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We compute binding energies, Stark shifts, electric-field-induced dissociation rates, and the Franz-Keldysh
effect for excitons in phosphorene in various dielectric surroundings. All three effects show a pronounced
dependence on the direction of the in-plane electric field with the dissociation rates, in particular, decreasing
by several orders of magnitude upon rotating the electric field from the armchair to the zigzag axis. To better
understand the numerical dissociation rates, we derive an analytical approximation to the anisotropic rates
induced by weak electric fields thereby generalizing the previously obtained result for isotropic two-dimensional
semiconductors. This approximation is shown to be valid in the weak-field limit by comparing it to the exact
rates. The anisotropy is also apparent in the large difference between armchair and zigzag components of the
exciton polarizability tensor, which we compute for the five lowest-lying states. As expected, we also find much
more pronounced Stark shifts in either the armchair or the zigzag direction, depending on the symmetry of
the state in question. Finally, an isotropic interaction potential is shown to be an excellent approximation to
a more accurate anisotropic interaction derived from the Poisson equation, confirming that the anisotropy of
phosphorene is largely due to the direction dependence of the effective masses.
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I. INTRODUCTION

With the experimental discovery of graphene in 2004
[1], interest in two-dimensional (2D) materials increased
enormously. Just a few years later, the successful exfoliation
of monolayer MoS2 [2] produced the first atomically thin
direct band-gap semiconductor. One of the newest members of
the 2D semiconductor family is monolayer black phosphorus
(BP), referred to, here, as phosphorene [3–7]. It has seen a
remarkable rate of growth in research interest, even more so
than graphene [8]. Unlike transition-metal dichalcogenides
(TMDs) where the band gap is direct only in their monolayer
form [9], BP is a direct band-gap semiconductor regardless
of the number of layers [10–13]. The magnitude of the
gap evolves from around 0.3 eV in its bulk form to around
2 eV in monolayers [5,6,14–16]. The extreme tunability
of the band gap as well as its highly anisotropic nature,
make phosphorene an exceptionally interesting material for
both practical applications and theoretical investigation. For
instance, the tunable gap makes phosphorene a promising
material for converting solar energy to chemical energy
[17]. The anisotropy of phosphorene shows up in almost
all of its physical properties, such as its electrical [18,19],
magneto-optical [20–22], thermal [23,24], and mechanical
[25] properties. Particular examples of highly anisotropic
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quantities in phosphorene are the conductivity [26], optical
absorption [7], and photoluminescence [16].

Very strong absorption peaks have been observed in mono-
layer and bilayer phosphorene [5,27] due to strongly bound
excitons [15,28–30]. How such strongly bound excitons inter-
act with external electric fields is an interesting area of study,
particularly, in phosphorene as the direction of the in-plane
field will matter. An applied electric field pulls electrons and
holes in opposite directions, which causes a shift in the exciton
energy and may even lead to dissociation of the exciton. Col-
lectively, these effects have been studied intensely in carbon
nanotubes [31–33] as well as monolayer [34–39], bilayer [40],
and multilayer TMDs [41]. They have been studied to a lesser
degree in phosphorene [38,42] where focus has been on the
energy shift rather than field-induced exciton dissociation,
which is one of the main novel results of the present paper.
One of the motivations for applying external electric fields
to low-dimensional semiconductors from a device perspective
is to induce exciton dissociation and thereby improve pho-
tocurrent generation in, e.g., solar cells and photodetectors.
The exciton Stark effect is also promising as a means of ma-
nipulating the properties of semiconductors. For instance, the
shift in exciton energy and possibility of dissociation caused
by an applied field shifts and broadens the optical absorption
peaks. This is known as the Franz-Keldysh effect [43,44] and
was studied for monolayer TMDs in Ref. [34]. In TMDs,
both Stark and Franz-Keldysh effects are independent of the
direction of an in-plane electric field. In contrast, the highly
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anisotropic nature of phosphorene leads to a Stark effect that
is strongly dependent on the direction of the field [38,42], and
this effect should also be visible in the Franz-Keldysh effect.

In the present paper, we study the exciton Stark and Franz-
Keldysh effects in phosphorene. The paper is structured as
follows. In Sec. II, we introduce the model used and show that
using an isotropic interaction potential between the electron
and the hole is an excellent approximation to a more accurate
anisotropic interaction. For phosphorene, the majority of the
anisotropy, therefore, comes from the direction dependent ef-
fective masses. In this section, we also compute the energies
of the five lowest-lying exciton states in phosphorene in three
different dielectric surroundings and discuss their symmetries.
In Sec. III, the focus is on the exciton Stark effect. Here, we
observe Stark shifts and exciton dissociation rates that are
strongly dependent on the direction of the field. We compare
the Stark shifts to previously published results [38,42] and
find a good agreement. The exciton dissociation rates, how-
ever, have not been computed before. To better understand
these effects, we compare the Stark shifts and dissociation
rates to analytical approximations derived from perturbation
theory and weak-field asymptotic theory (WFAT), respec-
tively. In Sec. IV, we turn to the Franz-Keldysh effect, which
also exhibits pronounced direction dependence. Finally, the
results are concluded upon in Sec. V. The text is supplemented
by three appendices. In Appendix A, the exciton interaction
potential in an anisotropic semiconductor is discussed; in
Appendix B, we consider how strain induced by a lattice
mismatch between phosphorene and the encapsulating ma-
terial affects the effective masses, and, in turn, the exciton
Stark effect; and in Appendix C, an anisotropic weak-field
approximation for the exciton dissociation rate is derived.

II. EXCITONS IN PHOSPHORENE

By now, it is well known that many excitonic effects are
accurately described by modeling the excitons as electron-
hole pairs satisfying the Wannier equation [45,46]. It has
been shown repeatedly that the Wannier model reproduces
the exciton binding energies obtained from first-principles
calculations to a satisfactory degree [47–50]. This is for-
tunate, as first-principles calculations require solving the
computationally demanding Bethe-Salpeter equation [51,52].
Importantly, the Wannier model has also been shown to agree
with experimental results for the exciton Stark effect, field-
induced dissociation, and the Franz-Keldysh effect [37]. For
anisotropic 2D semiconductors, the Wannier equation in the
absence of an electric field reads (in atomic units)[

− 1

2μx

∂2

∂x2
− 1

2μy

∂2

∂y2
+ V (r) − E

]
ψ (r) = 0, (1)

where V is the electron-hole interaction, E is the energy, and

μx/y = m(x/y)
e m(x/y)

h

m(x/y)
e + m(x/y)

e

(2)

is the direction-specific reduced mass with m(x/y)
e and m(x/y)

h
being the electron and hole effective masses along the x/y di-
rection, respectively. The exciton interaction V in anisotropic
semiconductors is, of course, anisotropic. It may be found

FIG. 1. Sketch of the geometry. (a) Side view of a phosphorene
sheet encapsulated by media with dielectric tensors εa and εb. (b) Top
view indicating the electric-field orientation.

by modeling the encapsulated 2D semiconductor [depicted
in Fig. 1(a)] as a three-layer structure with a piecewise
constant dielectric function and, then, solving the Poisson
equation for two charges in this structure. This is performed in
Appendix A. For a superstrate, a 2D semiconductor, and a sub-
strate with dielectric tensors εa = diag(ε(a)

xx , ε(a)
xx , ε(a)

zz ), ε =
diag(εxx, εyy, εzz ), and εb = diag(ε(b)

xx , ε(b)
xx , ε(b)

zz ), respectively,
we find with a linearized dielectric function,

V (r, θ ) ≈ −
∫ ∞

0

J0(qr)√
εxεy

dq

−2
∞∑

k=1

cos(2kθ )
∫ ∞

0

(√
εx − √

εy√
εx + √

εy

)k

J2k (qr)dq,

(3)

where εx = κ + r0xq, εy = κ + r0yq, and κ =√
ε

(a)
xx ε

(a)
zz +

√
ε

(b)
xx ε

(b)
zz

2 . The screening lengths are defined as
r0x = 2πα(2D)

xx and r0y = 2πα(2D)
yy , where α(2D)

xx and α(2D)
yy

are the 2D sheet polarizabilities in the x and y directions,
respectively. These are the microscopic definitions of the
screening lengths [53]. The macroscopic definitions may be
seen in Appendix A. Note that Eq. (3) reduces to the usual
Rytova-Keldysh potential [54–56] in the isotropic case.

The polarizabilities for phosphorene were computed in
Ref. [28] where the authors found α(2D)

xx = 4.20 and α(2D)
yy =

3.97 Å. These values are quite close, which, in turn, leads to
a very weak angular contribution to the interaction. As a first
approximation, we may, therefore, consider only the leading
term. Further expanding

√
εxεy to first order in q, we find the

Rytova-Keldysh (RK) form [54,55]

V (r, θ ) ≈ VRK(r) = − π

2r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (4)
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FIG. 2. Error introduced by using the isotropic approximation in
Eq. (4) instead of the full interaction in Eq. (3) to describe excitons
in phosphorene.

with r0 = (r0x + r0y)/2. This form agrees with the interac-
tion used by many authors to study excitons in phosphorene
[28,30,57]. Using the isotropic approximation to describe the
excitons is justified by noting that it agrees with the full po-
tential in Eq. (3) to within 1% for all r and θ . Errors for three
different dielectric surroundings and directions are shown in
Fig. 2. As is evident, these errors are low, and they decrease
as θ tends to π/4 as the dominating angular contribution from
the k = 1 term tends to zero in this region. The parameters
used to describe excitons in phosphorene in the present paper
are summarized in Table I.

To perform numerical calculations, it is convenient to
switch to the coordinates introduced in Ref. [28] defined by

X =
√

μx

2μ
x, Y =

√
μy

2μ
y, μ = μxμy

μx + μy
. (5)

This transforms Eq. (1) into{
− 1

4μ
∇2 + VRK[R

√
1 + β cos 2
] − E

}
ψ (R) = 0, (6)

with β = (μy − μx )/(μy + μx ), R and 
 the polar represen-
tation of the XY plane and where the Laplacian is to be taken
with respect to these coordinates. The transformation makes
the kinetic energy isotropic at the cost of making the potential
energy anisotropic. The reasons that this transformation is
useful are threefold: First, it is more intuitive to work with an
anisotropic potential than an anisotropic kinetic energy; sec-
ond, the numerical procedure we will use consists of resolving

TABLE I. Parameters used to describe excitons in phosphorene.
The effective masses are from Ref. [58], the polarizabilities are from
Ref. [28], and the rest of the parameters are computed from these
values.

α(2D)
xx α(2D)

yy m(x)
e m(y)

e m(x)
h m(y)

h r0 μx μy

4.20 Å 3.97 Å 0.46 1.12 0.23 1.61 25.67 Å 0.1533 0.6605

TABLE II. Symmetry of the four types of unperturbed states. The
first column indicates the axis or point considered, and the remaining
columns indicate the symmetries or properties of the states about said
axis or point. The final two rows indicate whether or not the states
have angular nodes along the X or Y axes. A zero indicates an angular
node, whereas a dash indicates that nothing general may be inferred
about the states along the axes from their symmetry.

State ce State co State se State so

About X axis Even Even Odd Odd
About Y axis Even Odd Odd Even
About origin Even Odd Even Odd
Along X axis – 0 0
Along Y axis — 0 0 —

the wave function in a basis, and the number of basis functions
needed to represent the polar wave function is significantly
less than those needed to represent the Cartesian wave func-
tion; and, finally, the polar representation of the kinetic energy
is simple and, thus, leads to simple matrix elements. The states
may be expressed generally as

ψ (R) =
∞∑

m=−∞
ϕm(R) ×

{
cos(m
), m � 0,

sin(m
), m > 0,
(7)

where ϕm may be understood as the Fourier coefficients. Note
that the coefficients depend continuously on R and will later
be expanded in a radial basis. As pointed out in Ref. [28],
the unperturbed eigenstates of Eq. (6) fall into four distinct
groups. This is most easily seen by recognizing that the poten-
tial is even in 
 and is invariant under the shift 
 → 
 + π .
It, therefore, has a Fourier series consisting of cosines of even
order, and it becomes easy to see that for coupling to occur, the
angular functions must be of the same type (i.e., sine/cosine)
and have the same angular momentum parity. This results in
the following four types of states:

ψce =
∞∑

m=0

ϕ(ce)
m (R) cos(2m
), (8)

ψco =
∞∑

m=0

ϕ(co)
m (R) cos[(2m + 1)
], (9)

ψse =
∞∑

m=1

ϕ(se)
m (R) sin(2m
), (10)

ψso =
∞∑

m=0

ϕ(so)
m (R) sin[(2m + 1)
], (11)

where the subscripts c/s and e/o denote whether the trigono-
metric function is a cosine/sine and whether the angular
momentum parity is even/odd, respectively. A couple of sym-
metry observations follow immediately and are summarized
in Table II. Importantly, states with even and odd angular
momenta are symmetric and antisymmetric about the origin,
respectively. This means that the co and so states are neces-
sarily zero at the origin and are, therefore, not optically active
when no external electric field is present as we will see later
on when we compute the optical absorption. The shape of the
states may be inferred from the fact that some of them have
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TABLE III. Five lowest exciton energies in phosphorene in three
different dielectric surroundings. The first column numerates the
states with increasing energy, the second column indicates which
of the four types [Eqs. (8)–(11)] the state belongs to, and the re-
maining columns show the exciton energies in the three dielectric
surroundings.

Freely suspended SiO2 substrate hBN encapsulation
n Type En (meV) En (meV) En (meV)

0 ce −822 −459 −260
1 so −519 −227 −99
2 ce −410 −163 −67
3 co −385 −145 −55
4 so −320 −113 −42

angular nodes along a specific axis. In particular, the co and so
states have nodes along the Y and X axes, respectively, and the
se state has nodes along both. They will, therefore, be slightly
deformed versions of the familiar px, py, and dxy orbitals.

The numerical procedure we will use throughout the paper
is to solve the Wannier equation using a finite element repre-
sentation of the exciton wave functions. The wave functions
are expanded as in Eq. (7), including angular momenta up to
some number M. The radial ϕm functions are then expanded
in a finite element basis f (n)

i that are nonzero only on a single
radial segment n defining a particular range of the radial
coordinate. Their exact form as well as further details of the
numerical procedure can be found in Ref. [39]. To summarize

ϕm(R) =
N∑

n=1

p∑
i=1

c(m,n)
i f (n)

i (R), (12)

where c(m,n)
i are the expansion coefficients obtained by solving

the resulting matrix eigenvalue problem.
In the present paper, we will study phosphorene in three

different dielectric environments. Namely, freely suspended
(κ = 1), on an SiO2 substrate (κ = 2.4), and encapsulated by
hBN (κ = 4.5). The energy and symmetry of the five lowest-
lying states for the three dielectric surroundings are shown in
Table III. As can be seen, we find exciton binding energies of
822, 459, and 260 meV, respectively, which corresponds well
with those presented in Refs. [28–30,42,57,59] (see Ref. [30]
for a table summarizing the binding energies from more ref-
erences). Additionally, the energies of the excited states are in
good agreement with those found in Ref. [42]. Note that the
n = 1 state is a so state that has an angular node along the
X axis. The fact that this state has a lower energy than the co
state can be understood by considering the potential in Eq. (6).
It is weaker along the X axis than it is along the Y axis, thus,
favoring a state along Y . As a final note, the se state is not
among the first five states. That it has such a large energy is
no surprise given its dxy-like shape.

III. ANISOTROPIC EXCITON STARK EFFECT

We are interested in seeing how the anisotropic nature of
phosphorene affects both the exciton Stark shifts and dissoci-
ation rates when an in-plane electrostatic field is applied to the
sheet. In the presence of an electric field, the Wannier equation

reads{
− 1

4μ
∇2 + V [R

√
1 + β cos 2
] + E cos α

√
2μ

μx
X

+ E sin α

√
2μ

μy
Y − E

}
ψ (R) = 0, (13)

where E is the electric-field strength and α ∈ [0, π/2] its
angle to the original x axis. The setup is pictured in Fig. 1,
where the field direction is indicated in panel (b). If the density
of excitons becomes very large, e.g., if they are induced by
an intense AC field, then exciton-exciton interactions become
important. However, we will limit ourselves to the low-density
regime so that these interactions can be ignored. Applying
an electric field to the exciton causes the bound states to
become resonance states with a finite lifetime. Such states
may be described as eigenstates of the Hamiltonian subjected
to outgoing wave boundary conditions, simulating that the
electron and hole are accelerating in opposite directions. The
Hamiltonian is not Hermitian when operating on these states,
and the eigenvalue is, therefore, generally complex [35,41].
The Stark shift, then, corresponds to the change in the real
part of the energy as a function of field strength, whereas the
imaginary part describes the dissociation rate by the relation
� = −2 Im E . This complex eigenvalue is most easily ob-
tained by using the complex scaling procedure [60,61]. Here,
the radial coordinate is rotated into the complex plane, which
transforms the diverging behavior of the resonance states for
real r into bound states along a complex contour reiϕ .

The procedure we will use, here, has been laid out in
Ref. [39] where we compute the exciton Stark effect in TMDs.
It consists of expanding the resonance state in a finite element
basis as described above and only complex scaling the coor-
dinate outside a desired radius. This technique is referred to
as exterior complex scaling [62], and it makes it much easier
to obtain the dissociation rates for weak fields numerically.
The results for phosphorene in free space on an SiO2 substrate
and encapsulated by hBN can be seen in the top, middle, and
bottom panels of Fig. 3, respectively. It is immediately clear
that the field direction, indicated by the line color, is very
important. This is in contrast to the effect in TMDs, which
is fully isotropic [35,37,39]. The largest Stark shifts (left axis)
and dissociation rates (right axis) are seen for fields pointing
along the x axis, which coincides with the direction of lowest
effective mass. Rotating the field from the x axis to the y axis
reduces the dissociation rate by several orders of magnitude
due to the increased effective mass. The direction-dependent
Stark shifts and dissociation rates add an additional degree
of freedom when using phosphorene in device design as not
only can they be controlled by the dielectric environment, but
also by the field direction as well. Taking a closer look at
the effect of the dielectric surroundings, both the Stark shifts
and the dissociation rates increase significantly by placing the
phosphorene sheet on an SiO2 substrate, and even more so
by encapsulating it in hBN. This is to be expected as the
exciton binding energy is reduced considerably with increased
screening. It should also be noted that the shifts and rates
are much lower than those in popular TMDs [39], which is a
direct consequence of the larger binding energies of excitons
in phosphorene.
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FIG. 3. Stark shifts 
E = Re(E − E0) (left axis) and dissocia-
tion rates � = −2 Im E (right axis) of excitons in phosphorene that
is freely suspended (top), on an SiO2 substrate (middle), or encap-
sulated by hBN (bottom). For each of the three cases, electric fields
with an angle to the x-axis α ranging from 0 to π/2 are considered.
Evidently, the Stark shifts and dissociation rates decrease with an
increasing angle as expected since the y component of the reduced
mass is much larger than the x component.

In the Wannier model, effective masses are taken as those
of free-standing phosphorene. However, if the phosphorene
lattice is strained due to mismatch with the surrounding
media, both the effective masses as well as the screening
length r0 will be altered. The relative change in the former
is much greater than the latter [63]. Hence, strain effects on
the effective masses dominate, and we discuss the impact on
Stark shifts and dissociation rates in Appendix B. We find
that taking into account the modified effective masses does
not change the results qualitatively. The Stark shifts remain
almost identical, whereas the dissociation rates are reduced
due to the change in binding energy.

A. Exciton Stark shift and polarizability

In this section, we will look at the exciton Stark shift in
more detail and compare to the shift predicted by perturbation
theory. The anisotropic exciton Stark shift in few layer BP in

free space and in hBN surroundings was studied in Ref. [38]
and on an SiO2 substrate in Ref. [42], and we will, thus,
perform a detailed comparison to the results in these papers
for a single layer of BP, i.e., phosphorene. One of the most im-
portant quantities describing how anisotropic excitons interact
with the electric field is their polarizabilities. The perturbation
series for the Stark shift of state n may be written as [64]


En = Re
[
En(E ) − E (0)

n

] = E (1)
n + E (2)

n + O(E3), (14)

with

E (1)
n = 〈

ψ (0)
n

∣∣H ′ ∣∣ψ (0)
n

〉
, (15)

and

E (2)
n =

∑
k 	=n

∣∣ 〈ψ (0)
k

∣∣H ′ ∣∣ψ (0)
n

〉 ∣∣2
E (0)

n − E (0)
k

, (16)

where

H ′ = E cos α

√
2μ

μx
X + E sin α

√
2μ

μy
Y, (17)

and the sum is to be taken over all the unperturbed states.
The perturbation H ′ only couples states with different parity
angular momenta [see Eqs. (8)–(11)] . The first-order correc-
tion, therefore, immediately reduces to zero. The second-order
correction, on the other hand, may be written as

E (2)
n = −1

2
χXX

n cos2 α E2 − 1

2
χYY

n sin2 α E2, (18)

where the X and Y components of the exciton polarizability
tensor for the four types of states are given by

χXX
ce = 4μ

μx

∑
co

|Xco,ce|2
Eco,ce

, χYY
ce = 4μ

μy

∑
so

|Yso,ce|2
Eso,ce

, (19)

χXX
co = 4μ

μx

∑
ce

|Xce,co|2
Ece,co

, χYY
co = 4μ

μy

∑
se

|Yse,co|2
Ese,co

, (20)

χXX
se = 4μ

μx

∑
so

|Xso,se|2
Eso,se

, χYY
se = 4μ

μy

∑
co

|Yco,se|2
Eco,se

, (21)

χXX
so = 4μ

μx

∑
se

|Xse,so|2
Ese,so

, χYY
so = 4μ

μy

∑
ce

|Yce,so|2
Ece,so

, (22)

with the shorthand notation,

Xi j = 〈
ψ

(0)
i

∣∣X
∣∣ψ (0)

j

〉
, Yi j = 〈

ψ
(0)
i

∣∣Y
∣∣ψ (0)

j

〉
, (23)

Ei j = E (0)
i − E (0)

j . (24)

The finite element expansion described above is very flexible
and perfectly capable of resolving both the bound and the
continuous spectrum of unperturbed states. In this manner,
we compute the exciton polarizabilities for the five lowest-
lying exciton states. They are summarized in Table IV, and
a comparison between Eq. (18) and the numerically exact
Stark shifts is shown in Fig. 4 for very weak fields. It is clear
that all of the states have a highly anisotropic response to an
applied field. We observe, as expected, that the X component
of the polarizability is larger than the Y component for the
fundamental exciton. The opposite is the case for the so states,
which is of no surprise given their py-like shape. Perhaps more
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TABLE IV. Exciton polarizabilities in units of 10−18 eV m−1 V−2 of the five lowest-lying excitons in phosphorene in three different
dielectric surroundings. The first column numerates the states with increasing energy (shown in Table III), the second column indicates
which of the four types [Eqs. (8)–(11)] the states belong to, and the remaining columns show the exciton polarizabilities in the three dielectric
surroundings.

Freely suspended SiO2 substrate hBN encapsulation

n Type χX X
n χYY

n χX X
n χYY

n χX X
n χYY

n

0 ce 2.149 1.137 3.830 1.870 8.058 3.614
1 so 7.603 15.65 20.01 43.69 71.08 168.7
2 ce 55.57 20.02 184.9 59.49 749.1 195.8
3 co 3.303 10.77 18.46 34.70 184.9 158.5
4 so 67.42 120.3 290.0 583.5 1559 3673

FIG. 4. Comparison between the numerically exact Stark shifts
(circles) and second-order perturbation theory Eq. (18) (solid lines)
for the five lowest-lying exciton states in freely suspended phospho-
rene. States n ∈ {0, 1, 3} are shown in the large panels, whereas the
insets show n ∈ {2, 4}. The top, middle, and bottom panels represent
fields with an angle to the x axis of 0, π/4, and π/2, respectively.
Good agreement is found across all field angles for very weak electric
fields.

surprisingly we find that the Y component of the co state is
larger than the X component.

In Ref. [42], the authors use the RK potential with pa-
rameters that are almost identical to ours to study excitons
in phosphorene on an SiO2 substrate. However, our reduced
masses are slightly different from theirs. Specifically, the
authors use μx = 0.089 and μy = 0.650 from Ref. [6], in-
stead, of our μx = 0.153 and μy = 0.661 from Ref. [58]. We,
therefore, expect our exciton energies to be slightly lower
as well as a lower degree of anisotropy. Indeed, they find
E0 = −396 and E2 = −143 meV where we find E0 = −459
and E2 = −163 meV, showing a good qualitative agreement.
Turning to the polarizabilities, the authors of Ref. [42] de-
termine the polarizabilities of the n = 0 and n = 2 states by
fitting to the numerical Stark shifts. Using this procedure,
the authors find the polarizabilities in the X (Y ) directions to
be 7.4 (2.7) and 200 (96) for the n = 0 and n = 2 excitons,
respectively, all in units of 10−18 eV m−1 V−2. Comparing
to our results in Table IV, we find 3.8 (1.9) and 185 (59.5)
for the same cases. We, thus, obtain slightly lower polariz-
abilities as expected from the larger binding energies. The
same authors also compute the Stark shifts of the fundamental
exciton for field strengths up to 20 V/μm and find shifts of
around 1.6 and 0.6 meV for fields in the X and Y directions,
respectively. For the same fields, we find shifts of 0.8 and
0.4 meV. In Ref. [38], the authors study the Stark shifts for
freely suspended phosphorene as well as phosphorene in hBN
surroundings. These authors use the same reduced mass as
the authors of Ref. [42] and find polarizabilities of 1.186
(0.871) and 6.162 (2.598) × 10−18 eV m−1 V−2 in the X (Y )
directions for freely suspended and hBN encapsulated phos-
phorene, respectively. These values are in good agreement
with our results.

B. Analytical weak-field approximation for exciton dissociation

Analytical weak-field expressions for the dissociation rates
of excitons in monolayer [39,65] and bilayer TMDs [40]
have been derived previously using WFAT [66]. These ex-
pressions are useful for obtaining a better understanding of
field-induced exciton dissociation as well as obtaining quick
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TABLE V. Asymptotic coefficient g0(α) for phosphorene in three
different dielectric surroundings for various field directions. The
coefficient is used in the analytical approximation to the exciton
dissociation rate Eq. (31) and has been obtained by extrapolating
�exact/W0 to E = 0.

Freely suspended SiO2 substrate hBN encapsulation
α g0 g0 g0

0 1.835 × 10−2 1.344 × 10−1 2.122 × 10−1

π

5 1.714 × 10−2 1.271 × 10−1 2.051 × 10−1

3π

10 1.239 × 10−2 1.090 × 10−1 1.812 × 10−1

2π

5 2.614 × 10−3 4.879 × 10−2 9.985 × 10−2

π

2 1.495 × 10−5 2.892 × 10−3 1.322 × 10−2

estimates of the rates at weak electric fields without per-
forming heavy numerical computations. This latter point is of
great importance as the numerical procedures break down for
sufficiently weak fields [67]. To implement WFAT, the binding
potential must have a sufficiently simple asymptotic behavior
(specified later), and the electric field must point along the x
axis (or z axis for three-dimensional problems). The reason
that the field must point along this axis is that it is very simple
to deal with in parabolic coordinates, and leads to differential
equations that decouple in the asymptotic region. For TMDs,
advantage was taken of the isotropic nature of the problem
by letting the electric field point in the x direction, and the
resulting problem, therefore, had the form[

−1

2
∇2 + V (r) + Ex − E

]
ψ (r) = 0,

V (r) ∼ − 1

κr
for r → ∞, (25)

where V is a radial potential. Parabolic coordinates, thus,
allow separation of this problem in the asymptotic region.
A similar procedure may be used in the present case, but a
coordinate transformation is needed in order to get the desired
axis to coincide with the field direction.

Generalizing the coordinate transformations in the previ-
ous section slightly, we write

ζx = √
μx cos α̃x + √

μy sin α̃y, (26)

ζy = −√
μx sin α̃x + √

μy cos α̃y. (27)

Choosing α̃ = arctan(
√

μx

μy
tan α) the Wannier equation for

phosphorene becomes{
−1

2
∇2 + V

[
ζ√
2μ

√
1 + β cos[2(� + α̃)]

]
+ Ẽζx − E

}

× ψ (ζ) = 0, (28)

with the effective field strength,

Ẽ = E

√
cos2 α

μx
+ sin2 α

μy
. (29)

Here, ζ and � are the polar representations of the ζx and ζy

coordinates. This brings the equation on the desired form. As

FIG. 5. Comparison between the numerically exact dissociation
rates (circles) and the anisotropic analytical weak-field approxima-
tion in Eq. (31) (solid lines). Good agreement is found across all
field angles for weak electric fields.

shown in Appendix C, applying a weak external field along
the ζx axis to a system with an isotropic kinetic energy and an
anisotropic potential satisfying

lim
ζx→−∞

−ζV (ζ) = Zasymp, (30)

where Zasymp is a positive constant, induces the dissociation
rate,

�approx(E, α) = |g0(α)|2W0(E, α). (31)

Here,

W0(E, α) = k

(
4k2

Ẽ

)2Zasymp/k−1/2

exp

(
−2k3

3Ẽ

)
, (32)
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and k = √
2|E0| where |E0| is the exciton binding energy. For

the present case, we find

Zasymp(α) = 1

κ

√
2μ(μy cos2 α + μx sin2 α)

(1 + β )μy cos2 α + (1 − β )μx sin2 α
.

(33)

Equation (31) generalizes the result in Ref. [39] to take into
account anisotropic effective masses. In the limit of zero
screening length r0 → 0, the RK potential simplifies to the
Coulomb potential, and the expression, therefore, also gen-
eralizes the ionization rate of a 2D hydrogen atom [68] to
one with an anisotropic reduced mass. Note that it reduces to
that of the isotropic case when μx = μy. The three direction-
dependent quantities in Eq. (31) are the field-independent
asymptotic coefficient g0, the effective field strength Ẽ , and
Zasymp. The asymptotic coefficient g0 may be computed from
the wave function far from the origin [see Eq. (C37)]. To
do so, however, one needs a very accurate numerical wave
function. This is reasonably easy to do for the isotropic
case as one may relate the coefficient to the solution of
the radial Schrödinger equation, obtaining effectively a one-
dimensional problem [39]. This procedure cannot be applied
in the present case, and we, therefore, determine g0 by ex-
trapolating �exact/W0 to E = 0. The obtained coefficients are
shown in Table V, and the results are compared in Fig. 5
where the agreement between the numerically exact results
and the analytical approximation is good for weak fields.

Evidently, the error grows very rapidly with increasing field
strength. However, for moderate field strengths, the errors are
acceptable, and Eq. (31), therefore, serves as a decent first
approximation to the weak-field exciton dissociation rates in
phosphorene.

IV. FRANZ-KELDYSH EFFECT

The Franz-Keldysh effect [43,44] constitutes a change in
optical absorption of a semiconductor due to an applied ex-
ternal electric field. The effect was computed for monolayer
TMDs in Ref. [34], and the same methodology used in that
paper will be used here. Assuming that the momentum matrix
elements are k independent, the exciton oscillator strength
may be determined by evaluating the wave function at the
origin [69]. The exciton susceptibility may then be evaluated
as

χ (ω) = χ0

∑
exc

|ψexc(0)|2
Eexc

[
E2

exc − (h̄ω + ih̄�)2
] , (34)

where the sum is taken over all exciton states. Here, χ0 is a
material-dependent constant, h̄ω is the photon energy, and h̄�

is a phenomenological line-shape broadening. The exciton en-
ergy is Eexc = Eg + En, where Eg is the band gap and En’s are
the (real) eigenvalues of Eq. (13). This corresponds to mea-
suring the exciton energies from the top of the valence band.
For the calculations in the present paper, we use a band gap
of Eg = 2 eV which is obtained from calculations within the

FIG. 6. Imaginary part of the susceptibility of phosphorene. The top, middle, and bottom rows correspond to phosphorene in free space,
on an SiO2 substrate, and encapsulated by hBN, respectively. The first, second, and third columns correspond to field angles of α ∈ {0, π

4 , π

2 },
respectively. Field strengths are indicated by line color where blue, red, and green represent E ∈ {0, 10, 20} V/μm, respectively. Two zooms
are shown in each panel: the left is a zoom of the fundamental peak, while the right enhances the spectra at higher photon energies.

115305-8



ANISOTROPIC STARK SHIFT, FIELD-INDUCED … PHYSICAL REVIEW B 102, 115305 (2020)

GW approximation in Ref. [15] and confirmed experimentally
by scanning tunneling microscopy/spectroscopy in Ref. [70].
Additionally, a line broadening of h̄� = 25 meV is used. The
energy eigenvalues are efficiently obtained by expressing the
wave function in a finite element basis as described above, and
solving the resulting eigenvalue problem.

The imaginary part of the susceptibility for phosphorene in
free space, on an SiO2 substrate, and encapsulated by hBN are
shown in the top, middle, and bottom rows of Fig. 6, respec-
tively. The structures are subjected to external in-plane electric
fields with angles α ∈ {0, π

4 , π
2 } to the x axis, indicated in the

first, second, and third columns, respectively. For each case,
field strengths of 0, 10, and 20 V/μm are considered and rep-
resented by the blue, red, and green lines, respectively. As the
field strength is increased, the peak absorption corresponding
to the fundamental exciton is redshifted. This is indicated in
the zoom plot on the left-hand side in each panel. Evidently,
the redshift decreases as the field is rotated from the x axis
to the y axis. This is to be expected as the effective mass
in the y direction is larger than in the x direction, and it is,
therefore, more difficult to polarize the fundamental exciton
along y than it is along x. This is also apparent from the
large differences between the x and the y components of the
polarizabilities shown in Table IV. In addition to the redshift,
the height of the fundamental peaks decreases with increasing
field strength. This is natural as a field pulls electrons and
holes in opposite directions thereby reducing the magnitude
of the wave function at the origin. The second peak in the
field free spectra corresponds to the third exciton n = 2. That
is, the exciton of type ce (see Table III). The reason that the
n = 1 state does not contribute to any peak in the field-free
spectra is that the state is antisymmetric about the origin [see
Eq. 11] and is, therefore, zero at the origin. When the field
is turned on, these wave functions become polarized and are,
thus, no longer zero at the origin, explaining their contribution
to the field-induced absorption spectra. Interestingly, the peak
close to the n = 1 transition energy is more pronounced for an
electric field along y than it is for a field along x. This is easy to
explain considering that the y component of the polarizability
is more than twice as large as the x component for this state.
It is, therefore, much easier to polarize along y than it is along
x. As a final note, we note that the characteristic field-induced
oscillations above the band gap [71] are clearly visible. Addi-
tionally, the field-free fundamental peak on an SiO2 substrate
at around 1.54 eV corresponds well with the experimentally
observed peak at 1.45 eV [5].

V. CONCLUSION

In the present paper, excitons in phosphorene subjected to
an external in-plane electric field have been studied. In partic-
ular, we have calculated the unperturbed energies and exciton
polarizabilities of the five lowest excitonic states in phospho-
rene in three different dielectric surroundings. Furthermore,
exciton Stark shifts, dissociation rates, and electroabsorption
have been computed for various field strengths and directions.
A pronounced dependence on the field direction is found for
all three quantities. For the fundamental exciton, a field along
the armchair axis leads to much more pronounced effects than
one along the zigzag direction. For example, the field-induced

exciton dissociation rates in phosphorene encapsulated by
hBN decrease by several orders of magnitude upon rotating
the electric field from the armchair to the zigzag axis. This is
due to the much larger effective masses found for the zigzag
direction than for the armchair direction. An analytical weak-
field approximation for the dissociation rate has been derived
and shown to agree with the numerically exact rates for weak
fields. The larger shift for fields pointing along the armchair
direction is again seen by the shift of the fundamental ab-
sorption peak when we compute the electroabsorption. On the
other hand, the different symmetries of the excited states often
lead to larger effects for fields pointing along the zigzag axis
as is apparent from the polarizability tensors.
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APPENDIX A: ANISOTROPIC POISSON EQUATION

In this Appendix, we derive an expression for the inter-
action energy between two particles in an anisotropic 2D
semiconductor. This problem was considered in Ref. [72]
where the aim was to obtain closed form expressions for
the case of weak anisotropy. In this Appendix, we will not
assume weak anisotropy but rather try to obtain as simple
an expression for the anisotropic interaction as possible. Note
that parts of the derivation are very similar to those in Ref. [72]
but are included for completeness. The Poisson equation for
the potential-energy function V between charges Q and Q′
located at (x, y, z) and (0, 0, z′), respectively, may be written
as

∇ · [ε · ∇V (x, y, z, z′)] = −4πQQ′δ(x)δ(y)δ(z − z′), (A1)

where ε is a dielectric tensor. Assuming the tensor is diagonal
and Fourier decomposing the potential-energy function as

V (x, y, z, z′) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
ϕ(z, z′; qx, qy)ei(qxx+qyy)dqxdqy

(A2)
leads to[

εxx(z)q2
x + εyy(z)q2

y − ∂

∂z
εzz(z)

∂

∂z

]
ϕ(z, z′; qx, qy)

= 4πQQ′δ(z − z′). (A3)
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We take the dielectric functions to be piecewise constant

εii(z) =

⎧⎪⎨
⎪⎩

ε
(a)
ii , z > d/2,

εii, d/2 > z > −d/2,

ε
(b)
ii , z < −d/2,

(A4)

where ii = {xx, yy, zz}. Thus, we model the encapsulated 2D
sheet as a slab of thickness d surrounded by dielectric media
extending to infinity. The solution may then be sought on the
form

ϕ(z, z′; qx, qy) = 2πQQ′

q

⎧⎨
⎩

A1e−qaz,

A2e−qz + B2eqz + ε−1
zz e−q|z−z′ |,

B3eqbz,

(A5)
where

qa =
(

ε(a)
xx q2

x + ε(a)
yy q2

y

ε
(a)
zz

)1/2

, (A6)

q =
(

εxxq2
x + εyyq2

y

εzz

)1/2

, (A7)

qb =
(

ε(b)
xx q2

x + ε(b)
yy q2

y

ε
(b)
zz

)1/2

. (A8)

The Fourier components satisfy the boundary conditions,

ϕ

(
±d−

2
, z′; qx, qy

)
= ϕ

(
±d+

2
, z′; qx, qy

)
, (A9)

ε( j)
zz

∂

∂z
ϕ(z, z′; qx, qy)

∣∣∣∣
z=±d±/2

= εzz
∂

∂z
ϕ(z, z′; qx, qy)

∣∣∣∣
z=±d∓/2

,

(A10)

with j = a and j = b for z = d/2 and z = −d/2, respectively.
Enforcing these boundary conditions, placing both charges in
the middle of the sheet, and switching to polar coordinates,
we obtain

ϕ(0, 0; q, φ) = ϕ0(q)

εeff (q, φ)
, (A11)

where ϕ0 = 2πQQ′/q is the bare interaction and εeff is the
effective dielectric function given by

εeff (q, φ) =
g2(ga + gb) cosh

(
dq
εzz

g
)

+ g(g2 + gagb) sinh
(

dq
εzz

g
)

g2 − gagb + (g2 + gagb) cosh
(

dq
εzz

g
)

+ g(ga + gb) sinh
(

dq
εzz

g
) , (A12)

with

ga(φ) =
√

ε
(a)
zz (ε(a)

xx cos2 φ + ε
(a)
yy sin2 φ), (A13)

and g and gb defined analogously. We now specialize to the
case where the super- and substrate have isotropic in-plane
dielectric constants, i.e., ε(a)

xx = ε(a)
yy and ε(b)

xx = ε(b)
yy . This leads

to

ga =
√

ε
(a)
zz ε

(a)
xx , gb =

√
ε

(b)
zz ε

(b)
xx , (A14)

and

g(φ) =
√

εzz(εxx cos2 φ + εyy sin2 φ). (A15)

The resulting dielectric function agrees with the one in
Ref. [72]. Note that the interaction only depends on the dielec-
tric constants of the surrounding media via their geometrical
mean. Expanding to first order in q, we obtain

ε
(1)
eff (q, φ) = κ + r0(φ)q + O(q2), (A16)

with

κ =
√

ε
(a)
xx ε

(a)
zz +

√
ε

(b)
xx ε

(b)
zz

2
, (A17)

r0(φ) = d
[
2εzz(εxx cos2 φ + εyy sin2 φ) − ε(a)

xx ε(a)
zz − ε(b)

xx ε(b)
zz

]
4εzz

.

(A18)

The first-order approximation to the interaction is, then,

V (q, φ) = QQ′

2π

∫ 2π

0

∫ ∞

0

eiqr cos(θ−φ)

κ + r0(φ)q
dq dφ. (A19)

The first-order dielectric function may be rewritten as

ε
(1)
eff (q, φ) = α(q)[1 − γ 2(q) cos2 φ], (A20)

where

α(q) = κ + (a + r0y)q, (A21)

γ 2(q) = (r0y − r0x )q

α(q)
, (A22)

with

a = −d (ε2
a + ε2

b )

4εzz
, r0x = dεxx

2
, and r0y = dεyy

2
.

(A23)

Here, we have defined screening lengths r0x/y equivalent to
the macroscopic definitions in Ref. [53]. The Fourier series
for 1/ε

(1)
eff may be found by the method in Ref. [73]. We get

1

ε
(1)
eff

= 1

α
√

1 − γ 2

[
1 + 2

∞∑
k=1

(
γ

1 +
√

1 − γ 2

)2k

cos(2kφ)

]
.

(A24)
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The angular integral in the interaction may then be written as

I (q) =
∫ 2π

0

eiqr cos(φ−θ )

ε
(1)
eff (q, φ)

dφ,=
∫ 2π

0

eiqr cos(φ−θ )

α
√

1 − γ 2

×
[

1 + 2
∞∑

k=1

(
γ

1 +
√

1 − γ 2

)2k

cos(2kφ)

]
, (A25)

which leads to

I (q) = 2π

α
√

1 − γ 2

[
J0(qr) + 2

∞∑
k=1

(−1)k

×
(

γ

1 +
√

1 − γ 2

)2k

J2k (qr) cos(2kθ )

]
. (A26)

Now, a is typically very small compared to r0y, i.e., a � r0y,
and we get α ≈ κ + r0yq. Defining

εx = κ + r0xq and εy = κ + r0yq, (A27)

we may write

1

ε
(1)
eff

≈ 1√
εxεy

[
1 + 2

∞∑
k=1

(√
εy − √

εx√
εy + √

εx

)k

cos(2kφ)

]
,

(A28)

and the integral as

I (q) ≈ 2π√
εxεy

{
J0(qr) + 2

∞∑
k=1

(√
εx − √

εy√
εx + √

εy

)k

× J2k (qr) cos(2kθ )

}
. (A29)

The full interaction with a linearized dielectric function may,
thus, be computed as

V (r, θ ) = QQ′

2π

∫ ∞

0
I (q)dq. (A30)

APPENDIX B: EFFECT OF STRAIN

If a mismatch exists between the lattices of phosphorene
and the surrounding media, then, both the effective masses and
the screening length r0 will be altered due to lattice-mismatch-
induced strain. That is, the effective masses and r0 of a layer
of phosphorene in a heterostructure will not be the same as for
a free-standing layer. In the present paper, we have described
phosphorene in different dielectric surroundings by changing
the dielectric constant κ while using the effective masses
and screening length of a free-standing layer regardless of
the dielectric surroundings as is commonly performed in the
Wannier model. The relative change in the effective masses
due to strain is much greater than that of r0 [63,74]. Hence,
the effect on the effective masses dominates and will be con-
sidered here. As we will see, taking into account the change
in effective masses does not change the results qualitatively.
Table VI shows the direction-dependent effective masses of
electrons and holes in a freely suspended phosphorene layer,
as well as one that is encapsulated by two layers of hBN.
Note that these masses are obtained from Ref. [74], whereas
the masses used in the main part of the paper are from

TABLE VI. Effective masses of isolated phosphorene and a
phosphorene layer encapsulated by two layers of hBN [74].

Structure m(x)
e m(y)

e m(x)
h m(y)

h μ β

Phosphorene 0.19 1.20 0.17 7.43 0.1651 0.8402
hBN/phosphorene/hBN 0.23 1.25 0.23 8.5 0.2080 0.8091

Ref. [58], and that the two references find slightly differ-
ent unstrained masses. The changing effective masses lead
to modified μx, μy, μ, and β. The following computations
are all made for a phosphorene layer encapsulated by hBN
(κ = 4.5), using either the effective masses of isolated phos-
phorene (referred to as unstrained), or the effective masses of
phosphorene encapsulated by two layers of hBN (referred to
as strained). Using the unstrained effective masses, we find
an exciton binding energy of 238 meV, whereas the strained
effective masses yield 261 meV. Figure 7 shows the Stark
shifts (left axis) and dissociation rates (right axis) for the
ground-state exciton in phosphorene encapsulated by hBN.
The solid lines are computed with the unstrained effective
masses, whereas the dashed lines incorporate strained masses.
As is evident, the Stark shifts are almost identical whether or
not the strain-induced change in effective masses is taken into
account. This is the case for a field along both the armchair
(blue) and the zigzag (red) direction. The dissociation rates
for both masses are qualitatively similar with the only major
difference being a significant reduction of the rates due to the
higher binding energy. The large reduction is explained by the
sensitive dependence on the binding energy. Although rela-
tively significant changes are predicted, we expect the effect
seen here to be an extreme case that is only encountered in the
case of perfect alignment. If one or more among the layers are

FIG. 7. Stark shifts (left axis) and dissociation rates (right axis)
for the ground-state exciton in phosphorene encapsulated by hBN.
The solid lines are computed using the effective masses of isolated
phosphorene, whereas the dashed lines are computed using the ef-
fective masses of phosphorene encapsulated by two layers of hBN.
A dielectric screening of κ = 4.5 is used in both cases. The red and
blue curves correspond to an electric field along the x (armchair) or
the y direction (zigzag), respectively.
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rotated such that the lattices are no longer commensurate, the
strain on the phosphorene layer is likely reduced. Hence, the
effect on excitonic properties would not be as significant.

APPENDIX C: ANISOTROPIC WEAK-FIELD
ASYMPTOTIC THEORY

In this Appendix, we show how the WFAT of tunneling
ionization [66,75] may be extended to a two-dimensional sys-
tem with an anisotropic potential. The aim of this Appendix
is, thus, to derive an analytical weak-field approximation for
the ionization rate of the auxiliary system defined by[− 1

2∇2 + V (x, y) + Ex − E
]
ψ (x, y) = 0, (C1)

where we assume that

lim
x→−∞ −rV (x, y) = Zasymp, (C2)

with Zasymp > 0 as a real constant. Note that V need not be
isotropic for this condition to be satisfied. In parabolic cylin-
drical coordinates,

u = r + x, u ∈ [0,∞), (C3)

v = r − x, v ∈ [0,∞), (C4)

Eq. (C1) reads[√
v

∂

∂v

√
v

∂

∂v
+ Ev2

4
+ Ev

2
+ β(v)

]
ψ (u, v) = 0, (C5)

where

β(v) = √
u

∂

∂u

√
u

∂

∂u
− rV (x, y) + Eu

2
− Eu2

4
(C6)

operates on functions of u and depends on v as a parameter
through V . It has a purely discrete spectrum defined by

β(v)ϕn(u; v) = bnϕn(u; v). (C7)

It is symmetric (but not Hermitian due to generally complex
E ) with respect to the weighting function w(u) = 1/

√
u, and

we may, therefore, choose the eigenfunctions orthonormal,

(ϕn|ϕm)u,w =
∫ ∞

0
ϕn(u; v)ϕm(u; v)

1√
u

du = δnm, (C8)

where we have used regular parentheses for the inner product
to indicate that there is no complex conjugation, which is a
general property of the theory of Siegert states [76–80]. The
subscript u,w denotes that the integral is taken with respect to
u, using the weighting function w.

We will proceed by writing the solution to Eq. (C5) as

ψ (r) =
∑

n

v−1/4 fn(v)ϕn(u; v). (C9)

This approach is based on the adiabatic expansion applied
to a three-dimensional system in Refs. [66,75]. In essence, it
corresponds to treating v as a slow variable, much like the in-
ternuclear distance in the Born-Oppenheimer approximation.
It should be noted, however, that the expansion does not con-
stitute an approximation as long as all nonadiabatic coupling
terms are taken into account. Substituting the expansion into

c1

v = vm

u ∈ [0; vm]

c2

u = vm

v ∈ [0; vm]

c3

u = vm

v ∈ [0; vm]

c4

v = vm

u ∈ [0; vm]

x

y

FIG. 8. The area enclosed by curves of constant u and v, respec-
tively. Note that the curves on the lower half-plane correspond to the
negative sign in y.

Eq. (C5), we obtain[
∂2

∂v2
+ Ev

4
+ E

2
+ bn(v)

v
+ 3

16v2

]
fn(v)

+
∑

n

[(
ϕm

∣∣∣∣∂ϕn

∂v

)
u,w

2
∂

∂v
+

(
ϕm

∣∣∣∣∂2ϕn

∂v2

)
u,w

]
fn(v) = 0.

(C10)

Recalling the assumption in Eq. (C2) [and noting that x =
(u − v)/2 ], the ϕ functions cease to depend on v for v → ∞
and the coupling matrix elements, therefore, reduce to zero.
Explicitly,[

∂2

∂v2
+ Ev

4
+ E

2
+ bn

v
+ 3

16v2

]
fn(v) = 0. (C11)

This equation is identical to the one in Refs. [66,67]. For E =
0, the solutions behave as

f (0)(v) = vbn/ke−kv/2
[
1 + c1

v
+ c2

v2
+ O(v−3)

]
. (C12)

For E > 0, the outgoing solution satisfies [75]

fn(v)v→∞ = cn f (v), (C13)

f (v) =
√

2

(Ev)1/4
exp

[
i
√
Ev3/2

3
+ iE

√
v√

E

]
. (C14)

Thus, the asymptotics only depend on bn through the co-
efficients cn. The dissociation rate may be related to the
probability current j as follows:

�|ψ |2 = ∇ ·
[
− i

2
(ψ∗∇ψ − ψ∇ψ∗)

]
= ∇ · j. (C15)

In the weak-field region, the resonance state ψ will coincide
with the unperturbed bound state in a region v < vm, where
vm is defined by vt � vm � E/�2. Here, vt ≈ −2E0/E [see
Eq. (C11)] is the turning point, and the fact that this holds can
be seen from the fact that the exponential growth of fn starts
at around v � E/�2. Let A be the area enclosed by curves of
constants u = vm and v = vm, respectively (see Fig. 8). Then,
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inside this area, the SS will be approximately equal to the
unperturbed state and, therefore,∫

A
|ψ |2dA ≈ 1, (C16)

and integrating both sides of Eq. (C15) over the area A, there-
fore, yields

� =
∫

A
∇ · j dA =

∫
c

n̂ · j dl, (C17)

where the final equality follows from the divergence theorem.
Now, if vm is large enough, integrating along c2 and c3 will
yield zero because ϕn → 0 for u → ∞. The integration, there-
fore, immediately reduces to integrating along c1 and c4 (see
Fig. 8). By symmetry, the integration along c4 must equal the
integration along c1, and, thus, we get

� = 2
∫

c1

v̂ · j dc1. (C18)

The parametrization of the curve c1 is given by

r = u − vm

2
x̂ + √

uvmŷ, (C19)

and ∣∣∣∣ ∂

∂u
r

∣∣∣∣ =
√

r

2u
. (C20)

The normal vector v̂ picks out the v component of the gradient
in j so that

v̂ · ∇ =
√

2v

r

∂

∂v
, (C21)

and we have

� = −i
∫ vm

0

√
vm

u

[
ψ∗(u, vm)

∂

∂v
ψ (u, vm)

−ψ (u, vm)
∂

∂v
ψ∗(u, vm)

]
du, (C22)

where ∂ψ (u, vm)/∂v denotes the derivative of ψ evaluated at
the point vm. For sufficiently weak fields, vm will become so
large that we might take the limit vm → ∞. This allows us to
use the asymptotic basis functions that are independent of v in
the expression. We obtain

� = −i
∑

n

[
f ∗
n (vm)

∂

∂v
fn(vm) − fn(vm)

∂

∂v
f ∗
n (vm)

]
. (C23)

Recalling the asymptotic expression for fn in Eq. (C13), one
obtains

� = 2
∑

n

|cn|
(

1 + ER

Evm

)
exp

(
�

√
vm

E

)
. (C24)

In the weak-field region, � will be exponentially small,
and we can approximate the exponential function by unity.
Furthermore, for vm large enough, the second term in the
parentheses can be neglected (recall one of the assumptions

we made was vm � vt ≈ −2E0/E). Ultimately, this leads to

� = 2
∑

n

|cn|. (C25)

Thus, to find the weak-field ionization rate, all we require is
the coefficients cn. We will find those by matching the state
with a field present to the unperturbed state in a matching
region that is far enough from the origin that the asymptotics
apply, yet close enough that the unperturbed and the perturbed
states coincide. We may write the unperturbed state as

ψ0(r) =
∑

n

gnv
−1/4 f (0)

n (v)ϕ(0)
n (u) for v → ∞, (C26)

where gn is a field-independent coefficient. Recalling the so-
lution for E = 0 is given by Eq. (C12), we have

ψ0(r) =
∑

n

gnv
bn/k−1/4e−kv/2ϕ(0)

n (u) for v → ∞. (C27)

In the matching region, a Wentzel–Kramers–Brillouin-type
expression for the perturbed fn functions can be found to be
[66]

fn(v) = cn

√
2

k

( E
4k2

)b(0)
n /k

exp

[
− iπ

4
− iπb(0)

n

k
+ k3

3E

]

× vbn/ke−kv/2. (C28)

Comparing Eq. (C28) to Eq. (C27) leads to the conclusion that

cn = gn

√
k

2

(
4k2

E

)b(0)
n /k

exp

[
iπ

4
+ iπb(0)

n

k
− k3

3E

]
, (C29)

and, therefore,

� =
∑

n

|gn|2k

(
4k2

E

)2b(0)
n /k

exp

(
−2k3

3E

)
. (C30)

What remains is to find the field-free eigenvalues b(0)
n . For E =

0, we have(√
u

∂

∂u

√
u

∂

∂u
+ Zasymp − k2u

4
− b(0)

n

)
ϕ(0)

n (u) = 0. (C31)

We find

ϕ(0)
n (u) = NnL(−1/2)

n (ku)e−ku/2, (C32)

where n = 0, 1, 2, . . ., and the normalization coefficient,

Nn =
[

k1/2n!

(n − 1/2)!

]1/2

. (C33)

The eigenvalues are

b(0)
n = Zasymp − k

(
n + 1

4

)
, where n = 0, 1, 2, . . . ,

(C34)

and the dissociation rate becomes

� =
∑

n

|gn|2k

(
4k2

E

)2Zasymp/k−2n−1/2

exp

(
−2k3

3E

)
. (C35)

As discussed in Ref. [66], only the dominant contribution may
be included in Eq. (C25) within the present approximation. It
corresponds to n = 0, thus, the weak-field approximation to
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the dissociation rate is

� = |g0|2k

(
4k2

E

)2Zasymp/k−1/2

exp

(
−2k3

3E

)
. (C36)

The coefficient g0 is defined by the asymptotics of the unper-
turbed state. It can be obtained by taking the inner product
between Eq. (C27) and ϕ

(0)
0 , i.e.,

g0 = lim
v→∞ v1/2−Z/kekv/2

∫ ∞

0
ϕ

(0)
0 (u)ψ0

(u + v

2

) 1√
u

du.

(C37)
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