
The energy gap expression for the fractional ν is given by [34]

� f = c f
e2

εlB
, (10)

where c f is a coefficient determined by the corresponding
filling factor. The value of c f ranges between 0.06 and 0.11 for
the fractional states 1/3 and 2/3 [34]. For simplicity the value

for the fractional state calculations performed within this pa-
per is taken as c f = 0.11 and set as p = 1. Note that from the
literature the difference in size of the energy gaps calculated
using the various values of c f within the aforementioned range
is negligible in our calculations, so it does not influence the
results discussed later [17]. By substituting Eqs. (2) and (10)
in Eq. (5), one obtains

aTFA
f =

√
4lBc f t

π (ν0 − f )
, (11)

which provides WIS for fractional states.
Chklovskii et al. [22] proposed that regimes similar to the

ones mentioned earlier for the integral states occur by com-
paring WIS of fractional states with the lB scale. On the other
hand, in Ref. [17], it was recommended that the comparison
should occur with the cyclotron radius rc f of the CFs instead
of lB. The rc f for the CFs can be estimated by

rc f = lB
√

2(2pν∗ + 2p + 1). (12)

This was based on later theories by Chklovskii [35] on the
formation of fractional edge states using the CF theory. If this
method of comparison is used, then a normalized cyclotron

radius rc = Rc/
√

2 = lB
√

2n−1
2 , where n is the LL index, for

the integer states should be used as well for a more sustain-
able comparison between integer and fractional states. Hence,
identically to the previous section, the evanescent ISs for frac-
tional states exist within the regime of aTFA

f < rc f < aQHA
f ,

where aQHA
f is the equivalent of aQHA

k but for fractional states
and calculated using Eq. (8) by substituting aTFA

k with aTFA
f .

This aspect on which length scale should be used for the
comparison will be discussed in more detail in relation to the
data presented in a later section.

D. Current and ISs

For the regime where the ISs are well established the cur-
rent flows entirely within them. However, when the ISs break
down, the current flows increasingly in the bulk of the system.
The Hall resistance is given by the equation

ρν
xy = VHall

I0
= h

e2ν
, (13)

which is derived in detail in Refs. [15,17], with I0 being the
current flowing along the Hall bar. From the equation it can be
seen that as the IS breaks down, the current density decreases,
and thus, the Hall resistance must drop. Nonetheless, when
more than one IS is in the evanescent phase, then the current
density increases locally, leading to an increase in the Hall
resistance as the local filling factor ν(x) also increases [17].
Therefore, for the case in which multiple evanescent ISs co-
exist, the Hall resistance is modified to

ρν
xy = h

e2

( 1

ν1
(I1) + 1

ν2
(I2)

)
, (14)

where ν1 and ν2 are consecutive filling factors corresponding
to an IS with ν2 having a higher ν value, i.e., it is observed at
a lower magnetic field than ν1. Finally, the currents I1 and I2

correspond to the respective ν.
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FIG. 3. (a) Plot of Rxy as a function of B. The horizontal dashed
lines indicate the level at which the corresponding ν, labeled, are
supposed to be observed. (b) Rxx as a function of B. The positions of
the corresponding ν are indicated by the vertical dashed lines on the
curve. The double-sided arrows indicate the location of the magnetic
fields and the corresponding overshooting regions.

IV. RESULTS AND DISCUSSION

The plateaus which correspond to integer and fractional
filling factors are observed in the Rxy data, as shown in
Fig. 3(a). However, overshoot anomalies are noticed for the
fractional states 4/3, 3/2, 5/3, 8/3, 10/3, and 7/2 and the
integer ν = 3. As seen from Fig. 3(a), the plateaus for the
fractional states 4/3, 3/2, 5/3, 8/3 are well above the dashed
lines which correspond to these filling factors. For fractional
states at 10/3 and 7/2, although no distinct plateaus are seen
in Rxy, there are striking minima which seem to occur in
the Rxx measurement corresponding to these fractional states.
The reason for the plateaus, corresponding to these fractional
states, not being observed is attributed to the fact that there is
a large overshooting effect which seems to occur between the
B range of 2.8 and 3.1 T, which encapsulates these fractional
states as well as the integer ν = 3 state. An important obser-
vation is that the B positions of the minima observed in the
Rxx measurement match the B positions where the maximum

width of the ISs is located by using the Eqs. (6) and (8) for the
integer ISs and the equivalent ones for the fractional states, as
seen in Figs. 3 and 4.

In Fig. 4 the crescents indicate how the ISs for the various
ν change in width as B increases. The red crescents represent
WIS of the odd-integer ν, the blue ones show the even-integer
ν, and the green ones show the fractional ν. Note that at the
lower B the ISs are much narrower and are the evanescent
regions of the ISs. WIS for the integer states decreases for
ν values at smaller B. This is also why the plateaus of the
corresponding ν decrease in width. Additionally, notice how
the ISs in green intercept the various integer ν ISs, which is
why the overshooting effect is noticed.

Similarly, in Fig. 5, the evolution of the widths of the ISs
can be seen for the odd-integer ν in red, even integers in blue,
and the fractional states in green. The solid lines represent the
evolution of WIS as calculated using the TFA, and the dashed
lines represent the ones using QHA. The dashed black line is
λF , the solid black line is rc f , and the dash-dotted pink line
is łB. By analyzing the data it can be seen that for the regime
lB < aTFA

k , aQHA
k < λF , i.e., the evanescent regime of the ISs,

there are significant overshoot effects occurring. Also notice
how for ν = 3, 10/3, and 7/2, where the overshooting effect
is more pronounced, there is a larger overlap of evanescent
regions, which explains why the plateaus are more difficult
to distinguish in Rxy as opposed to other ν. The relatively
large overshoot noticed for ν = 3 is in agreement with mea-
surements stated by Kendirlik et al. [6]. Furthermore, note
that our data seem to be in contrast to a suggestion that rc f

should be considered the minimum length scale in defining the
evanescent regime, as opposed to lB. This is illustrated in the
example of ν = 5/3, where if rc f were considered, it would
suggest from our calculations in Fig. 5 that no overshooting
should occur as there are no other ISs overlapping the evanes-
cent region of the IS of ν = 5/3. However, we can see from
Fig. 3(b) that this is clearly not true and is more compatible
with the definition of the evanescent regime being defined by
lB as this seems to indicate an overlapping of the evanescent
ISs of multiple ν, e.g., ν = 1, 4/3, 3/2, and 5/3.

Additionally, by varying the temperature of the sample the
evolution of the plateaus was examined (see Fig. 6). The tem-
perature was varied from base temperature (BT) to 2 K. As can
be seen in Fig. 6, by increasing the temperature the overshoot-
ing is suppressed, with the weak plateaus for ν = 4/3 and
3/2 vanishing almost instantly with increasing temperature
and finally leading to a steeper change in Rxy between the
ν = 1 and ν = 2 plateaus. However, the 5/3 fractional state
seems to persist for higher temperatures. Initially, it seems
that it flattens out at 500 mK and drops in resistance value
but still retains an enhanced Hall resistance compared to what
is expected theoretically. Around 800 mK it seems to drop
down to a value that matches the dashed black line, marking
the expected value, and eventually smears out by 2 K. Also
note how the right-hand side of the ν = 2 plateau also drops
down to match the expected value for this filling factor in the
upper inset of Fig. 6.

Similarly, the plateau corresponding to ν = 3 seems to
flatten out as the temperature is increased to 2 K (see the lower
inset in Fig. 6). Also, in contrast to the 5/3 state, the enhanced
resistance seems to increase with increasing temperature with
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FIG. 4. Plot of R as a function of B. The crescents represent the evolution of WIS for the integral and fractional states. The red ones are for
odd-integer states, the blue ones are for even integers, and the green ones are for fractional states. The dashed magenta lines correspond to the
expected resistance values for each filling factor.

the plateau moving through the 8/3 state and evolving to a
flat region at approximately the 7/3 fractional state. This tem-
perature dependence of ν = 3 is in agreement with a previous

FIG. 5. Plot of WIS versus B by using the TFA (solid red, blue,
and green lines) and by using the QHA (dashed red, blue, and green
lines). Red is for odd-integer ν, blue is for even ones, and green is for
fractional states. The dashed black line is λF . The solid black line is
rc f , and the dash-dotted pink line is lB.

study by Kendirlik et al. [6]. This may be attributed to the
fact that the IS for ν = 3 is much narrower than the ν = 2
IS, which does match our theoretical calculations (see Fig. 4),
with aTFA

3 being 2.4 times smaller than aTFA
2 and aQHA

3 being
3.5 times smaller than aQHA

2 . It is suggested that as a result at
the lower B end of the ν = 3 plateau the bulk strip is narrower
than the edge strip of the ν = 2 IS. This, as a result, leads
to the overshoot being enhanced as the temperature increases
as the ν = 3 IS breaks down at higher temperatures and the
ν = 2 IS overpowers it. Moreover, in further compliance with
Ref. [6], the overshoot effect is seen only at the low field end
of the odd-integer ν. This is explained as being a consequence
of the alternating gap size between the integer states being
�Eeven � �Eodd [6].

Further studies were done by leaving the temperature con-
stant at the BT and varying the current across the Hall bar.
Similar to the temperature dependence result, the overshoot
effect diminishes as the plateaus flatten out by increasing the
current from 10 to 4550 nA. However, the overshoot effect
corresponding to the fractional states ν = 10/3 and 7/2 and
the integer state ν = 3 does not increase in resistance value
as the current is increased but rather drops down towards
the expected resistance value corresponding to ν = 3, i.e.,
RK/ν, where RK is the von Klitzing constant equal to RK =
h/e2. Although this might be in contrast to the temperature
measurements, it is once again in agreement with the mea-
surements from Kendirlik et al. [6]. Initially, for the ν = 5/3
state the plateau flattens out completely and drops to its 3RK/5
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FIG. 6. Plot of Rxy versus B at varying temperatures. The upper and lower insets show zoomed-in sections of the graph. The red arrows
show the evolution of the ν = 5/3 and 3 plateaus, respectively. The dashed black lines are the expected values for ν, as labeled.

resistance value by a current value of 640 nA but still persists
for higher current values, but its resistance value keeps drop-
ping. In addition the 4/3 fractional state plateau persists up
to a current of 100 nA. This can be seen in Fig. 7, where the
dashed black lines indicate the evolution for some of the filling
factor plateaus which exhibit overshooting behavior. For the
ν = 3 state the maximum current, i.e., 4550 nA, had to be
applied in order for the plateau to become completely flat.
However, it should be noted that above the applied current of

FIG. 7. Plot of Rxy versus B for different sample currents. The
dashed black lines show the evolution of the stated ν.

640 nA, although the plateaus are flatter, their corresponding
resistance falls below the defined RK/ν value for the plateaus
corresponding to filling factors values ν < 3. This could be
due to the higher currents breaking down the IS.

One could suggest that this change in the behavior of the
plateaus by increasing the current is due to an increase in
the bulk current density j = I/WH [15]. However, this is in
contrast to the follow-up data presented in Fig. 8. Here the
current was fixed at 10 nA, and the temperature was held
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FIG. 8. Plot of Rxy versus B for different Vsg applied on the split
gates.
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at BT, but the size of the channel was altered by depleting
the electrons under the application of Vsg, resulting in an
increase in current density. From Fig. 8 it can be seen that
by increasing Vsg the overshooting is enhanced for all the
integer and fractional states mentioned earlier and even seems
to create an overshooting effect for the ν = 5 state. Therefore,
thinking that the average bulk current density j has an effect
on the overshoot effect would be rather naive. Consequently,
the current I is the only decisive parameter on the evolution of
the overshooting. This is compatible with the work by Sailer
et al. [15], with the only difference being that the constrictions
were achieved lithographically as opposed to the electrostatic
methods in our case. Rather, the fact that the overshoot effect
increases by decreasing the channel size indicates that the
anomalous increase in the Hall resistance is not related to the
bulk of the 2DEG [15].

The data fit well with the idea of the screening theory;
that is, as the electrons leak out of an IS within the evanes-
cent regime, the electron gas will be heated up locally. The
electrons will then scatter in the nearby compressible region
at the low-B end of a Hall plateau. The first IS to be af-
fected will be the outer one as the overshoot is destroyed
with increasing sample current. Nevertheless, the inner IS is
less affected, leading to a preserved Hall plateau. Second,
another consequence of the increased currents through the
sample is the tilting of the potential landscape [36] in the out-
of-linear-response regime. Both evanescent ISs at one edge
boundary become wider at the expense of both ISs at the edge
boundary on the other side. For a certain current amplitude,
the narrowest outer IS breaks down, resulting in a breakdown
of the overshoot [15].

The channel’s size dependence on the overshoot can be
explained as a consequence of the current starting to leak out
of the inner IS at the lower magnetic end of the plateaus, and
it redistributes to the adjacent resistance minimum [15]. As
the channel is further constricted, less current flows in the
bulk. Therefore, more current is confined within the adjacent
IS which is in an evanescent state and is at a local resistance
minimum. The result is that the overshoot amplitude increases
due to the redistribution of the current between the evanescent
IS and the bulk [15].

Also by using Eq. (14) and comparing the areas overlap-
ping within the evanescent regime the amount of overshooting

can be estimated to a good approximation. For example, for
ν = 5/3 the overshoot is measured as ∼17 390 k�. By calcu-
lating the areas of the overlapping currents for ν = 5/3, that
is, taking into account the overlapped areas of ν = 1, ν = 4/3,
ν = 3/2, and ν = 5/3, from Fig. 5 and assuming the sum
of the areas enclosed for each IS is proportional to the total
current in the system, one can estimate the overshooting for
ν = 5/3 as ∼17 600 k�. The discrepancy is small enough to
be considered a good match between the two values.

Further studies could lead to a better understanding of
harnessing and manipulating the powers of the QHE for future
technologies, like quantum computers and metrology. The
incompressible nature of the edge states is an ideal candi-
date to implement semiconductor logic gates for flying-qubit
quantum computing architectures due to their large coherence
length [37]. Additionally, fractional states, e.g., the 5/2 state,
are thought to lead to topologically protected non-Abelian
states used for quantum computing [38], and the Landau
quantization was shown to be of importance in storing energy
due to high magnetocapacitance at both integer and fractional
states due to the energy gap forming [39].

V. CONCLUSIONS

We have shown the presence of an anomalous increase in
the Hall resistance (overshoot) for both integral and fractional
states. The self-consistent screening theory calculations for
the incompressible and compressible states for both these
types of states are in good agreement with the data pre-
sented in this paper. The calculations took into account both
the dimensions of the Hall bar and the fact that the device
was etched. The various observations with the evolution of
the overshooting by changing the parameters of tempera-
ture, sample current, and channel constriction via electrostatic
methods are all well understood with regards to the screening
theory.
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[18] J. J. Marě, A. Siddiki, D. Kindl, P. Hubík, J. Krištofik, and K.
Krištofik, Electrostatic screening and experimental evidence of
a topological phase transition in a bulk quantum Hall liquid,
New J. Phys. 11, 083028 (2009).

[19] A. Siddiki, J. Horas, D. Kupidura, W. Wegscheider, and S.
Ludwig, Asymmetric nonlinear response of the quantized Hall
effect, New J. Phys. 12, 113011 (2010).

[20] C. W. J. Beenakker, Edge Channels for the Fractional Quantum
Hall Effect, Phys. Rev. Lett. 64, 216 (1990).

[21] A. M. Chang, A unified transport theory for the integral and
fractional quantum Hall effect: Phase boundaries, edge currents,
and transmission/reflection probabilities, Solid State Commun.
74, 871 (1990).

[22] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Electro-
statics of edge channels, Phys. Rev. B 46, 4026 (1992).

[23] A. Salman, M. B. Yucel, and A. Siddiki, Edge electrostatics
revisited, Phys. E (Amsterdam, Neth.) 47, 229 (2013).

[24] K. Lier and R. R. Gerhardts, Self-consistent calculations of
edge channels in laterally confined two-dimensional electron
systems, Phys. Rev. B 50, 7757 (1994).

[25] A. Siddiki, S. Erden Gulebaglan, N. Boz Yurdasan, G. Bilgec,
A. Yildiz, and I. Sokmen, Evanescent incompressible strips
as origin of the observed Hall resistance overshoot, Europhys.
Lett. 92, 67010 (2010).

[26] S. Takaoka, K. Oto, S. Uno, K. Murase, F. Nihey, and K.
Nakamura, Edge States in the Fractional Quantum Hall Effect
Regime Investigated by Magnetocapacitance, Phys. Rev. Lett.
81, 4700 (1998).

[27] G. Ernst, N. B. Zhitenev, R. J. Haug, and K. Von Klitzing, Dy-
namic Excitations of Fractional Quantum Hall Edge Channels,
Phys. Rev. Lett. 79, 3748 (1997).

[28] A. F. Braña, C. Diaz-Paniagua, F. Batallan, J. A. Garrido,
E. Muñoz, and F. Omnes, Scattering times in AlGaN/GaN
two-dimensional electron gas from magnetoresistance measure-
ments, J. Appl. Phys. 88, 932 (2000).

[29] A. Siddiki, Electrostatic theory of irregular conductance oscil-
lations through a quantum constriction under quantized Hall
conditions, Physica E 122, 114145 (2020).

[30] A. Usher, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Observa-
tion of magnetic excitons and spin waves in activation studies of
a two-dimensional electron gas, Phys. Rev. B 41, 1129 (1990).

[31] T.-Y. Huang, C.-T. Liang, Y. F. Chen, M. Y. Simmons, G.-H.
Kim, and D. A. Ritchie, Direct measurement of the spin gaps
in a gated GaAs two-dimensional electron gas, Nanoscale Res.
Lett. 8, 138 (2013).

[32] A. Siddiki and R. R. Gerhardts, Incompressible strips in dissi-
pative Hall bars as origin of quantized Hall plateaus, Phys. Rev.
B 70, 195335 (2004).

[33] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall Effect, Phys. Rev. Lett. 63, 199 (1989).

[34] A. Chang, The Quantum Hall Effect, edited by R. Prange and S.
Girvin (Springer, New York, 1989).

[35] D. B. Chklovskii, Structure of fractional edge states: A
composite-fermion approach, Phys. Rev. B 51, 9895 (1995).

[36] A. Siddiki, Current-direction-induced rectification effect on
(integer) quantized Hall plateaus, Europhys. Lett. 87, 17008
(2009).

[37] P. Bordone, L. Bellentani, and A. Bertoni, Quantum computing
with quantum-Hall edge state interferometry, Semicond. Sci.
Technol. 34, 103001 (2019).

[38] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[39] E. M. Kendirlik, S. Sirt, S. B. Kalkan, N. Ofek, V. Umansky, and
A. Siddiki, The local nature of incompressibility of quantum
Hall effect, Nat. Commun. 8, 14082 (2017).

115306-9

https://doi.org/10.1103/PhysRevB.90.201304
https://doi.org/10.1103/PhysRevLett.122.086803
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.64.677
https://doi.org/10.1103/PhysRevLett.64.2062
https://doi.org/10.1016/0039-6028(86)90963-5
https://doi.org/10.1016/0039-6028(92)90350-F
https://doi.org/10.1016/0921-4526(93)90312-T
https://doi.org/10.1088/1367-2630/12/11/113033
https://doi.org/10.1016/S1386-9477(01)00267-3
https://doi.org/10.1140/epjb/e2013-30758-3
https://doi.org/10.1088/1367-2630/11/8/083028
https://doi.org/10.1088/1367-2630/12/11/113011
https://doi.org/10.1103/PhysRevLett.64.216
https://doi.org/10.1016/0038-1098(90)90447-J
https://doi.org/10.1103/PhysRevB.46.4026
https://doi.org/10.1016/j.physe.2012.10.035
https://doi.org/10.1103/PhysRevB.50.7757
https://doi.org/10.1209/0295-5075/92/67010
https://doi.org/10.1103/PhysRevLett.81.4700
https://doi.org/10.1103/PhysRevLett.79.3748
https://doi.org/10.1063/1.373758
https://doi.org/10.1016/j.physe.2020.114145
https://doi.org/10.1103/PhysRevB.41.1129
https://doi.org/10.1186/1556-276X-8-138
https://doi.org/10.1103/PhysRevB.70.195335
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.51.9895
https://doi.org/10.1209/0295-5075/87/17008
https://doi.org/10.1088/1361-6641/ab3be6
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/ncomms14082

