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Vanishing Zeeman energy in a two-dimensional hole gas
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A clear signature of Zeeman split states crossing is observed in a Landau fan diagram of strained germanium
two-dimensional hole gas. The underlying mechanisms are discussed based on a perturbative model yielding a
closed formula for the critical magnetic fields. These fields depend strongly on the energy difference between the
topmost and neighboring valence bands and are sensitive to the quantum well thickness, strain, and spin-orbit
interaction. The latter is a necessary feature for the crossing to occur. This framework enables a straightforward
quantification of the hole-state parameters from simple measurements, thus paving the way for its use in design
and modeling of hole-based quantum devices.
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I. INTRODUCTION

The inherently large and tunable spin-orbit interaction
(SOI) energies of holes and their reduced hyperfine coupling
with nuclear spins are behind the surging interest in hole spin
qubits with fast all-electrical control [1–5]. Holes can also
host superconducting pairing correlations, a key ingredient for
the emergence of Majorana zero modes [6–10] for topologi-
cal quantum computing. Because of its attractive properties
[1,11–22], the strained Ge low-dimensional system has been
proposed as an effective building block to develop these
emerging quantum devices. Interestingly, the simplicity of this
system makes it a textbook model to uncover and elucidate
subtle hole spin-related phenomena leading, for instance, to
the recent observation of pure cubic Rashba spin-orbit cou-
pling [23].

Measuring Zeeman splitting (ZS) of hole states under an
external magnetic field has been central in probing hole spin
properties, as it is directly related to the hole g factor, which
is itself strongly influenced by the underlying SOI, strain,
symmetry, and confinement [24,25]. In III-V semiconductors
[24,26–38], hole spin splitting depends nonlinearly on the
out-of-plane magnetic field strength B, causing Landau level
crossings and anticrossings [28,39] and Zeeman crossings and
anticrossings [12,40,41]. The nonlinearity is usually modeled
by a quadratic-in-field contribution to ZS [24], which owes its
existence to valence band mixing. Depending on the sign of
the splitting, Zeeman energy can even vanish at some finite
critical field Bc. Theoretical studies attribute these nonlinear-
ities to the mixing of heavy-hole (HH) and light-hole (LH)
bands at finite energy [26]. Along with valence band mixing,
Rashba and Dresselhaus spin-orbit couplings were also shown
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to influence the crossing field due to the lattice inversion
asymmetry and the confining potential.

Detailed mechanisms of ZS of hole states are yet to be
unraveled and understood, and furthermore, ZS treatments for
zinc-blende or diamond crystals that explicitly consider strain
and SOI strength remain conspicuously missing in the litera-
ture. Note that in early calculations [41] of Landau levels in
the Ge/SiGe quantum well (QW) to interpret cyclotron reso-
nance experiments in Ref. [42], the crossing of spin split states
within the first HH subband was present, and the correspond-
ing field position was found to be sensitive to the strength
of spin-orbit coupling. In that work, the authors insisted on
the importance of including explicitly the split-off hole band,
which was required to achieve good agreement with exper-
iments. Crucially, studies that included both strain and SOI
were diagonalizing numerically the full k · p matrix [29,41].
However, this mathematical rigor comes at the expense of
identifying the physics governing the nonlinearities in ZS.

To overcome these limitations and elucidate the underlying
mechanisms of ZS, herein we uncover the clear signature of
ZS crossings in a Ge high-mobility two-dimensional hole gas
(2DHG). We also derive a theoretical framework describing
the crossing of Zeeman split states that includes explicitly the
SOI strength and strain. A closed formula for the crossing
fields is obtained and validated by experiment. In addition
to establishing the key parameters in Zeeman crossings, this
analysis also provides a toolkit for direct quantification from
simple magnetotransport measurements of important physical
quantities, including the HH out-of-plane g factor, HH-LH
splitting, and the cubic Rashba spin-orbit coefficient.

II. EXPERIMENTAL DETAILS

The investigated 2DHG consists of a Ge/SiGe heterostruc-
ture, including a strain-relaxed Si0.2Ge0.8 buffer setting
the overall lattice parameter, a compressively strained Ge
QW, and a Si0.2Ge0.8 barrier separating the QW from a
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sacrificial Si cap layer. The growth was carried out in an
Epsilon 2000 (ASMI) reduced-pressure chemical vapor de-
position reactor on a 100-mm n-type Si(001) substrate. The
growth sequence starts with the deposition of a Si0.2Ge0.8

virtual substrate. This virtual substrate is obtained by growing
a 1.6-μm strain-relaxed Ge buffer layer, a 1.6-μm reverse-
graded Si1−xGex layer with final Ge composition x = 0.8,
and a 500-nm strain-relaxed Si0.2Ge0.8 buffer layer. A 16-nm
compressively strained Ge quantum well is then grown on top
of the Si0.2Ge0.8 virtual substrate, followed by a strain-relaxed
17-nm-thick Si0.2Ge0.8 barrier. An in-plane compressive strain
ε‖ = −0.63% is found in the QW via x-ray diffraction mea-
surements [12]. A thin (<2 nm) sacrificial Si cap completes
the heterostructure. This cap is readily oxidized upon ex-
posure to the clean-room environment after unloading the
Ge/SiGe heterostructure from the growth reactor.

Hall-bar field effect transistors (H-FETs) are fabricated and
operated with a negatively biased gate to accumulate a 2D
hole gas in the QW and tune the carrier density. Figure 1(a)
shows an optical micrograph of the H-FET and a cross-section
schematic of the active layers and the gate stack. A 170-nm-
deep trench mesa is dry etched around the Hall-bar-shaped
H-FET in order to isolate the bonding pads from the device.
The sample is dipped in HF to remove the native oxide prior
to a 60-nm Pt layer deposition via e-beam evaporation. Ohmic
contacts are obtained by diffusion of Pt into the quantum well
during the atomic layer deposition of a 30-nm Al2O3 dielectric
layer at a temperature of 300 ◦C. Finally, a 10-/200-nm-thick
Ti/Au gate layer is deposited. An optimized Si0.2Ge0.8 bar-
rier thickness of 17 nm was chosen, which is thin enough to
allow for a large saturation carrier density [12] (up to 7.5 ×
1011 cm−2) while providing sufficient separation to reduce
scattering of carriers in the QW from remote impurities [40],
leading to large hole maximum mobility (2.6 × 105 cm−2). A
large density range and high mobility are key ingredients to
observe Landau level fan diagrams in magnetotransport with
the clarity required to reveal subtle spin-related features.

In the magnetotransport studies, the longitudinal and
transversal (ρxx and ρxy) components of the 2DHG re-
sistivity tensor were measured via a standard four-probe
low-frequency lock-in technique. The measurements were
recorded at a temperature of T = 260 mK, measured at the
cold finger of a 3He dilution refrigerator. A source-drain volt-
age bias Vsd = 0.1 mV was applied at a frequency of 7.7 Hz.
The magnetoresistance characterization of the device was per-
formed by sweeping the voltage gate Vg and stepping B with a
resolution of 15 mV and 25 mT, respectively. The energy E is
obtained using the relation E = pπ h̄2/m∗, where we obtain
the carrier density p with Hall effect measurements at low
B and we use the effective mass m∗ measured as a function
of density in similar heterostructures [40]. The ρxx vs energy
profiles in the upper panels of Figs. 3(a)–3(d) below have been
smoothed for clarity using a MATLAB routine based on the
Savitzky-Golay filtering method.

III. MAGNETOTRANSPORT STUDIES OF
STRAINED GE 2DHG

The fan diagram in Fig. 1(b) shows the normalized magne-
toresistance oscillation amplitude �ρxx/ρ0 = (ρxx − ρ0)/ρ0

FIG. 1. (a) Optical micrograph of a Hall-bar-shaped Ge/SiGe
heterostructure field effect transistor and cross section of the gate
stack and active regions of the strained Ge/SiGe heterostructure be-
low the red cut. The strained Ge (sGe) quantum well is 16 nm thick,
and the Si0.2Ge0.8 barrier on top is 17 nm thick. (b) Landau level fan
diagram reporting the magnetoresistance �ρxx/ρ0 = (ρxx − ρ0)/ρ0

as a function of out-of-plane magnetic field B and energy E . Labels
of filling factors ν = 1–4 are shown.

as a function of energy and out-of-plane external magnetic
field B aligned along the growth direction ẑ and perpendicular
to the 2DHG plane, where ρ0 is the ρxx value at B = 0.
The Zeeman split energy gap, corresponding to odd integer
filling factors ν, deviates from its linear dependence on B,
vanishes when the magnetic field reaches a critical value Bc,
and then reopens at higher B values. We clearly observe the
associated crossing of Zeeman split states for odd integers ν =
3, 5, 7, and 9. Partial signatures of Zeeman crossings occur-
ring at similar magnetic fields were observed in earlier studies
[12,40], although the fan diagram measurements were limited
in density range [12] or affected by thermal broadening [40].
These observations point to an underlying mechanism that is
independent of the QW position with respect to the surface
gate.
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IV. THEORETICAL FRAMEWORK FOR HOLE
DISPERSION IN STRAINED GE 2DHG

To identify the mechanisms behind the nonlinearities in ZS
and the parameters affecting the crossing field, we developed
a perturbative model to describe the hole dispersion as a func-
tion of the out-of-plane magnetic field. The model assumes
an abrupt and infinite band offset between the QW and its
barriers and is based on a six-band k · p Hamiltonian for HH,
LH, and split-off (SO) bands. The total Hamiltonian H for
the hole dispersion is written as [43] H = Hk + Hε + HSO +
HB + V , where Hk is a function of the wave vector operator
k = (kx, ky, kz ), Hε is the Bir-Pikus Hamiltonian and depends
on the strain tensor components εi j , HSO is the spin-orbit term
proportional to the spin-orbit energy �, and HB includes the
interaction of the free-electron spin with the magnetic field.
V is the infinite well potential for a square well of width
L. We consider QWs grown along the [001] direction and
subjected to biaxial bi-isotropic strain. Thus, εi j = 0 if i �= j,
εxx = εyy ≡ ε‖, and εzz = −D001ε‖, where D001 is the Poisson
ratio and ε‖ is the in-plane lattice strain.

We first rewrite the total Hamiltonian H in two terms:
H = H0(ε‖; kz ) + H ′(n, B; kz ), where the integer n � 1 labels
the spin-split Landau pairs such that ν = 2n − 1 at crossings.
The eigenstates of H0 consist of pure HH subbands of energy
EHH

l and two superpositions of LH and SO holes of energy
Eη

l . Here, η = {+,−} is a generic label to distinguish the two
orthogonal LH-SO states, and l � 1 is the subband index. The
perturbation H ′ introduces the magnetic field and is elimi-
nated to second order by a Schrieffer-Wolff transformation,
resulting in an effective Hamiltonian for the twofold HH sub-
band. Remarkably, the resulting effective 2 × 2 Hamiltonian
for the HH subband does not couple spin-up (+) and spin-
down (−) projections. The HH dispersion as a function of B
is thus simply the diagonal entries of the effective matrix. We
have

E (2)
+,l,n(B) = EHH

l + 3n(n + 1)(κ − Fl )
μBB2

B∗
l

− [(2n − 1)(γ1 + γ2) + 3κ − 6nFl ]μBB, (1)

E (2)
−,l,n(B) = EHH

l + 3(n − 2)(n − 1)(κ − Fl )
μBB2

B∗
l

− [(2n − 1)(γ1 + γ2) − 3κ − 6(n − 1)Fl ]μBB,

(2)

with

B∗
l = κ − Fl

μB(γ2 + γ3)2

[∑
η=±

(
lη

l + √
2sη

l

)2

EHH
l − Eη

l

]−1

(3a)

≈ κ − Fl

μB(γ2 + γ3)2

(
EHH

l − ELH
l

)
(3b)

and

Fl = 32α0γ
2
3

L2

∞∑
j = 1
j �= l

[1 − (−1)l+ j]l2 j2

(l2 − j2)2

∑
η=±

(
lη

j − sη
j /

√
2
)2

EHH
l − Eη

j

(4a)

≈ 32α0γ
2
3

L2

∞∑
j = 1
j �= l

1

EHH
l − ELH

j

[1 − (−1)l+ j]l2 j2

(l2 − j2)2
. (4b)

Here, μB is the Bohr magneton; γi and κ are the Luttinger
parameters; α0 = h̄2/(2m0), with m0 being the free-electron
mass; and lη

l and sη

l are, respectively, the LH and SO contribu-
tions of the lth η subband. The characteristic field B∗

l controls
the crossing positions and is filling factor independent, while
Fl indicates the coupling strength between the HH subband
and neighboring η states. As we focus on the HH ground sub-
band (l = 1), l subscripts will be omitted for simplicity. The
obtained Zeeman splitting energy EZ ≡ E (2)

−,n(B) − E (2)
+,n(B) of

the nth spin-split Landau pair is

EZ = 6(κ − F )μBB
[
1 − (2n − 1)

( B

B∗
)]

. (5)

Solving for EZ = 0 results in a second-order approxima-
tion for the filling-factor-dependent crossing field Bc:

B(2)
c (n) = B∗

2n − 1
. (6)

The energy difference that separates the HH subband edge
from the energy at a crossing position can also be found from
the second-order equations. When n → ∞ (or ν → ∞) this
energy difference is independent of n:

�E = [
γ1 + γ2 − 3

4 (κ + 3F )
]
μBB∗. (7)

Equation (5) also yields the HH weak-field g factor:

g∗ = 6(κ − F ). (8)

The approximations (3b) and (4b) hold only when SOI is
large enough that the SO band can be neglected from the k · p
framework. An explicit criterion for this is (Appendix B)

� � α0γ2

(π

L

)2
+ (−b)

2
(1 + D001)|ε‖|, (9)

where b is a valence band deformation potential.
In addition to the perturbation scheme, H is also numeri-

cally diagonalized by projecting it into the position basis via
the substitution kz → −i∂/∂z, in which the z derivative is
implemented by finite differences over the simulation domain.
A constant mesh grid size of 0.01 nm is used for every diag-
onalization. The MATLAB EIGS() routine is used to retrieve the
desired subset of eigenvalues. The Ge Luttinger parameters
γ1,2,3 and deformation potentials are taken from Ref. [44],
while the parameter κ is taken from Ref. [45]. Explicit matrix
representations of H0 and H ′ are presented in Appendix A.
See Appendix B for additional details on the eigenvalues and
eigenvectors of H0.

Let us now test the accuracy of the perturbative model
compared to the dispersion given by numerically solving H .
We take Ge as the QW material with width L and strain
ε‖ as free parameters. Since Ge has a rather high spin-orbit
energy � = 260 meV [46], it is worthwhile to look also at
the behavior of the model with approximations (3b) and (4b).
We also focus on relaxed or compressively strained wells,
which always result in a HH-like valence band edge. The
calculated fan diagram of the ground HH subband is displayed
in Fig. 2(a) for a 16-nm-thick well with ε‖ = −0.6%, similar
to the system analyzed in Fig. 1. Assuming finite �, the
model reproduces perfectly well the numerical fan diagram
up to ∼2 T, which implies that 6(κ − F ) is a very accu-
rate approximation for the HH g factor at low fields. As the
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FIG. 2. (a) Fan diagram of the ground HH subband in a 16-nm Ge well subject to 0.6% compressive strain. Solid curves are the dispersion
obtained from the numerical solution of H , while the dashed curves are obtained from the second-order dispersion assuming finite or infinite
SOI. Circles indicate the Zeeman crossings. Filling factors ν are also indicated. (b) The ν = 3 crossing field as a function of the well thickness
at various strain values obtained from the numerical solution of H (solid curves) and through Eq. (6) assuming finite or infinite SOI (dashed
curves).

magnetic field increases, quadratic terms in B become more
important, and the dispersions eventually cross. The disper-
sion of a state with spin-up projection in a given spin-split
Landau pair always has a bigger curvature than the spin-down
one, which can be straightforwardly inferred from the coef-
ficients n(n + 1) and (n − 2)(n − 1) in (1) and (2). For that
reason, a Zeeman crossing cannot occur, at least to second
order, if the spin-up state lies closer to the band gap than
the spin-down one. Crossing fields are indicated in Fig. 2(a)
for filling factors ν = 3 and ν = 5. The numerical solution
of H gives a crossing field Bc = 7.27 T for ν = 3, whereas
the second-order formula [Eq. (6)] gives B(2)

c = 5.04 T. Here,
the second-order approximation underestimates Bc as it di-
verges from the numerical dispersion before the crossing.
When assuming � → ∞, however, the dispersion diverges
less dramatically than its finite SOI counterpart and instead
overestimates the crossing field. Assuming an infinite SOI for
this particular system turns out to be a good approximation
because the right-hand side of (9) equals 21.2 meV, which is
much smaller than the spin-orbit gap in Ge.

Figure 2(b) depicts the behavior of the crossing field as a
function of the well thickness and strain, with and without
the assumption of an infinite SOI. The crossing field Bc is
well approximated by B(2)

c for a well thickness >10 nm with
reduced strain levels, as in our experiments. For narrower and
highly strained wells, third or higher perturbative terms be-
come more important. These could be included in the model,
but at the cost of extremely cumbersome equations, even with
infinite SOI. On the other hand, for � → ∞, B(2)

c misses
completely the increase of the crossing field for thin wells,
which highlights the explicit role of the SOI strength. This is
consistent with criterion (9): thin wells increase the right-hand

side in (9) as 1/L2, thus requiring � to be even larger for this
criterion to be satisfied.

V. DISCUSSION

From the present model, we see that Zeeman crossings
still occur under the assumption of an infinite QW (no barrier
effects), an infinite band gap (six-band k · p), and even an
infinite spin-orbit gap (four-band k · p for HH and LH). Con-
sequently, LH-HH mixing plays a crucial role in the crossing
of spin-split states. Our assumptions also imply that struc-
ture inversion asymmetry (SIA) has no role in the observed
crossing in ZS energy. SIA is indeed suppressed in infinite
wells without external electric fields. Thus, Rashba SOI does
not have a dominant effect on the value of Bc. The role of
SOI and strain is, however, more evident in Eqs. (6) and
(3). SOI and strain affect B(2)

c mostly through the energy
splitting EHH − Eη and the parameter F . Compressive strain
typically increases EHH − Eη, which explains the increase of
Bc at higher compressive strain. SOI also increases EHH − Eη,
mainly through the spin-orbit energy � for η = + or through
the out-of-plane effective mass for η = −. At � = 0 and any
strain, the HH subbands share the same spectrum as the η = +
or η = − states. Equation (3) then gives B∗ = 0; hence, no
Zeeman crossing occurs. SOI lifts this degeneracy between
HH and η states and thus allows the existence of Zeeman
crossings.

The experimental observation of Zeeman crossings is fur-
ther highlighted by plotting portions of the fan diagram from
Fig. 1(b) as a function of energy and filling factor [Figs. 3(a)–
3(d)]. The upper part of each panel in Fig. 3 shows ρxx as
a function of the energy E at odd-integer values of filling
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FIG. 3. Experiment vs theory. (a)–(d) ρxx as a function of filing
factor ν and energy E around the crossings of Zeeman split states.
The upper part of each panel shows a cross section at odd filling
factors ν = 3, 5, 7, 9. (e) Experimental crossing fields (dots) for ν =
3, 5, 7, 9, 11, 13, 15, 17 fitted using Eq. (6) (solid line). The fitting
parameter B∗ = 25.258 T.

factors from ν = 3 to 9. Fingerprints of Zeeman crossing
are observed for filling factors up to ν = 17. In addition to
describing the crossings in Zeeman split states, the theoreti-
cal framework described above also allows a straightforward
evaluation of several parameters. First, we fit the crossing
fields extracted from Figs. 3(a)–3(d) (ν = 3, 5, . . . , 17) with
Eq. (6) using B∗ as the sole fitting parameter. This yields
B∗ = 25.258 T, and the crossing fields obtained from Eq. (6)
match the experimental values with a relative error <4% for
ν = 3, 5, 7, 9, 11 and <10% for ν = 13, 15, 17 [Fig. 3(e)].

Zeeman crossings also approach a fixed energy value as ν

increases, as demonstrated in Eq. (7). From Fig. 1(b), we have
�E ≈ 17 meV. Knowing B∗ and �E gives the value of F ,
leading to a HH effective mass and weak-field g factor. A
rearrangement of Eq. (7) gives

F = 4

9

(
γ1 + γ2 − �E

μBB∗

)
− κ

3
≈ 1.52. (10)

From Eqs. (8) and (10), we extract g∗ = 11.35, which is
close to the value of 12.9 obtained by solving H numerically.
An expression for the subband-edge HH in-plane effective
mass m∗ involving the parameter F can also be derived
by inserting Eq. (5) from Ref. [47] into Eq. (8): m∗/m0 =
(γ1 + γ2 − 3F )−1 ≈ 0.077. This value is also close to those
reported in the literature at similar hole density [40,48]. A
close relation exists between the crossing fields, the HH g
factor, and the HH η splitting [Eqs. (3a) and (3b)]. Knowing
two of these quantities is enough to obtain the third. For the
system described in Fig. 1, the criterion (9) is also satisfied;
thus, the HH-LH splitting is found directly from Eq. (3b):

EHH − ELH = 6(γ2 + γ3)2μBB∗

g∗ ≈ 76.0 meV. (11)

A numerical solution of H yields a HH-LH splitting of
62.8 meV. This value does not change significantly when
an effective out-of-plane electric field is introduced in H .
This is expected from square QWs whose HH-LH splitting is
dominated by strain and quantum confinement [23]. For that
reason, we assume that the HH-LH splitting does not change
with hole concentration or applied gate voltages. From the
HH-LH splitting energy [Eq. (11)], one can finally estimate
the cubic Rashba coefficient α3:

α3 = eα2
0γ3

12(γ2 + γ3)3

(
g∗

μBB∗

)2

≈ 4.25 × 105 e Å4, (12)

where e is the elementary charge. α3 appears in the cubic
Rashba SOI Hamiltonian of HH states [23]: H3 = β3i(k3

−σ+ −
k3
+σ−), where k± = kx ± iky and σ± = (σx ± iσy)/2, with σx,y

being the Pauli spin matrices, and β3 = α3Ez, with Ez = ep/ε
being the effective out-of-plane electric field in the accu-
mulation mode 2DHG [25], p being the hole density, and
ε being the Ge dielectric constant. The obtained α3 is al-
most twice as large as the one obtained for the Ge QW in
Ref. [23], which had a bigger HH-LH splitting of 110 meV.
As mentioned above, we expect α3 to be independent of the
gate voltage or hole concentration since it depends mostly
on the HH-LH splitting. The Zeeman crossings appear at a
density p ∼ 6.1 × 1011 cm−2, corresponding to Ez ≈ 6.8 ×
10−4 V Å−1 (by taking ε = 16.2ε0 for Ge), which yields β3 ≈
290 eV Å3. Note that α3 and β3 are hitherto hard to measure
in these high-mobility systems with established methodolo-
gies: weak antilocalization measurements are impractical due
to the small characteristic transport field BL associated with
micrometer-scale mean free paths [49,50]; Shubnikov–de
Haas oscillations lack sufficient spectral resolution before the
onset of ZS to resolve the beatings associated with spin-split
subbands [17].
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VI. CONCLUSION

In summary, Zeeman energy crossing of HH states is ob-
served in a Ge 2DHG under out-of-plane magnetic fields and
discussed within a perturbative model describing the hole
dispersion. Only second-order perturbation in the magnetic
field is necessary to describe the crossing in which SOI
emerges as an essential feature. However, our analysis indi-
cates that SIA has no effective role. Additionally, this analysis
also provides a straightforward framework to evaluate several
physical parameters defining the hole states from simple mag-
netotransport measurements. Crucially, detailed knowledge of
parameters such as the effective g factor, the in-plane effec-
tive mass, and the cubic Rashba coefficient of the underlying
material platform will provide the necessary input to further

advance design and modeling of hole spin qubits and other
hole-based quantum devices.

Data sets supporting the findings of this study are available
from [51].
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APPENDIX A: HAMILTONIAN MATRIX REPRESENTATION

The matrix representation of H is presented in the following | j, m〉 angular momentum basis [25]:

{∣∣ 3
2 , 3

2

〉
,
∣∣ 3

2 , 1
2

〉
,
∣∣ 3

2 ,− 1
2

〉
,
∣∣ 3

2 ,− 3
2

〉
,
∣∣ 1

2 , 1
2

〉
,
∣∣ 1

2 ,− 1
2

〉}
.

The magnetic field-free Hamiltonian H0 is

H0 = −α0

⎡
⎢⎢⎢⎢⎢⎢⎣

(γ1 − 2γ2)k2
z 0 0 0 0 0

(γ1 + 2γ2)k2
z 0 0 −√

8γ2k2
z 0

(γ1 + 2γ2)k2
z 0 0

√
8γ2k2

z
† (γ1 − 2γ2)k2

z 0 0
γ1k2

z + �/α0 0
γ1k2

z + �/α0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 16×6(2 − D001)avε‖ +

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−1 0 0

√
2 0

−1 0 0 −√
2

† 1 0 0
0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1 + D001)bε‖,

where av and b are deformation potentials. Its eigenstates and eigenvalues are described in Appendix B. For perpendicular-to-
plane magnetic fields it is convenient to write kx and ky in terms of the ladder operator a:

kx = 1√
2λ

(a + a†), ky = i√
2λ

(a − a†),

where the magnetic length λ = √
h̄/eB, with e being the elementary charge. Also, [a, a†] = 1, a|N〉 = √

N |N − 1〉, and
a†a|N〉 = N |N〉, where N is an integer. In the axial approximation the vector

⎡
⎢⎢⎢⎢⎢⎣

|N − 1〉|l〉3/2,3/2

|N〉|l〉3/2,1/2

|N + 1〉|l〉3/2,−1/2

|N + 2〉|l〉3/2,−3/2

|N〉|l〉1/2,1/2

|N + 1〉|l〉1/2,−1/2

⎤
⎥⎥⎥⎥⎥⎦

is an eigenstate of H , where 〈z | l〉 j,m is the spatial envelope function of the hole component with angular momentum | j, m〉 and
subband index l . This ansatz allows us to write H as a function of the quantum numbers N and to eliminate the ladder operators
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a [52]. The perturbation H ′ takes the form (with the electron g factor g0 = 2)

H ′ = −α0

λ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2N − 1)γ+ + 3κ −2λ
√

6Nγ3kz −√
3N (N + 1)γ̃

(2N + 1)γ− + κ 0

(2N + 3)γ− − κ

†
. . .

0 2λ
√

3Nγ3kz
√

6N (N + 1)γ̃

−√
3(N + 1)(N + 2)γ̃

√
2[(2N + 1)γ2 + κ + 1] −6λ

√
N + 1γ3kz

2λ
√

6(N + 2)γ3kz −6λ
√

N + 1γ3kz −√
2[(2N + 3)γ2 − κ − 1]

(2N + 5)γ+ − 3κ −√
6(N + 1)(N + 2)γ̃ 2λ

√
3(N + 2)γ3kz

(2N + 1)γ1 + 2κ + 1 0

(2N + 3)γ1 − 2κ − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where N � −2, γ± = γ1 ± γ2 and γ̃ = γ2 + γ3. Note that α0/λ
2 = μBB.

APPENDIX B: EIGENVALUES AND
EIGENVECTORS OF H0

If B = 0 (and kx = ky = 0), the subbands are either pure
HH states or pure spin-1/2 states (LH-SO superposition). The
subband eigenstates are

|HH, σ, l〉 =
∣∣∣∣3

2
,

3σ

2

〉
|l〉, (B1)

|η, σ, l〉 =
(

lη

l

∣∣∣∣3

2
,
σ

2

〉
+ σ sη

l

∣∣∣∣1

2
,
σ

2

〉)
|l〉, (B2)

where σ = {+,−} is the pseudospin index (spin up and down,
respectively). We have

lη

l = ξ− + δ−η√
(ξ− + δ−η )2 + 8ξ 2−

,

sη

l = −√
8ξ−√

(ξ− + δ−η )2 + 8ξ 2−
, (B3)

with

δ± = �

2
±

√
(ξ− + �/2)2 + 8ξ 2−, (B4)

ξ± = −α0

[(
1 ± 1

2

)
γ1 + γ2

](
lπ

L

)2

+
[(

1 ± 1

2

)
(2 − D001)av − (1 + D001)b/2

]
ε‖.

(B5)

The spatial part is

〈z | l〉 =
√

2

L
sin

(
lπz

L

)
. (B6)

The energy spectrum for the HH and η states is

EHH
l = −α0(γ1 − 2γ2)

(
lπ

L

)2

+ [(2 − D001)av + (1 + D001)b]ε‖, (B7)

Eη

l = ξ+ − δη. (B8)

The infinite SOI regime is reached when � � |ξ−|. Under
compressive strain this expands to

� � α0γ2

(
lπ

L

)2

+ (−b)

2
(1 + D001)|ε‖|. (B9)

Assuming � → ∞ is a good approximation only if �

satisfies criterion (B9). The square root in δ± can then be
eliminated by a Taylor expansion, and the following results
immediately follow:

δ− = −ξ−, δ+ = � + ξ−,

l−
l = 1, s−

l = 0,

l+
l = 0, s+

l = 1.

Consequently,

|−, σ, l〉 → |LH, σ, l〉 =
∣∣∣∣3

2
,
σ

2

〉
|l〉, (B10)

|+, σ, l〉 → |SO, σ, l〉 =
∣∣∣∣1

2
,
σ

2

〉
|l〉, (B11)

E−
l → ELH

l = −α0(γ1 + 2γ2)

(
lπ

L

)2

+ [(2 − D001)av − (1 + D001)b]ε‖, (B12)

E+
l → ESO

l = −α0γ1

(
lπ

L

)2

− � + (2 − D001)avε‖,

(B13)

corresponding to a pure LH and pure SO spectrum.
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