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Interplay of spin mode locking and nuclei-induced frequency focusing in quantum dots
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We study the influence of nuclei-induced frequency focusing on the mode locking of spin coherence in
quantum dots subjected to a periodic train of optical pulses. In particular, we address the question whether
or not nuclei-induced frequency focusing always enhances the effect of spin mode locking. We combine two
advanced semiclassical approaches and extend the resulting model by including the full dynamics of the optically
excited trion state. In order to reduce the discrepancy to a full quantum model, we establish a nondeterministic
pulse description by interpreting each pump pulse as a measurement. Both extensions lead to significant
qualitative changes of the physics. Their combination improves the description of the corresponding experiments.
Importantly, we observe the emergence of dynamic nuclear polarization, i.e., the formation of a nonzero average
polarization of the nuclear spin bath, leading to a certain increase of the coherence time.
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I. INTRODUCTION

The generation of well-controllable stable quantum states
is an ever ongoing challenge in the context of quantum infor-
mation. A promising candidate for a technological realization
is an electron spin localized in a semiconductor quantum dot
(QD) [1] due to the established fabrication tools for semicon-
ductor nanostructures and the possible scalability. The major
problem is the interaction of the quantum states with the
environment, eventually leading to decoherence.

Recently, important progress has been made in this field
by Gangloff et al. [2], who demonstrated the implementation
and manipulation of coherent states in a nuclear spin ensemble
coupled to a localized electron spin in a QD, which they
achieved by exploiting the hyperfine interaction with the sur-
rounding nuclei. This step can be seen as the “missing piece
of the puzzle” for a semiconductor nanostructure platform for
quantum information [3].

In a related earlier experiment by Greilich et al. [4] on
QD ensembles in a transverse external magnetic field (Voigt
geometry) subjected to trains of optical pulses, it was demon-
strated that the hyperfine interaction can be also exploited
such that the nuclear spin bath acts as a correction field to
the Zeeman term which varies from QD to QD. By means
of the nuclei-induced frequency focusing (NIFF) effect, the
nuclear spin bath is manipulated in such a way that the Larmor
precession of the localized electron spins is focused onto very
few resonances, enhancing the effect of spin mode locking
(SML) [5].

The SML effect is briefly described as follows. Usually, the
optically induced polarization of the localized electron spins
dephases quickly due to a broad and inhomogeneous spec-
trum of precession frequencies. By applying trains of periodic
pulses to the QD ensemble, a revival of the spin polarization
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emerges before the arrival of the next pulse. The amplitude of
these revivals, depending on many system parameters, can be
strongly enhanced by a frequency focusing in the nuclear spin
bath, which is achieved by applying a very long train of peri-
odical pulses to the system. The typical pulse repetition time
is TR = 13.2 ns, applied as a train for up to a few minutes so
that a comprehensive theoretical description is a tremendous
challenge. For the simulation of a realistic experimental setup,
one has to cover about 12 orders of magnitude in time.

Through optimization of the experimental protocol, it is
even possible to drive the spectrum of Larmor frequencies
to only a narrow single mode such that all localized electron
spins precess with almost the same frequency [6]. Effectively,
this leads to a strong increase of the coherence time and thus,
enables the coherent manipulation of the localized electron
spins [7].

In the context of SML and NIFF, there are several open
questions stemming from recent experiments [8–11]. A funda-
mental one is whether or not NIFF always acts constructively,
i.e., does it always lead to an enhancement of the SML ef-
fect, and what is the influence of the external magnetic field
strength on this interplay? Recent theoretical studies, both
quantum mechanical [10,12] and semiclassical [9], suggest
that this is not necessarily the case due to the possibility of
additional resonances which can act destructively. The slow
Larmor precession of the nuclear spins plays a major role in
this context. In these studies, however, the full dynamics of
the excited trion state is neglected. We lift this simplification
in the present paper and demonstrate that this extension influ-
ences the physics qualitatively.

The present paper is devoted to a better theoretical descrip-
tion and understanding of NIFF. The existing semiclassical
precession models [9,10,13–15] are improved by interpreting
each optical pump pulse as a measurement [10,15]. This al-
lows us to apply a truncated Wigner approximation [16] to
the action of each pulse, leading to a reduced discrepancy
to a full quantum mechanical description. Moreover, we in-
vestigate the role of the dynamics of the optically excited
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trion state and the role of an inhomogeneous ensemble of
QDs. Quantum models describing the effect of NIFF also
exist [4,10,12,14,17–20], but they are typically restricted to
a very small number of nuclear spins due to the exponentially
growing Hilbert space so that one needs to either resort to a
constant distribution of the hyperfine couplings (box model)
or to perturbation theory.

In the following section, we introduce the initial model
for the description of a homogeneous ensemble of QDs in
a transverse magnetic field subjected to periodic circularly
polarized laser pulses, which is a combination of various
approaches from the literature [9,15,21,22]. However, we will
show that this model does not describe the experimental re-
sults appropriately. We extend this initial model step by step
in the subsequent sections, leading to the extended models
(EM) I, II, and III. A nondeterministic description of the pulse
model is introduced in Sec. III by interpreting each pulse as a
measurement. This reduces the discrepancy to a full quantum
model while being able to treat large numbers of nuclear
spins for a realistic distribution of the hyperfine couplings.
In Sec. IV we extend the model by including the full trion
dynamics, leading to qualitatively different physics and im-
portantly, to the emergence of dynamic nuclear polarization,
i.e., a finite average polarization in the nuclear spin bath. Here
we emphasize the need for further experimental studies with
explicit suggestions. The role of inhomogeneities in the QD
ensemble is briefly discussed in Sec. V. Finally, a conclusion
and an outlook are given in Sec. VI.

II. INITIAL MODEL: LOCALIZED ELECTRON SPIN IN A
QUANTUM DOT SUBJECTED TO PERIODIC OPTICAL

PULSES

In this section, we introduce and numerically analyze the
initial model in which we combine an established pulse model
often used to describe the excitation of a trion [9,21,23–26]
with an efficient approach to the dynamics of the nuclear spin
bath [15,22], which allows us to simulate the saturation be-
havior of the system after very long trains of periodic optical
pulses. Note that this model does not yield an appropriate
description of some experimental results, but it is a good
starting point to introduce the basic phenomena of SML and
NIFF.

A. Equations of motion

We consider a homogeneous ensemble of GaAs QDs, i.e.,
all QDs are equal. They are singly charged by electrons and
subjected to a strong transverse external magnetic field (Voigt
geometry) of up to several Tesla. A sketch which depicts
the basic model and setup is shown in Fig. 1. In each QD,
the internal spin dynamics are governed by the hyperfine
interaction of the single localized electron spin Ŝ with the
surrounding N nuclear spins Îk of the host lattice [27–34].
Quantum mechanically, this interaction is described by the
hyperfine Hamiltonian

ĤHF =
N∑

k=1

AkŜ · Îk = Ŝ · B̂Ov, (1)

FIG. 1. Sketch of the model: A localized electron spin S in a
quantum dot is subjected to a train of periodic σ− pulses with repeti-
tion time TR. The spin S couples to the surrounding nuclear spins Ik

via the hyperfine interaction with coupling constants Ak . An external
magnetic field Bextex is applied in Voigt geometry, i.e., perpendicular
to the growth direction ez, which is also the axis of incidence of the
laser beam.

with the hyperfine coupling constants Ak together with the
nuclear spins Îk forming the so-called Overhauser field

B̂Ov =
N∑

k=1

Ak Îk . (2)

This Hamiltonian, often referred to as the central spin or
Gaudin model [35–53], is extremely hard to solve for a
nonuniform distribution of the couplings Ak so that one is
typically restricted by either the bath size N or the maximum
simulation time in spite of the existence of a Bethe ansatz
solution [35–40]. This Hamiltonian is not only of interest
in the context of quantum dots, but is also used to describe
radical pair recombination reactions [54–56]. In both cases,
semiclassical approaches to the spin dynamics of the system
work remarkably well [45,56].

We also treat the dynamics of the system in a semiclassical
manner, i.e., we solve the corresponding classical equations
of motion and average over an appropriate distribution for
the initial conditions of the classical spins [45]. This corre-
sponds to a truncated Wigner approximation [16], which is a
semiclassical phase space method. Because a QD comprises
N = 104–106 nuclear spins [27,34,57], it is well justified
to consider the Overhauser field as a classical variable
B̂Ov → BOv chosen randomly from a normal distribution
[27,42,45,54]. Since the temperature in experiments corre-
sponds to a much larger energy than the hyperfine couplings,
the nuclear spins are in a completely disordered state. Thus,
each component Bα

Ov, α ∈ {x, y, z}, is initially sampled from
a normal distribution characterized by the expectation value
E[Bα

Ov] = 0 and the variance Var[Bα
Ov] = 2/(T ∗

n )2. Unless
stated otherwise, we choose a typical value of T ∗

n = 1 ns
[5,23]. Note that we define the variance of the Overhauser
field via the dephasing time T ∗

n because this time is accessible
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in the related experiments. Physically it is defined via the
strength of the hyperfine interaction and the spin quantum
number of the nuclei; see Appendix A for details.

In the semiclassical picture, the dynamics of the localized
electron spin S for a single random initial configuration of
the full ensemble is determined by the classical equations of
motion (h̄ is set to unity)

d

dt
S = (BOv + geμBBextex ) × S + 1

τ0
Jzez, (3a)

d

dt
Jz = − 1

τ0
Jz, (3b)

d

dt
Ik = (AkS + gnμnBextex ) × Ik, , (3c)

k ∈ {1, 2, . . . , N}, where ge = 0.555 [4] is the g factor of
the localized electron spin, μB the Bohr magneton, Bext the
strength of the external magnetic field, and eα the unit vector
in α direction. The intermediate trion state Jz, which is excited
by a pump pulse, has the lifetime τ0 = 400 ps [5,23] and
eventually decays radiatively into the ground state S. The
derivation of the recombination dynamics for the trion and
ground state spin polarizations follows, e.g., from a Lindblad
approach developed by Jäschke et al. [9]. It also appears in
several other works, e.g., in Refs. [21,23,24,26,58,59].

Importantly, the Overhauser field BOv is a dynamic object
since the nuclear spins Ik are also dynamic as described by
Eq. (3c). The hyperfine coupling constants Ak are proportional
to the probability of presence of the localized electron at the
position of the kth nucleus. For two-dimensional and flat QDs,
the envelope wave function of the electron in its orbital ground
state is a Gaussian envelope in a two-dimensional plane. It can
be shown that this results in an exponential parametrization of
the hyperfine couplings [22,30],

Ak ∝ exp(−kγ ), (4)

k ∈ {1, 2, . . . , N}, which we apply in the model. The parame-
ter γ defines the number of effectively coupled nuclear spins
via Neff ≈ 2/γ [15,22,49]. Since it is unfeasible to solve the
corresponding equations of motion (3c) for each individual
nuclear spin Ik for a realistic bath size N , we resort to a more
efficient approach.

By applying the spectral density (SD) approach to the
Overhauser field dynamics [22], we reduce the number
of dynamic variables from 3N + 4 to 3Ntr + 4, where
Ntr = O(75) � N is a truncation parameter. The essence of
this approach is the replacement of the nuclear spins Ik by
appropriate sums of nuclear spins, represented by the auxiliary
vectors Qk , similar to an approach by Erlingsson and Nazarov
[31]. These vectors follow the equation of motion

d

dt
Qk = (εkS + gnμnBextex ) × Qk, (5)

k ∈ {1, 2, . . . , Ntr}, where gnμn = geμB/800 is roughly the
average magnetic moment of the nuclei in a GaAs QD
[9,10,12,15,60], which is roughly 800 times smaller than the
magnetic moment of the localized electron due to the much
larger masses of the nuclei, and the εk ∝ √

2γ /T ∗
n are ef-

fective coupling constants which emerge from the original
couplings distribution (4) via application of the SD approach;

see Appendix A 2. Finally, the Overhauser field is given by

BOv =
Ntr∑
i=1

√
WkQk, (6)

where the Wk are weights also emerging from the SD ap-
proach. Since we focus on GaAs QDs, we choose I = 3/2
for the nuclear spins. Thus, we sample the components of
the vectors Qk from a normal distribution around zero with
variance I (I + 1)/3 = 5/4. For InGaAs QDs, one needs to
also account for I = 9/2 of the indium isotopes.

A detailed explanation of the SD approach is given in
Appendix A 2 and in Refs. [15,22].

B. Pulse model

The periodic optical pumping is carried out with the rep-
etition time TR = 13.2 ns [4,5,10,23]. We focus on resonant
pumping of the electron spin S by circularly polarized π

pulses with helicity σ−, which have a typical duration of
1.5 ps in the experiments [4,5,7,10,11,23,61]. The pumping
of the localized electron spin with this circularly polarized
light leads to the excitation of a negatively charged singlet
trion X −, which decays completely before the arrival of the
next pulse under the experimental condition τ0 � TR. The
trion consists of two electrons in a spin singlet state and a
heavy hole with unpaired spin. We consider flat QDs where
the lateral size by far exceeds their height, i.e., we can choose
the growth axis ez to be the quantization axis for the electron
and heavy-hole spin states. For σ− pulses, the electron spin
state −1/2 and the heavy hole spin state −3/2 are responsible
for the dominant optical transition due to the conservation of
angular momentum [21,34,62]. Because one Larmor period
even in a magnetic field as large as 9 T lasts about 14 ps,
we consider the pulse to act instantaneously since the pulse
duration is shorter by one order of magnitude.

Under these conditions, the pulse action can be described
by a simple relation between the spin components before
(Sb, Jb) and after (Sa, Ja) the pulse [9,21]

Sz
a = 1

4 + 1
2 Sz

b, (7a)

Sx
a = Sy

a = 0, (7b)

Jz
a = Sz

b − Sz
a, (7c)

Jx
a = Jy

a = 0, (7d)

where Jx and Jy are the transverse components of the trion
pseudospin vector J. The relevant trion spin states can be
characterized by an effective pseudospin Jz := (T+ − T−)/2,
with T± being the number of trions with spin projection ±3/2
(due to the unpaired heavy hole spin) onto the z axis [62]. The
transverse components have no relevance in this section as we
neglect possible trion spin dynamics here, but they become
important later in Sec. IV.

Note that for longer pulse durations, the pulse efficiency is
reduced especially for very large magnetic fields [10,63], but
this is beyond the scope of the present work.

C. Results

We solve the coupled equations of motion (3a), (3b), and
(5) for the spin dynamics numerically for M random ini-
tial fields {Qk} while applying the pulse relation (7) every
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FIG. 2. Numerical results for the initial model introduced in Sec. II: (a) Spin dynamics (blue line with fast oscillations) between consecutive
pulses after the first pulse, after a few pulses (SML regime), and after many pulses (NIFF regime) for two external magnetic fields Bext. The
orange line represents the envelope S⊥(t ). (b) Quasistationary probability distributions of the effective magnetic field p(Beff ) for various
external magnetic fields Bext (orange vertical lines) and γ = 0.02. The gray solid and dashed vertical lines represent the values of Beff fulfilling
the ERC (10a) and ORC (10b), respectively. (c) Revival amplitude as a function of the scaled number of pulses npγ for various values of the
coupling parameter γ ; note the data collapse for long trains of pulses. The inset shows the SML regime npγ � 1. (d) Limiting values S⊥

lim

(sphere, solid) and Sz
lim (triangle, dotted) of the revival amplitude as a function of the external magnetic field Bext for two ratios geμB/gnμn and

γ = 0.02. The vertical dashed lines represent the corresponding NRCs (13), the horizontal black dashed line indicates the SML steady-state
value SSML.

TR = 13.2 ns for np pulses. The actual dynamics of the local-
ized electron spin is given by the ensemble average over all M
independent trajectories. In our simulations, we typically use
M = 8192.

Let us briefly review the basic phenomena of spin
mode locking (SML) and nuclei-induced frequency focusing
(NIFF), which can be already discussed qualitatively for the
initial model. Typical time evolutions between consecutive
pulses due to these two effects are shown in Fig. 2(a). The
first pulse creates a net spin polarization which precesses
around the transverse magnetic field Bext. Due to the normal
distribution of the Overhauser field, this polarization dephases
on the timescale T ∗

n = 1 ns according to [27,45]

Sz
deph(t ) ∝ cos(geμBBextt ) exp

[
−

(
t

T ∗
n

)2
]
. (8)

After applying only a few pulses, a revival of this polarization
emerges just before the arrival of the subsequent pulse. This
effect is called spin mode locking [5] and it emerges due to

a selection of precession modes due to the properties of the
pulse (7). Qualitatively speaking, the modes corresponding
to an integer number of Larmor periods between consecutive
pulses lead to an enhancement of spin polarization while the
spin polarization is destroyed for modes corresponding to a
noninteger number. The physics behind this behavior is that
due to the selection rules, the localized electron spin is opti-
cally inactive in the first case and optically active in the second
case.

It can be shown analytically that a steady state emerges
for this revival amplitude when neglecting the Overhauser
field dynamics and also the trion decay (geμBBext 
 1/τ0)
[9,10,20]. The steady state follows from the condition
Sz(npTR) = Sz(npTR + TR) in combination with the periodic
application of the pulse (7). After averaging over the Over-
hauser field distribution, the analytical steady state in the SML
regime (without NIFF) takes the value [10,20]

SSML := lim
np→∞ Sz(npT −

R ) = 1√
3

− 1

2
≈ 0.07735, (9)

115301-4



INTERPLAY OF SPIN MODE LOCKING AND … PHYSICAL REVIEW B 102, 115301 (2020)

which is also identical to the value of the envelope S⊥ [defined
in Eq. (11)], i.e., the x and y components vanish. In the follow-
ing, we will refer to this value as the SML steady-state value.
This steady state is reached after about 10 pulses, independent
of the external magnetic field strength.

When driving the system by much longer pulse trains (up
to minutes), the effect of nuclei-induced frequency focusing
comes into play [4], with a rate depending strongly on the
parameters Bext, γ , and T ∗

n . This effect leads to a change
of the SML steady-state amplitude. The periodic driving of
the localized electron spin is transferred to the nuclear spin
bath via the hyperfine interaction such that the initial normal
distributed Overhauser field evolves towards a comblike struc-
ture; see Fig. 2(b). The position of the emerging peaks in the
probability distribution of the Overhauser field corresponds to
the two resonance conditions [9,10]

�eff TR = 2πk, (10a)

�eff TR = 2πk + 2 arctan(�effτ0) ≈ (2k + 1)π, (10b)

k ∈ Z, where �eff = |BOv + geμBBextex| is the precession
frequency in the effective magnetic field Beff = �eff/geμB

created by the external magnetic field and the Overhauser
field and τ0 is the radiative lifetime of the trion. We will refer
to the first condition (10a) as the even resonance condition
(ERC) because 2k is an even integer. The approximation in
the second condition (10b) holds for �effτ0 
 1, which is
the case in our theoretical considerations. Hence, we refer
to it as the odd resonance condition (ORC) because (2k + 1)
is an odd integer. Depending on which resonance condition
emerges, the revival amplitude is either increased or decreased
with respect to the SML steady-state value SSML. The correct
description of this interplay as a function of the magnetic field
is the main goal of this work.

One of the key quantities of interest is the revival amplitude

S⊥(np) :=
√

[Sy(npT −
R )]2 + [Sz(npT −

R )]2, (11)

where T −
R indicates that we take the value of the spin polar-

ization immediately before the arrival of the next pulse. The
trion does not contribute to this revival because it is decayed
completely at t = npT −

R (τ0 � TR). In particular, we are inter-
ested in the long-time behavior of the revival amplitude and
its corresponding saturation value

S⊥
lim := lim

np→∞ S⊥(np), (12)

because this is the state reached in the experiments. Exper-
imentally, the spin polarization can be probed using weak
linearly polarized pulses exploiting the spin Faraday effect.
This yields a signal proportional to Sz − Jz [21,62].

Figure 2(c) shows the build-up of spin polarization for vari-
ous values of the parameter γ . The revival amplitude increases
to the SML steady-state value SSML ≈ 0.07735 within the first
few pulses, independent of γ and of the magnetic field Bext.
NIFF emerges after a long train of pulses. However, there is
an important qualitative difference between Bext = 1 T and 2
T: For Bext = 1 T, the revival amplitude decreases, while for
Bext = 2 T, we find an increase. In both cases, a saturation
value is reached eventually. Scaling the number of pulses np

with γ leads to an almost perfect data collapse in Fig. 2(c) so

that the saturation value S⊥
lim is independent of γ , differences

stem from the statistical nature of our approach. Note that a
similar behavior is found in Refs. [9,15].

Since γ ≈ 2/Neff can be interpreted as the inverse effective
bath size, we are in particular interested in values γ ≈ 10−5.
However, the computational effort is too big for a direct sim-
ulation because the typical coupling strength of a nuclear spin
is proportional to

√
γ , i.e., the rate of frequency focusing in

the nuclear spin bath is much smaller for realistic bath sizes.
In fact, the rate scales only linearly with γ as demonstrated
in Fig. 2(c) because NIFF is only a second order effect when
the nuclear Zeeman term in Eq. (5) is present [15]. Then, the
nuclear spin dynamics induced by the hyperfine coupling acts
as a perturbation with its leading effect occurring in second
order. For this reason, we can study the dependence of S⊥

lim on
the magnetic field Bext for γ = 0.02 (Neff ≈ 100) in Fig. 2(d),
which is also representative for the limit γ → 0. We also in-
clude Sz

lim to identify possible phase shifts between the signal
before and after the pulse.

Previous research has established another class of reso-
nance conditions, namely for the nuclear spins [10,12],

gnμnBextTR = πk, (13)

k ∈ Z, which plays a crucial role for the magnetic field de-
pendence of the saturated revival amplitude S⊥

lim. The values
of Bext fulfilling this condition are highlighted in Fig. 2(d)
as vertical dashed lines for two different ratios geμB/gnμn.
This nuclear resonance condition (NRC) describes the number
of half-turn revolutions of the nuclear spins in the external
magnetic field Bext between consecutive pulses. Note that the
influence of the small Knight field, i.e., the additional field that
a nuclear spin sees due to its coupling to the localized electron
spin, is neglected. It might induce slight deviations from the
expected resonance positions [64].

Let us discuss the details of Fig. 2(d). We observe that
the curve for geμB/gnμn = 500 is essentially a horizontally
rescaled version of the curve for geμB/gnμn = 800. Maxima
are found close to the values of Bext fulfilling the NRC (13).
The first maximum (k = 1, half turn) is rather broad while the
second maximum (k = 2, full turn) is quite sharp and slightly
shifted to the right from the expected resonance position. We
identify the emergence of phase shifts while approaching the
second maximum since S⊥

lim and Sz
lim start to deviate from each

other. Just after the second resonance is reached, this phase
shift vanishes again. For geμB/gnμn = 500, a third maximum
(k = 3) appears, which is very similar to the first one and
indicates a periodicity for larger values of Bext. We expect a
third maximum also for the ratio geμB/gnμn = 800, but it is
numerically out of reach. The heights of the broad maxima are
very similar. The sharp maximum is slightly less pronounced
for geμB/gnμn = 800, but this is most likely due to the finite
discretization of the magnetic field Bext.

The finding of a maximum at 3.9 T for geμB/gnμn = 800
is the main downside of this model. Previous research has
established theoretical models which predict minima at the
values of Bext fulfilling the NRC [10,15], which is also in
much better agreement with the experimental results around
Bext = 4 T [9,10].
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The structure of the dependence S⊥
lim(Bext ) in Fig. 2(d)

can be understood by studying the corresponding quasis-
tationary probability distributions of the effective magnetic
field p(Beff ). The term “quasistationary” implies that the dis-
tribution does not change noticeably anymore even though
the Overhauser field is still dynamic. A nonequilibrium
steady state is reached. The most characteristic examples for
geμB/gnμn = 800 are shown in Fig. 2(b). For almost any
external magnetic field Bext, highlighted by the orange vertical
line in the plots, we find sharp peaks at the even (vertical solid
black lines) and odd (vertical dashed black lines) resonance
conditions, but with different weights. Since the ERC corre-
sponds to full Larmor periods between consecutive pulses,
the steady-state condition following from the pulse relation
(7a) is Sz

b = Sz
a = 1/2. For the ORC, the steady state is deter-

mined by Sz
b = −Sz

a = −1/6. For this reason, odd resonances
contribute with a three times smaller weight when all contri-
butions from the Overhauser field distribution are summed.
Note that for the same reason the ERC dominates the SML
regime without NIFF because the Overhauser field is normally
distributed so that this distribution by itself does not favor
ERC over ORC or vice versa.

Interestingly, we find strong deviations from the even and
odd resonances around Bext ≈ 7.8 T, which is the value corre-
sponding to k = 2 in the NRC (13). This finding explains the
deviations of the z component from the envelope in Fig. 2(d).
When increasing the magnetic field just slightly to Bext = 8 T,
sharp peaks are found at the ERC, but small side peaks re-
main which do not correspond to the expected resonances. At
Bext = 8.5 T and 9 T, the behavior is back to normal with sharp
peaks at the ERC and broader peaks at the ORC (not shown).

D. Discussion

The initial model reveals the fascinating coherent spin phe-
nomena SML and NIFF and also a nonmonotonic dependence
S⊥

lim(Bext ), which was first published in Refs. [8,9] and is stud-
ied in more detail in Refs. [10,15]. However, the results for
the initial model contradict the findings of previous theoretical
research [10] where minima instead of maxima were found at
the NRC, which is also in much better agreement with the ex-
perimental results [9,10]. While there are experimental results
that suggest that both even and odd resonances can appear
simultaneously in the frequency spectrum of the localized
electron spin, this seems to be not the case for every magnetic
field [9]. Moreover, the peaks found in the experiments appear
to be generally much broader. One has to keep in mind that
the frequency spectrum of the localized electron spin is not
completely equal to the probability distribution of the effective
magnetic field, especially due to the different contribution of
the ERC and ORC to the spin polarization. In the following
sections, we address the issues of the initial model by extend-
ing it in three steps.

III. EXTENDED MODEL I: PULSE AS A MEASUREMENT

As we are modeling the system and the pulses in a semi-
classical picture, it is not clear how to treat the excitation of
the localized electron spin by the circularly polarized laser
pulse. In fact, the pulse model (7) was derived quantum

mechanically [21], but the relations are only valid for the
expectation values of the spins. One could argue that applying
the pulse relation (7) to the spin polarization after calculating
the ensemble average, but this approach destroys any correla-
tion otherwise present in a single configuration such that no
revival amplitude appears without NIFF, i.e., the mere SML
regime is missing. However, such correlations are preserved
in a quantum mechanical approach.

We extend the pulse model (7) by interpreting its applica-
tion as a measurement. This leads to a nondeterministic pulse
description in the sense of a truncated Wigner approximation
(TWA) [16] and reduces the discrepancy to the fully quan-
tum mechanical behavior. The same principle was applied
in Refs. [10,15] to a simpler pulse model, which led to a
minimum of the magnetic field dependence S⊥

lim(Bext ) around
4 T as found in the experiments [9,10]. Alternative nondeter-
ministic pulse descriptions are discussed in Appendix B, but
they turn out to be less reliable.

A. Nondeterministic pulse description

The essence of simulating quantum mechanics via clas-
sical equations of motion is the choice of the correct initial
conditions. Typically, one tries to fulfill the quantum mechan-
ical moments of the corresponding operators, in our case of
the spin operators. We already apply this principle to the
Overhauser field by sampling it from the proper normal distri-
bution. In this case, the huge number of nuclear spins forming
a spin bath provides a valid justification of the approach based
on the central limit theorem [45]. In contrast, this argument
does not hold for the single localized electron spin which is
excited by a pump pulse, so any semiclassical treatment is
always an approximation. Nevertheless, we will show that this
procedure leads to promising results in our application.

The TWA is the theoretical foundation of the following
approach. In this semiclassical phase space method, the initial
conditions are sampled from the appropriate Wigner distri-
bution, which is eventually truncated by taking only leading
order quantum corrections in h̄ into account. In leading or-
der, quantum fluctuations appear only through the Wigner
distribution of the initial conditions, but they do not affect
the equations of motion themselves, i.e., they are classical.
Finally, the quantum mechanical time evolution is mimicked
by the ensemble average over all classical trajectories [16].

The main requirement is that the nondeterministic pulse
retains the properties of pulse (7) in the SML regime. We con-
sider each pulse to act as a quantum mechanical measurement,
i.e., we have to account for the uncertainty principle [15]. To
be precise, the pulse needs to fulfill the quantum mechanical
property for spin-1/2 operators 〈(Sα )2〉 = 1/4. Hence, the de-
terministic pulse model (7) is extended to a nondeterministic
description in which the electron spin Sa after the pulse is
sampled from normal distributions characterized by

E
[
Sz

a

] = 1

4
+ 1

2
Sz

b, (14a)

E
[
Sx

a

] = E
[
Sy

a

] = 0, (14b)

Var
[
Sα

a

] =
{

1
4 − E2

[
Sα

a

]
, if E2

[
Sα

a

]
� 1

4 ,

0, else.
(14c)
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FIG. 3. Numerical results for the extended model I (EM I) introduced in Sec. III: (a) Revival amplitude as a function of the scaled
number of pulses np/B2

ext for various external magnetic fields Bext (γ = 0.004). The black dashed lines represent the corresponding fits (15).
(b) Quasistationary probability distributions of the effective magnetic field p(Beff ) for various external magnetic fields Bext (orange vertical
lines) and γ = 0.004. The gray solid and dashed vertical lines represent the values of Beff fulfilling the ERC (10a) and ORC (10b), respectively.
(c) Saturated revival amplitude S⊥

lim as a function of the typical coupling strength
√

γ /T ∗
n for various combinations of the external magnetic

field Bext (in T) and T ∗
n (in ns). The linear extrapolation γ → 0 (dashed lines) yields the limit of an infinite bath. The horizontal dashed line

represents the SML steady-state value SSML. (d) Limiting values S⊥
lim of the revival amplitude as a function of the external magnetic field Bext

for various values of the coupling parameter γ and extrapolated to γ → 0. The vertical dashed lines represent the NRC (13) for k = 1 and 2,
the horizontal dashed line indicates the SML steady-state value SSML.

The distribution is solely determined by the value Sz
b, i.e.,

the distribution is different for every pulse unless a steady
state is reached. We have to set the variance to zero in some
cases because we treat the spins as classical vectors, i.e.,
a spin component can be larger than 1/2 due to the sam-
pling from a normal distribution. Practically, this issue only
arises for the z component, but for about 25% of the pulses.
This alters its effective variance to a certain extent, but it
leaves the expectation value, which is responsible for the
correct reproduction of the steady state in the SML regime,
unchanged.

The validity of this nondeterministic pulse description is
established in Appendix B, where several nondeterminis-
tic pulse descriptions are benchmarked in the SML regime
against the deterministic pulse model (7) and its quantum
mechanical realization [10].

Mapping the classical spin vector S to a well-defined den-
sity matrix of a spin 1/2 with subsequent application of a
pulse operator yields the deterministic pulse relations (7) for
the expectation values of the spin components (see Ref. [9]
for a derivation). The nondeterministic pulse properties must

be introduced by hand in a semiclassical approach. For in-
stance, an average spin polarization 〈Sα〉 = 0 would cause no
dynamics in the Overhauser field in a semiclassical approach
unless quantum mechanical fluctuations of the localized elec-
tron spin are modeled by an appropriate distribution. This is in
line with semiclassical treatments based on truncated Wigner
approaches [16,65] where often normal distributions yield
convincing results even though it is known that the Wigner
distributions reflecting quantum mechanical measurements in-
volve negative probabilities.

B. Results

As pointed out above and studied in detail in Appendix B,
the nondeterministic pulse description (14) does not alter the
behavior in the SML regime besides adding additional fluc-
tuations to the spin polarization. In the following, we study
the interplay of SML and NIFF when long trains of pulses are
applied.

Figure 3(a) shows the influence of NIFF on the revival
amplitude after the SML regime has been reached for various
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external magnetic fields Bext. All curves reach a saturation
value after approximately the same number of scaled pulses
np/B2

ext [10,15], but the saturation value depends significantly
on the magnetic field strength. Due to the additional fluc-
tuations of the data caused by the nondeterministic pulse
description, we extract the saturation value S⊥

lim by fitting an
appropriate function to the data. It turns out that

S(np) = ANIFF
2

π
arctan

(
np

η

)
+ BSML (15)

is a suitable fit function, which describes a 1/np convergence
towards saturation. This is different from the exponential
saturation fit used in Ref. [10], which would slightly underes-
timate (overestimate) the saturation value, e.g., for Bext = 1 T
(Bext = 4 T). Fits of type (15) are included in Fig. 3(a) as
black dashed lines. Finally, the saturation value for np → ∞ is
given by S⊥

lim = BSML + sgn(η)ANIFF. Since the fit error turns
out to be fairly small, we use the mean-squared error of the
last 10% data points as error estimate. In the rare cases where
the fit does not work appropriately, e.g., because almost no
NIFF emerges for a given parameter set, we simply interpret
the average of the last 10% data points as the saturated revival
amplitude.

The quasistationary distributions of the effective magnetic
field shown in Fig. 3(b) reveal much broader peaks than the
distributions in Fig. 2(b) for the initial model where the deter-
ministic pulse (7) is applied. They are located at the values of
Beff corresponding either to the ERC or to the ORC, i.e., only
one class of resonances emerges, not both simultaneously as
in Fig. 2(b).

In the extended model, the parameter γ , which is propor-
tional to the inverse effective bath size, plays an important
role. While the number of pulses required to reach satura-
tion still increases linearly with γ , the saturation value S⊥

lim
changes. A similar behavior is found in Ref. [10] for a dif-
ferent, but also nondeterministic pulse when increasing the
effective bath size. It turns out that the typical hyperfine cou-
pling strength, which is proportional to

√
γ /T ∗

n , determines
the saturation value. In Fig. 3(c) we plot S⊥

lim against the
typical coupling strength for various combinations of Bext and
T ∗

n while varying γ . Especially for Bext = 1 T and 4 T, there
appears to be a linear dependence which we exploit for an
extrapolation

√
γ → 0, i.e., to an infinite effective bath size,

which is is the limit of interest for QDs with 104–106 nuclear
spins, i.e.,

√
γ ≈ 10−3–10−2. Furthermore, the choice of the

dephasing time T ∗
n , which is an input parameter from the

experiments, appears to be not important as long as it is sig-
nificantly shorter than the pulse repetition time TR. Otherwise,
one would approach the regime of resonant spin amplification
instead of SML, showing different qualitative physics [24].
The data and their extrapolation is not as robust for Bext = 2 T
where almost no NIFF emerges, but this uncertainty is repre-
sented by the fit error being larger than the error of a single
saturation value.

For large values of
√

γ /T ∗
n , independent of the magnetic

field, almost no NIFF emerges and the linear scaling is
not applicable. Physically, the effective hyperfine couplings
εk ∝ √

γ /T ∗
n becomes too large in comparison to the nuclear

Zeeman term gnμnBext in Eq. (5). Hence, the linear scaling for

√
γ → 0 is expected to work even for larger ratios

√
γ /T ∗

n
when a larger magnetic field is applied. This behavior is
evident in Fig. 3(c).

The minor influence of T ∗
n on the revival amplitude S⊥

lim
in the limit γ → 0 is very beneficial because the number of
pulses required to reach the saturated revival amplitude scales
approximately with (T ∗

n )3. Thus, we can stick to our initial
choice T ∗

n = 1 ns without worrying about a strong influence
of this parameter which can be also larger for some samples of
QDs, e.g., T ∗

n ≈ 4 ns [66]. Simulations for such a large value
are out of reach due to the required computational effort.

We put the new insight to use in Fig. 3(d) where we plot
the saturated revival amplitude S⊥

lim as a function of Bext for
decreasing values of γ . Furthermore, we extrapolate the satu-
ration value to an infinite bath size (γ → 0) and compare the
results to the SML regime. During this extrapolation process,
we enforce the physical lower bound S⊥

lim � 0. This is realized
by setting S⊥

lim = 0 if the extrapolation yields a negative value,
but we check that the actual extrapolation value and its error
are in agreement with the bound. We find two minima at the
values of Bext which fulfill the NRC (13), with the second
one being much narrower. The minima and maxima become
more pronounced for smaller values of γ , and the minima for
γ → 0 correspond to S⊥

lim ≈ 0. At around Bext = 2 T and 6 T,
almost no NIFF emerges for any choice of γ . Between these
two values, we find a destructive interplay of SML and NIFF,
leading to a decrease of the revival amplitude, and we also
find this behavior in a narrow interval around Bext = 7.8 T. For
the other values of Bext, NIFF increases the revival amplitude,
i.e., it acts constructively by enhancing the revival amplitude
already present after a few pulses in the mere SML regime.

C. Discussion

We mimic the quantum mechanical behavior of the system
by interpreting each pump pulse as a measurement, leading
to a nondeterministic pulse description based on the TWA.
As a result, we find the expected minima in the magnetic field
dependence of S⊥

lim, similar to the experimental and theoretical
results of Kleinjohann et al. [10], and in contrast to the initial
model studied in the previous section. Overall, our results
are qualitatively very similar to their quantum mechanical
approach. Differences could stem from the considered bath
sizes since the quantum mechanical approach is limited to
only N = 6 nuclear spins.

Summarizing, the quasistationary distribution of the effec-
tive magnetic field shows much broader peaks than previously
in Sec. II for the initial model. This is in much better agree-
ment with what is reported in experimental studies [9,11].
Only a single class of resonances emerges, corresponding to
either an integer (ERC) or a half-integer (ORC) number of
Larmor periods between consecutive pulses. Depending on
the magnetic field strength, either the ERC or the ORC is
fulfilled, which in turn leads to an increase or a decrease of
the revival amplitude relative to the SML regime, respectively.
Note that in principle, the emergence of the ORC could also
lead to an increase of the revival amplitude relative to the SML
steady-state value SSML if the frequency focusing of the nuclei
is strong enough, but we do not observe this behavior in our
simulations. The minima and maxima of the magnetic field
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dependence become more pronounced for larger bath sizes,
the dephasing time T ∗

n only has a minor influence in the limit
of an infinite bath size.

IV. EXTENDED MODEL II: TRION PSEUDOSPIN
DYNAMICS

Up to this point, we treated the trion only on the level of an
intermediate state which eventually decays on the timescale
τ0 = 400 ps [see Eq. (3)]. We neglected the dynamics of its
pseudospin J, which is very similar to the dynamics of the
ground state of the localized electron spin S described by the
equation of motion (3a). In the recent theoretical studies of
Refs. [9,10,15], this dynamics was not considered either. But
the description of its dynamics, especially the coupling to the
external magnetic field, is crucial for the correct description of
the time evolution between consecutive pulses. In the context
of spin inertia and polarization recovery measurements, where
rather small magnetic fields up to a few 100 mT are applied
in Faraday geometry, the detailed description of the trion
pseudospin dynamics is absolutely mandatory [26,59,67]. In
the following, we will show that its inclusion will also alter the
behavior of NIFF as a function of the magnetic field, and im-
portantly, we find evidence for dynamic nuclear polarization
(DNP), i.e., the emergence of a nonzero average polarization
of the nuclear spin bath, in the model.

A. Equations of motion of the trion pseudospin

The optical transition induced by a σ− pump pulse leads
to the excitation of a singlet X − trion. In this case, the trion
consists of two electrons in a spin singlet state and a heavy
hole with unpaired spin such that the effective type of charge
carrier in the excited state (hole) is opposite to the type in
the ground state (electron). We recall that the relevant trion
spin states, resulting from the unpaired heavy hole spin, are
characterized by an effective pseudospin Jz := (T+ − T−)/2,
with T± being the number of trions with spin projection ±3/2
onto the z axis [62]. The dynamics of the corresponding trion
pseudospin vector J is induced by the effective magnetic field,
but we need to consider that the hyperfine interaction is much
weaker and anisotropic for hole spins because it is caused by
the dipole-dipole interaction [34,68,69]. Then, this interaction
can be described by the anisotropic hyperfine Hamiltonian
[70]

ĤHF,anisotropic =
N∑

k=1

[
χAkĴzÎ z

k + χ

λ
Ak

(
Ĵx Î x

k + ĴyÎ y
k

)]
. (16)

The resulting classical equation of motion for the trion pseu-
dospin has the form

d

dt
J = χ

(
Bz

Ovez + 1

λ
B⊥

Ov

)
× J

+ ghμBBextex × J − 1

τ0
J, (17)

with B⊥
Ov = Bx

Ovex + By
Ovey. The factor χ describes how much

weaker the hyperfine interaction is for hole spins than for
electron spins. Typically, it is about five to 10 times weaker
[34,67,71], and thus, we use χ = 0.2 in our calculations. For

the anisotropy factor, λ = 5 is a typical value [67,71]. The
g factor of the trion pseudospin (heavy-hole) ranges from
gh = 0.05 to 0.15, depending on the in-plane orientation of
the QD sample [72,73]. We focus on gh = 0.15 here and
demonstrate in Appendix C that the results are very similar
for gh = 0.05.

The equations of motion for the Overhauser field BOv

dynamics are also extended due to its coupling to the trion
pseudospin during the trion lifetime τ0. The weaker and
anisotropic hyperfine interaction is accounted for by the pa-
rameters λ and χ , leading to the extended equation of motion
for the auxiliary vectors

d

dt
Qk = εkS × Qk + χεk

(
Jzez + 1

λ
J⊥

)
× Qk

+ gnμBBextex × Qk, (18)

k ∈ {1, 2, . . . , Ntr}, with J⊥ = Jxex + Jyey. The εk and Wk do
not change as the hyperfine couplings Ak are still parameter-
ized by the exponential distribution (4), the Overhauser field
is still given by Eq. (A9).

B. Results

The numerical integration of the extended equations of
motion (17) and (18) leads only to a negligible increase of
computational complexity in comparison to the equations of
motion considered in the two previous sections. In the fol-
lowing, we will discuss the main changes which emerge in
comparison to the results for the EM I of Sec. III.

1. Spin dynamics

In the pump-probe experiments under consideration, the
Faraday rotation or ellipticity is measured by weak linearly
polarized pulses. The probed signal is proportional to Sz − Jz

[21], i.e., the spin polarization of the system is measured.
Figure 4(a) shows the corresponding time evolution in our
model between two pulses in the saturation regime for the
two magnetic fields Bext = 1 T and 4 T. The initial dephasing
reveals additional beats, stemming from the trion pseudospin
which precesses around the external magnetic field with a
slightly different Larmor frequency than the electron spin.
The beats decay on the timescale τ0 � TR so that they do
not appear in the revival before the next pulse. They are also
evident in the experimental results [4,5,23], but they typically
vanish much quicker there. This issue is dealt with in Sec. V.

2. Nuclei-induced frequency focusing

The most prominent difference to the EM I of Sec. III
appears when studying the magnetic field dependency of the
revival amplitude, which is plotted in Fig. 4(b) for various
values of the parameter γ . While we still find two minima
at values of Bext fulfilling the NRC (13), the first broad mini-
mum hints at the emergence of even resonances instead of the
previous odd ones because the value of the revival amplitude
is larger instead of smaller compared to SSML. This is sup-
ported by the corresponding quasistationary distribution of the
effective magnetic field p(Beff ) for Bext = 3.9 T in Fig. 4(c)
where peaks are found at the values of Bext fulfilling the ERC
(10a). In this regime, the values of the revival amplitude are
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FIG. 4. Numerical results for the extended model II (EM II) introduced in Sec. IV: (a) Spin dynamics between consecutive pulses after a
long train of pulses for two external magnetic fields Bext at γ = 0.004. (b) Limiting values S⊥

lim of the revival amplitude as a function of the
external magnetic field Bext for various values of the coupling parameter γ and for the limit γ → 0. The vertical dashed lines represent the
NRC (13) for k = 1 and 2s, the horizontal dashed line indicates the SML steady-state value SSML. (c) Probability distributions of the effective
magnetic field p(Beff ) when the revival amplitude is in the saturation regime for various external magnetic fields Bext (orange vertical lines)
and γ = 0.004. The gray solid and dashed vertical lines represent the values of Beff fulfilling the ERC (10a) and ORC (10b), respectively. The
green vertical line represents the mean value of the distribution. (d) DNP BDNP (circles, solid lines) and its absolute value (triangles, dashed
lines) as a function of the external magnetic field Bext for various values of the coupling parameter γ after the saturation of the revival amplitude
is reached. The vertical dashed lines represent the corresponding NRCs (13).

larger than the mere SML steady-state value SSML, which is
plotted as a black horizontal dashed line in Fig. 4(b). The
overall degree of NIFF in this regime is small. This behavior
differs from our findings for the EM I, where the revival am-
plitude approaches zero and the effect of NIFF becomes more
pronounced for small values of γ . Furthermore, the second
minimum in Fig. 4(b) still corresponds to the ORC (10b)
in the probability distribution p(Beff ) as shown in Fig. 4(c)
for Bext = 7.8 T. This minimum is narrower compared to the
second minimum found for the EM I.

The linear extrapolation
√

γ → 0 for the saturation value
S⊥

lim, which we have established in Fig. 3(c) of Sec. III, is still
applicable when including the full trion pseudospin dynamics,
and the exact choice of the dephasing time T ∗

n also has only
a minor influence on the results. We apply the extrapola-
tion procedure for the magnetic field dependence S⊥

lim(Bext )
of the revival amplitude in Fig. 4(b). Overall, the structure
becomes more pronounced in the limit γ → 0, but the revival
amplitudes around the minimum at Bext = 3.9 T are almost
independent of γ . Moreover, the maxima have a similar height
as in Fig. 3(d). This means that the degree of NIFF under

optimal conditions is very similar. Under these conditions,
the revival amplitude is about three times larger than in the
SML regime without NIFF. Experimentally, a ratio of 3.6 for
the revival amplitude with versus without NIFF is found for
Bext = 2 T [11]. For this particular magnetic field, we find a
ratio of only 2. Note that for the EM I [Fig. 3(d)], this ratio is
barely larger than 1.

The influence of the parameter χ = 0.2, which charac-
terizes the hyperfine interaction strength between the trion
pseudospin and the Overhauser field, is minor. Since the trion
only has a lifetime of 400 ps and the hyperfine interaction is
much weaker than for the electron spin, this coupling could
be neglected for its smallness. In our simulations, we find
very similar NIFF for χ = 0, i.e., without the coupling of
the trion pseudospin to the Overhauser field. At best, NIFF is
marginally more pronounced when this coupling is neglected
because it acts as a small additional perturbation. However,
the deviations between the results are of the order of the
estimated error so that no reliable conclusion can be given.

The distribution of the hyperfine couplings is also not es-
sential for the qualitative NIFF behavior. When we employ a
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simple box model, i.e., we choose all hyperfine couplings to
be equal with Ak ∝ (

√
NT ∗

n )−1, the magnetic field dependence
of the revival amplitude S⊥

lim(Bext ) shows the same qualitative
shape as in Fig. 4(b), with a slightly more pronounced NIFF.
Since all nuclear spins precess with the same frequency in
this simplified model, the nuclear spins cannot change their
mutual angles. We will see, however, that the alignment of
nuclear spins is one of the two essential mechanisms leading
to dynamic nuclear polarization.

3. Dynamic nuclear polarization

In the probability distributions of the effective magnetic
field p(Beff ) in Fig. 4(c), one can discern a small shift of the
distribution to the right for Bext = 1 T and 8 T. We highlight
this shift by including the mean value Beff of the distribution
as a green vertical line in the plots. The applied magnetic field
Bext is highlighted in orange. Remember that at the beginning
of each simulation, Beff ≈ Bext holds, with small deviations
stemming only from the statistical nature of our approach.

The shift results from dynamic nuclear polarization (DNP)
in the Overhauser field, i.e., the nuclear spins align along the
axis of the external magnetic field Bextex to a certain extent.
First, there is the possibility of an internal alignment of the
nuclear spins in each QD. Second, the Overhauser fields of
all QDs in the ensemble could also align. The second external
process can be result of the first one, but the internal alignment
of nuclear spins is not possible when a simple box model is
used for the hyperfine couplings, i.e., when they are all set
equal.

In order to analyze this phenomenon in more detail, we
define the DNP as

BDNP(np) := Bx
Ov(npTR) − Bx

Ov(npTR = 0)

geμB
(19)

and study it as a function of the magnetic field for several
values of γ in Fig. 4(d). The number of pulses np is chosen
such that S⊥

lim is approximately in saturation. The dots and
solid lines represent BDNP, the triangles and dashed lines its
absolute value. The dependence has a very similar shape to
the one of S⊥

lim in Fig. 4(b) when studying the absolute value of
the shifts, and we find no DNP at the magnetic fields fulfilling
the NRC (13). This suggests that the underlying mechanisms
have a similar origin in the equations of motion.

The difference between the DNP for different values of γ

is minor for most magnetic fields. Note that the DNP BDNP

plotted in Fig. 4(d) do not represent the stationary values even
though the values of S⊥

lim are approximately saturated because
the DNP approaches its limit much slower than the revival
amplitude. This leads to slightly different results for the dif-
ferent values of γ . It appears that for the magnetic fields for
which the DNP BDNP is most prominent, smaller values of γ

correspond to a stronger DNP. Unfortunately, it is not possible
to reach the stationary DNP regime for large magnetic fields
due to its slow convergence, but we analyze the precise DNP
behavior for small magnetic fields in the following.

In Fig. 5 we analyze the saturation behavior of DNP and
the internal mechanism leading to its emergence. Figure 5(a)
shows the build-up of the DNP BDNP due to periodic driving
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FIG. 5. Analysis of the DNP behavior in the extended model II
(EM II) for Bext = 0.5 T and γ = 0.004 due to periodic driving with
pulses. All fits (black dashed lines) are of the type (20). (a) Build-up
of the DNP BDNP (blue line), defined by Eq. (19). The orange line
shows the simultaneous increase of the average Overhauser field
length BOv. (b) Decrease of the standard deviation of the Overhauser
field components Bα

Ov, α ∈ {x, y, z}. (c) Average angles θα between
the Overhauser field and the unit vectors eα . (d) Probability distribu-
tions of the angles p(θα ) after different numbers of pulses.

with pulses for Bext = 0.5 T and γ = 0.004, eventually reach-
ing a steady state of about 100 mT after more than 106 pulses.
This DNP is fairly large in comparison to the initial standard
deviation of the Overhauser field components of about 29 mT.
Note that the revival amplitude S⊥

lim is already saturated after
about 5000 pulses for this set of parameters. A longer pulse
train which is two orders of magnitude longer is required to
reach the saturation regime for DNP.

The DNP build-up and saturation as a function of the
number of pulses can be described via

fDNP(np) = ADNP
2

π
arctan

(
np

η

)
+ BDNP, (20)

where ADNP, BDNP, and η are fit parameters. This function
shows a 1/np convergence towards saturation.
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In parallel, the average length of the Overhauser field

BOv := |BOv|
geμB

(21)

increases due to an alignment of the individual nuclear spins.
Its dependence on the number of pulses can be described by
the fit (20) as well. However, this lengthening alone does not
explain the emergence of DNP completely; see below.

Figure 5(c) shows the average angles

θα := arccos

(
Bα

Ov

|BOv|
)

, (22)

α ∈ {x, y, z}, between the Overhauser field components Bα
Ov

and the unit vectors eα as a function of the number of pulses.
The average of the initial angle is given by π/2 for all com-
ponents α since the components Bα

Ov are sampled from a
simple normal distribution. Driving the system with periodic
pulses does not influence the average angles θ y and θ z, but the
average angle θ x is reduced to about π/12, implying that the
Overhauser field aligns along the x axis, i.e., the axis of the ex-
ternal magnetic field. The dependence of θ x on the number of
pulses can be described again by the function (20). Note that
θ x is not reduced to zero because of the finite components By

Ov
and Bz

Ov. These components still follow a normal distribution
but with a reduced standard deviation.

The corresponding probability distributions of the angles
θα after different number of pulses are plotted in Fig. 5(d).
Initially, all components follow the same distribution with a
maximum at π/2. Due to the continuous driving with pulses,
the distributions of all components become narrower, i.e.,
more focused around a certain angle. The angles θ y and θ z

remain centered around π/2, but the angle θ z becomes signif-
icantly smaller, which is also shown in Fig. 5(c).

An important consequence of DNP is a narrowing of
the Overhauser field distribution which is demonstrated in
Fig. 5(b). The standard deviations of the Overhauser field
components

σα
Ov :=

√
Var

[
Bα

Ov

]
geμB

, (23)

α ∈ {x, y, z}, are reduced from their initial value of about
29 mT to about 21–22 mT. This process is faster for the x com-
ponent and the precise saturation value differs slightly from
the one for the y and z components. Importantly, this narrow-
ing of the Overhauser field distribution implies an increase of
the coherence. The dephasing time is inversely proportional to
the standard deviation of the Overhauser field components ac-
cording to the definition (A2). Note that a fit with the function
(20) works well again, allowing for an extrapolation np → ∞.

What is the influence of the system parameters, especially
of the effective bath size Neff ≈ 2/γ , on the DNP behavior?
First, we find that the rate of DNP scales linearly with γ and
the data for Bext = 0.5 T and 1 T strongly suggests a B−2

ext
dependence. Note that these are the same scaling laws as for
NIFF [15].

For a more detailed analysis of the influence of the bath
size, we apply fits of type (20) to the data for Bext = 0.5 T
(circles) and 1 T (triangles) for various values of γ and plot
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FIG. 6. Extended model II: Limiting values of the DNP BDNP, the
average Overhauser field length BOv, the Overhauser field standard
deviation σα

Ov, and the average angle θ x , calculated by applying a fit
of type (20) to the data for Bext = 0.5 T (circles) and 1 T (triangles)
for various values of γ . The fit errors are usually too small to be
discernible. The dashed (Bext = 0.5 T) and dash-dotted (Bext = 1 T)
lines represent linear fits enabling the extrapolation to an infinite bath
size (γ → 0).

the resulting saturation values in Fig. 6. It turns out that
the dependence on γ is linear for all observables, hence, a
linear fit enables the extrapolation γ → 0, i.e., the limit of
interest for QDs with 104–106 nuclear spins. For BDNP, this
extrapolation yields a value of 117 mT for Bext = 0.5 T and a
value of 102 mT for Bext = 1 T. For Bext = 0.5 T, the standard
deviations σ

y
Ov and σ z

Ov are reduced by about 40% from their
initial value of about 29 mT to only 17.4 mT. The standard de-
viation σ x

Ov decreases slightly less to 21.2 mT. For Bext =1 T,
this anisotropy is less pronounced with limiting standard de-
viations of σ x

Ov = 21.7 mT and σ
y
Ov = σ z

Ov = 20 mT.
Comparing the results in the limit γ → 0 with the data for

finite values of γ , we conclude that all main effects are already
present for, e.g., γ = 0.01. The size of the spin bath influences
only the precise values for the observables, but their order of
magnitude turns out to be independent of γ .

Let us briefly discuss the role of the dephasing time T ∗
n on

DNP. According to the definition (A2), the typical fluctuation
strength of the Overhauser field is proportional to (T ∗

n )−1,
hence, we also expect this dependence for the maximum DNP.
For QDs with γ = 0.01 at Bext = 0.5 T, we find a DNP
of BDNP = 127 mT for T ∗

n = 0.5 ns, 96 mT for T ∗
n = 1 ns,

and 45 mT for T ∗
n = 2 ns. For Bext = 1 T, the dependence

is similar, i.e., a larger dephasing time T ∗
n corresponds to a

smaller DNP. We cannot confirm the (T ∗
n )−1 dependence in

our data with certainty, but it fits sufficiently well to provide an
educated guess. For γ → 0 and T ∗

n ≈ 4 ns, which corresponds
to the QD sample discussed in Ref. [66], we estimate a DNP
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of about 30 mT based on the scaling with (T ∗
n )−1. A direct

simulation of this particular sample is out of reach because
the required computational effort scales roughly with (T ∗

n )3.
In any case, the DNP is expected to be significantly larger than
the root mean square of the Overhauser field distribution. It
would be very interesting to verify or falsify these predictions
experimentally.

C. Discussion

The inclusion of the trion pseudospin dynamics is a cru-
cial step towards the correct description of the underlying
pump-probe experiments. It turns out to have an important
qualitative influence on the interplay of SML and NIFF. In
Sec. III we found a broad range of magnetic fields for which
pronounced peaks in the probability distribution p(Beff ) ap-
pear at positions fulfilling the ORC. When including the trion
pseudospin dynamics, the majority of magnetic fields Bext

reveal peaks at the ERC, with the only exception being the
very narrow but apparently robust feature around Bext = 7.8 T
where the ORC emerges. Around the broad minimum at
Bext = 3.9 T, we find very weak frequency focusing in the
Overhauser field [see Fig. 4(c)], which is almost independent
of the effective bath size. In contrast, the frequency focusing
without inclusion of the trion pseudospin dynamics is much
more pronounced in the vicinity of this magnetic field [see
Fig. 3(b)], but fulfilling the ORC instead of the ERC. As a
result, we find an increase of the revival amplitude in compar-
ison to the SML regime without NIFF due to the constructive
interplay of NIFF and SML. In contrast, the revival amplitude
is strongly suppressed for the EM I of Sec. III.

In the quantum mechanical model with N = 6 nuclear
spins studied by Kleinjohann et al. [10], odd resonances
emerge in the vicinity the NRC (13) for Bext = 3.9 T (k = 1)
with an accompanied minimum of the revival amplitude. They
also find a minimum around Bext = 7.8 T (k = 2), but it is
much broader than in our simulations. At this particular value
neither the ERC nor the ORC is fulfilled in their model, sim-
ilar to what we find in Fig. 2(b) for our initial model. But the
trion pseudospin dynamics was not accounted for in Ref. [10].
We expect that its inclusion would also have a significant
influence on the results of the quantum mechanical model.

Why do even instead of odd resonances appear around
Bext = 3.9 T upon inclusion of the full trion pseudospin dy-
namics? One can think of the additional precession of the trion
pseudospin around the effective magnetic field as a strong per-
turbation, especially when the external magnetic field Bext is
large. Effectively, this leads to a decoupling of the trion from
the ground state such that our equations of motion become
very similar to those studied by Glazov et al. [13], where only
the ERC appears. Note that in the derivation of the ORC (10b)
[9], the trion only follows an exponential decay as described
by Eq. (3b). Hence, the ORC (10b) in its original form does
not hold anymore because the trion dynamics becomes more
complex when accounting for its full dynamics as in Eq. (17).
At present, however, the origin of the persistent sharp mini-
mum at Bext = 7.8 T remains unclear.

The experimental situation on this issue is unclear, but the
tools for a systematic study are available. By applying a radio
frequency field, Evers et al. [11] are able to scramble the

nuclear spins in the QDs such that they do not contribute to
the revival amplitude by means of NIFF. By applying this
approach to a broad range of magnetic fields, a systematic
comparison between SML without NIFF and SML with NIFF
is possible. Such an experimental study is likely to clarify
whether or not NIFF always leads to an increase of the revival
amplitude. Moreover, a detailed search for sharp features in
the vicinity of the NRC (13), especially for k = 2, is promis-
ing. Note that multiple NRCs are possible when considering
all individual magnetic moments of the isotopes of the QD
sample instead of an average one. The consideration of several
isotopes is likely to lead to a more complex structure of the
revival amplitude as a function of the magnetic field strength.
This issue is beyond the scope of the present work but will be
the topic of future research.

The finding of a DNP of about 120 mT in the simulation is
interesting because it implies a certain increase of the coher-
ence time due to the associated narrowing of the Overhauser
field distribution. But for a substantial increase, a much larger
DNP is required [34,74]. Yet, the DNP found in our simula-
tions is significantly larger than the root mean square of the
Overhauser field distribution. Indications for DNP in similar
but simpler simulations can be seen in the results of Ref. [15],
but the effect remained unnoticed.

Note that the nondeterministic pulse is not responsible for
DNP. We also find DNP when we use the deterministic pulse
model (7) in combination with the full trion dynamics. For
this combination, DNP as a function of the magnetic field
shows a fairly similar behavior as depicted in Fig. 4(d). How-
ever, almost perfect NIFF fulfilling the ERC with S⊥

lim → 0.5
appears when studying this particular combination. Only for
Bext = 7.8 T, the ORC with S⊥

lim → −1/6 emerges instead of
the ERC. But since the broad minimum around Bext = 3.9 T is
missing and NIFF is almost perfect (unlike in the experiments
[9–11]), we do not study this combination in more detail.

As argued above, the model studied by Glazov et al. [13] is
similar to our model because the trion pseudospin effectively
decouples from the ground state for large magnetic fields. In
their model, DNP is predicted analytically by studying the
stability of the fixed point given by the ERC (10a). Without
any additional nuclear spin relaxation, the resonance condi-
tion turns out to be an unstable fixed point so that DNP is
possible. In agreement with Ref. [13], changing the helicity of
the pulses does not change the DNP direction. The emergence
of DNP could be less efficient in the experiments due to weak
nuclear spin relaxation [13].

Experimental hints for DNP in this type of experiment
already exist. In the measurements of Ref. [9], the distribution
of Larmor frequencies, extracted from the measured real-time
evolution via pump-probe spectroscopy, is shown, and one can
discern a shift from the bare Larmor frequency resulting from
the external magnetic field, possibly due to DNP.

Since about two orders of magnitude more pulses are re-
quired to reach the saturation of the DNP in comparison to
the steady state of the revival amplitude due to NIFF, it is
well possible that the DNP steady state is not reached in the
experiments so far. Experimentally, it takes about a minute
to reach a strong revival amplitude for a magnetic field of 6 T
[4]. By applying the suggested scaling with B−2

ext , which has yet
to be confirmed experimentally, we estimate a strong DNP to
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emerge within 5 minutes for a magnetic field of 1 T and within
3 hours for a magnetic field of 6 T. A systematic experimental
study of this interesting feature is definitely called for.

V. EXTENDED MODEL III: INHOMOGENEOUS
ENSEMBLE OF QUANTUM DOTS

In the results of the previous section, beats appear in
the initial dephasing of the signal Sz(t ) − Jz(t ) [Fig. 4(a)],
which decay during the trion lifetime τ0 = 400 ps. However,
these beats vanish noticeably quicker in measurements [23].
Moreover, the ensemble dephasing time T ∗

2 shows a strong
magnetic field dependence in the experiments [5,23,66],
which cannot be explained by the Overhauser field.

Until now, we considered a homogeneous ensemble of QDs
with a dephasing time T ∗

n = 1 ns. This is, however, a sim-
plification. The g factor of the localized electron spin varies
slightly from QD to QD because they are not identical, leading
to a faster dephasing for large magnetic fields. We consider
resonant optical pumping in this paper, i.e., the g factor of
the electron spin in each QD can be modeled by a normal
distribution with expectation value ge and standard deviation
ge = 0.005 [5,66], leading to the ensemble dephasing time
T ∗

2 defined by

(T ∗
2 )−2 = (T ∗

n )−2 + (T ∗
inh )−2, (24)

with the dephasing time (T ∗
inh )−1 = geμBBext/

√
2 due to the

inhomogeneities of the QD ensemble. This total dephasing
time decreases for large magnetic fields while its upper bound
is given by T ∗

n for Bext → 0.
We apply the same modeling to the g factor of the trion

pseudospin with standard deviation gh = 0.05 [72] to ac-
count for the fast vanishing of the beats in the time evolution
observed in the experiments. When including a finite spread
gh for the g factor of the trion pseudospin, the polariza-
tion of the ensemble dephases on a timescale which can be
shorter than the radiative lifetime τ0. The average magnetic
moment of the nuclei does not change, i.e., it is still chosen as
gnμB = geμB/800.

The implementation of the spread of the g factors is
straightforward in our simulations. It is realized by sampling
the g factors from the aforementioned normal distribution
around their expectation values given by ge = 0.555 and
gh = 0.15. Results for a different in-plane orientation of the
QD sample with gh = 0.05 are presented in Appendix C, but
they show only slight quantitative differences.

Let us discuss the differences to the results of the previous
section (EM II) when accounting for an inhomogeneous en-
semble of QDs (EM III). Figure 7(a) shows the overall faster
dephasing for larger magnetic fields Bext, as expected from
Eq. (24). The beats also vanish much quicker, which is in
better agreement with the actual experiments [5,23,61]. An
even better agreement can be achieved by explicitly fitting the
system parameters to experimental results, e.g., the g factor of
the trion pseudospin gh, but this is not the goal of this paper.

Instead, we are interested if and how an inhomogeneous
ensemble of QDs alters the interplay of SML and NIFF. Ob-
viously, modeling the g factor of the electron spin by a normal
distribution leads to a broadening of the distribution of the
effective magnetic field p(Beff ) for large magnetic fields as
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FIG. 7. Numerical results for the extended model III (EM III)
introduced in Sec. V: (a) Spin dynamics between consecutive pulses
after a long train of pulses for various external magnetic fields Bext for
an inhomogeneous ensemble of QDs. (b) Probability distributions of
the effective magnetic field p(Beff ) when the revival amplitude is in
the saturation regime for various external magnetic fields Bext (orange
vertical lines). The gray solid and dashed vertical lines represent
the values of Beff fulfilling the ERC (10a) and (10b), respectively.
The green vertical line represents the mean value of the distribu-
tion. Parameters: γ = 0.004, T ∗

n = 1 ns, ge = 0.555, ge = 0.005,
gh = 0.15, gh = 0.05.

demonstrated in Fig. 7(b), but the width of each individual
peak due to frequency focusing does not change noticeably.

Without the spread of the electron g factor, peaks also
appear in the probability distribution of the mere Over-
hauser field p(Bx

Ov) due to NIFF. They are slightly shifted
from the expected resonance positions, and they are also
slightly broader compared to the probability distribution of
the effective magnetic field p(Beff ) [15]. In contrast, for the
inhomogeneous ensemble of QDs under study even a rather
small magnetic field of 0.5 T is enough to smear out the
resonances in the distribution p(Bx

Ov). The minimal width
of the peaks is limited by the spread of the g factor ge

of the localized electron spin. Once this width is larger
than the distance 2π/TR between adjacent resonances, i.e.,
T −1

R � geμBBext, no peaks can be discerned. Hence, we find
no peaks in the mere Overhauser field distribution p(Bx

Ov)
here, only the distribution of the effective magnetic field
p(Beff ) shows a comblike structure.
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FIG. 8. Limiting values S⊥
lim of the revival amplitude as a function

of the external magnetic field Bext in the limit of an infinite bath size
(γ → 0) for the extended models (EM) I, II, and III. The vertical
dashed lines represent the NRC (13) for k = 1 and 2, the horizontal
dashed line indicates the SML steady-state value SSML.

In Fig. 8 we compare the final results for the magnetic field
dependence of the revival amplitude S⊥

lim(Bext ) of the EMs I, II,
and III in the limit of an infinite effective bath size (γ → 0).
It turns out that no significant difference can be found be-
tween EM II (homogeneous) and III (inhomogeneous), i.e.,
the qualitative interplay of SML and NIFF does not change
upon inclusion of a finite spread for the g factors. From the
comparison we conclude that the minimum at Bext = 7.8 T is
even narrower for the EMs II and III in comparison to EM I.
Possibly, this narrow feature remains unmeasured in experi-
ments when the discretization of the magnetic field is chosen
too large; we only find it when simulating closely around
Bext = 7.8 T. For this reason, a systematic experimental search
for such narrow features would be very interesting.

DNP also occurs even when studying an inhomogeneous
ensemble of QDs (see Appendix C), with an almost identical
DNP behavior as in Fig. 4(d). This is expected because the
additional small variances of the g factors barely change the
dynamics from QD to QD, i.e., the qualitative physics remains
the same as in the EM II. The same argument holds for the
strong similarity of the results for the EMs II and III in Fig. 8.

However, the influence of DNP on the total dephasing time
T ∗

2 is smaller for an inhomogeneous ensemble of QDs. DNP
only implies a decrease of the dephasing time T ∗

n , which is
determined by the strength of Overhauser field fluctuations.
The inhomogeneous dephasing time T ∗

inh is not altered by
DNP. Hence, the relative influence of the narrowed Over-
hauser field distribution due to DNP on the total dephasing
time T ∗

2 as defined by Eq. (24) is diminished, especially for
large magnetic fields.

VI. CONCLUSION

We developed an improved semiclassical model for the
spin mode locking (SML) effect in combination with nuclei-
induced frequency focusing (NIFF) in QDs which yields an
improved numerical description of various experimental re-
sults. The final model is the result of a combination of several
key points while exploiting various scaling arguments.

First, we combined an established semiclassical pulse
model often used to describe the excitation of a trion [9,21]
with an efficient approach to the spin dynamics of the Over-
hauser field [15,22]. However, the results do not match our
expectations gained from a quantum mechanical description
of the problem, and they also disagree with the experimental
results [9,10].

Consequently, we improved the pulse model via a nonde-
terministic description (EM I) in which we interpret the pulse
as a measurement in order to reduce the discrepancy to quan-
tum mechanical results while being able to cope with large
nuclear spin baths. This step led to considerably improved
results which are in qualitative agreement with what is found
in the quantum model of Ref. [10], where only a small bath
consisting of N = 6 nuclear spins is studied. In this improved
model and in agreement with Ref. [10], both even and odd
resonances are found in the probability distribution of the
effective magnetic field due to NIFF for different strengths of
the external magnetic field. Importantly, the two kinds of res-
onances do not appear simultaneously and the corresponding
peaks are rather broad due to the mimicked quantum fluctua-
tions. The emergence of odd resonances in the distribution of
the effective magnetic field leads to a reduction of the SML
effect in comparison to the case without NIFF. This means
that NIFF leads to a reduction of the revival amplitude in this
model for a broad range of magnetic fields.

We improved our theory further by including the full dy-
namics of the trion pseudospin, resulting in the extended
model II (EM II). We found that the fast Larmor precession of
the trion pseudospin acts as a perturbation which suppresses
the odd resonances such that the observed behavior of NIFF
as a function of the external magnetic field is qualitatively
different from the one of the previous model (EM I). In
the EM II, NIFF acts only constructively except for a very
narrow regime around a resonance condition for the nuclear
spins where their Larmor period between consecutive pulses
matches the pulse repetition time. Even though the g factor of
the unpaired heavy-hole spin of the negatively charged trion
depends strongly on the in-plane orientation of the QD sample
[72,73], we find only small quantitative differences between
the results.

Furthermore, we observed the emergence of dynamic nu-
clear polarization (DNP) of the order of 100 mT, i.e., the
formation of a nonzero average polarization of the nuclear
spin ensemble, which can be significantly larger than the
typical fluctuations of the Overhauser field. It is caused by the
alignment of the nuclear spins along the axis of the external
magnetic field. Similar behavior can be inferred from the ex-
perimental results presented in Ref. [9] where the spectrum of
Larmor frequencies of the localized electron spins is studied.
Importantly, the saturation of the DNP takes about two orders
of magnitude longer than the saturation of the revival ampli-
tude due to NIFF. Its emergence leads to a slight narrowing
of the Overhauser field distribution by about one third and,
thus, also to a slight increase of the dephasing time. More-
over, we find a similar dependence of the DNP on external
magnetic field as for the NIFF. The absolute value of the DNP
is minimal in the vicinity of the nuclear resonance conditions
where the nuclear Larmor period corresponds to a multiple
of the half pulse reptition time. For a typical experiment, we
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estimate the maximum DNP to be 30 mT for a magnetic
field of 1 T, which is be reached after about 5 minutes. This
DNP is significantly larger than the average fluctuation of the
Overhauser field.

Accounting for an inhomogeneous ensemble of QDs led
to the extended model III (EM III). This extension in combi-
nation with the full trion pseudospin dynamics (introduced in
the EM II) is crucial for a correct description of the measured
spin dynamics between two consecutive pulses. It does not
lead to a qualitatively different DNP behavior, and also not to
a different interplay of SML and NIFF.

In all three extended models, the peaks in the Overhauser
field distribution are fairly broad compared to, e.g., the initial
model discussed in Sec. II. This is similar to what is found
for the quantum mechanical model of Ref. [10]. Thus, we
attribute this behavior to quantum fluctuations captured by the
randomness of the pulse model introduced in the EM I.

Note that the peak widths are not determined by some
additional relaxation time induced by further interactions such
as the quadrupolar interaction or dipole-dipole interaction.
Their finite width is intrinsic to the studied model at hand. But,
indeed, such further interactions are another possible mecha-
nism which could hinder the efficiency of NIFF. Moreover,
weak nuclear spin relaxation due to such interactions could
lead to a reduced DNP efficiency.

The qualitative behavior of the system can be reproduced in
a rather simple model. The essential ingredients are the hyper-
fine interaction of the electron spin with the nuclear spin bath
(for which a simple box model is sufficient to achieve a good
description), the nondeterministic semiclassical pulse descrip-
tion to take important quantum mechanical corrections into
account, and the precession of the trion pseudospin around
the external magnetic field which acts as a perturbation to the
recombination dynamics. This model should be realizable on
a full quantum level, and the simplification of using a box
model might help to overcome the issue of the small bath size.

Further extensions of the model are conceivable. First, the
model should be extended to account for the various isotopes
in InGaAs QDs so that several resonance conditions for the
nuclear spins act in a combined way. We expect that this
extension leads to a more complex structure in the magnetic
field dependence of the revival amplitude, similar to the ex-
perimental results of Ref. [10].

In the present study, we have focused only on the resonant
excitation of a trion. However, the applied pulse model can
be easily generalized to detuned pulses [21]. Thereby, one
can account for the influence of the inhomogeneous broad-
ening of the QD sample on the trion excitation [8,17,75] and
explicitly calculate the Faraday rotation and ellipticity [21],
which show different dependencies on certain parameters [8].
Moreover, this step would enable us to simulate two-color
pump-probe experiments [8,21,75]. Detuned pulses can lead
to the emergence of different resonances as demonstrated in
Refs. [11,76]. There, the influence of a positive and negative
detuning on NIFF is discussed, but a different model is used
to describe for the spin dynamics. In general, the optical Stark
effect induced by detuned pulses appears to be very important
to accurately describe DNP [77–79].

A third relevant aspect is the inclusion of a finite pulse
duration, which leads to a reduced efficiency of the pulse for

large magnetic fields and can also lead to phase shifts for the
resonances [10,63].

From the experimental side, several clarifications can stim-
ulate progress in understanding the relevant physics. First,
different models suggest different scaling laws for the rate
of NIFF as a function of the magnetic field; in our case the
rate is reduced by B−2

ext . Second, a systematic comparison of
the revival amplitude as a function of the magnetic field for
the cases with and without NIFF is helpful, accompanied by
an analysis of the Larmor frequency spectrum with respect
to the class of resonances. Such an experimental study can
also reveal the influence of the pulse duration on spin mode
locking without NIFF by comparing the measured revival
amplitude with the analytically obtained steady-state value
SSML. This value is independent of the external magnetic field
in our model, but a reduced pulse efficiency for large magnetic
fields due to a finite pulse duration could be revealed by
the suggested experiment. Evers et al. [11] demonstrated that
such experiments are realizable by applying an appropriate ra-
diofrequency field to the system, which hinders the frequency
focusing of the nuclei. But so far, measurements at various
strengths of the magnetic field have not been carried out. In
this context, studying a potential influence of the in-plane
orientation of the QD sample is a further interesting point.
Moreover, the emergence of DNP in the system, for which
some evidence in the experimental data in Ref. [9] exists, is
another subject calling for further investigation.

In conclusion, the improved description of the spin dynam-
ics in QDs can help to achieve a better coherent manipulation
of this quantum degree of freedom. This is a prerequisite for
applications of QD systems in quantum information and quan-
tum sensing. Hence, this promising route of research needs to
be pursued further.
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APPENDIX A: OVERHAUSER FIELD DYNAMICS

1. Standard semiclassical approach

The Overhauser field is defined as the weighted sum of all
nuclear spins BOv = ∑N

k=1 AkIk , with Ik being the kth nuclear
spin, N the number of nuclear spins, and Ak the hyperfine
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coupling constants defined by (4). In a semiclassical TWA ap-
proach [16,45] to the Overhauser field dynamics, each nuclear
spin follows the classical equation of motion

d

dt
Ik = (AkS + gnμnBextex ) × Ik, (A1)

k ∈ {1, 2, . . . , N}, while the initial conditions are chosen ran-
domly according to normal distributions with expectation
value zero and variance I (I + 1)/3 for each component Iα

k
[42,45]. As a result, the initial Overhauser field also follows a
normal distribution with expectation value zero and variance

Var
[
Bα

Ov

] = I (I + 1)

3
A2

Q =:
2

(T ∗
n )2

, (A2)

with A2
Q := ∑N

k=1 A2
k , which defines the dephasing time T ∗

n
of the electron spin due to the hyperfine interaction with the
nuclear spins with spin I . In our case, we focus on GaAs QDs
so that we have I = 3/2. When studying InGaAs QDs, one
needs to also account for I = 9/2 of the indium isotopes. This
requires a slightly more complicated definition of the variance
which includes the relative abundances of the isotopes in
a QD.

2. Spectral density approach

Since QDs consist of N = 104–106 nuclear spins
[27,34,57], the numerical treatment of the N equations of
motion (A1) is unfeasible. In this paper, we resort to the
more efficient spectral density (SD) approach to calculate the
dynamics of the Overhauser field consisting of an infinite
number of nuclear spins for a realistic (nonuniform) distri-
bution of the hyperfine couplings. It was first introduced in
Ref. [22] and applied successfully for the description of QDs
subjected to periodic pulses in Refs. [10,15].

The SD approach allows us to study an infinite spin bath
while the number of effectively coupled nuclear spins is finite
and given by Neff ≈ 2/γ [15,22,49]. Instead of calculating
the time evolution of each nuclear spin Ik individually, we
consider Ntr = O(75) auxiliary vectors Qk which evolve in
time according to the equation of motion

d

dt
Qk = (εkS + gnμnBextex ) × Qk, (A3)

k ∈ {1, 2, . . . , Ntr}, where εk is an effective coupling constant
derived via application of the SD approach (see below).

In the derivation of this approach [22], the hyperfine
interaction strength of the nuclear spins described by the
exponential parametrization (4) is represented by the linear
spectral density W (ε) = (ε/γ )�(

√
2γ AQ − ε), where �(ε)

is the Heaviside function. Note that this approach only works
appropriately for γ � 0.02 [22]. Otherwise, the assumption of
a continuous spectral density is not well justified.

The spectral density is discretized according to the follow-
ing procedure. First, we divide the energy range [0,

√
2γ AQ]

into Ntr intervals Ik := [ε̃k+1, ε̃k] with

ε̃k = λk
√

2γ AQ
Ntr − k

Ntr
, k ∈ {0, 1, 2, . . . , Ntr}. (A4)

The intervals become exponentially small for increasing k,
which is the most efficient choice [22].

The prefactor λ is determined from the relation

λ =
(

Ntr√
2γ AQtmax

)1/(Ntr−1)

, (A5)

where tmax = npTR is the total simulation time. For λ = 1,
the discretization is simply equidistant. It turns out that a
good choice for the number of intervals Ntr is obtained when
ensuring that λ ≈ 0.87 holds for long simulations. For short
simulations, we use a minimal number of Ntr = 44 auxiliary
vectors Qk to ensure a minimal discretization density which
still captures the correct physics.

Each interval has the weight

Wk :=
∫ ε̃k−1

ε̃k

W (ε)dε (A6)

and the corresponding coupling strength εk is given by the
average energy

εk := 1

Wk

∫ ε̃k−1

ε̃k

εW (ε)dε, k ∈ {1, 2, . . . , Ntr}. (A7)

The Ntr auxiliary vectors Qk represent the sums of the nuclear
spins whose couplings lie within the interval Ik . Due to the
central limit theorem, each initial component of the vectors
Qk can be drawn from a normal distribution because they
represent large linear sums of the nuclear spins, and they are
uncorrelated for different k. Thus, we can initialize the 3Ntr

components Qα
k , α ∈ {x, y, z}, according to normal distribu-

tions around zero with variance

Var
[
Qα

k

] = I (I + 1)

3
. (A8)

Finally, the Overhauser field is given by the weighted summa-
tion

BOv =
Ntr∑
i=1

√
WkQk, (A9)

which leads to the same variance as required by Eq. (A2).

APPENDIX B: ALTERNATIVE NONDETERMINISTIC
PULSE DESCRIPTIONS

Establishing a valid nondeterministic semiclassical pulse
description, which on average keeps the properties of the
deterministic pulse model (7), is not straightforward. In this
Appendix, we discuss several alternatives to the nondeter-
ministic pulse description (14) introduced in Sec. III and
benchmark them against the deterministic semiclassical pulse
(7) and its quantum mechanical realization used in Ref. [10]
in the SML regime without NIFF. Note that in each approach,
the relations (7c) and (7d) for the trion pseudospin Ja remain
unchanged.

1. Discrete truncated Wigner approximation

As a first alternative, we apply the discrete truncated
Wigner approximation (DTWA) [65] to the deterministic
pulse (7). This phase space method only acts on a discrete
phase space, which, in turn, gives rise to certain benefits.

In this approach, we sample each spin component Sα from
the discrete phase space {+1/2, −1/2} so that all quantum
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mechanical moments of the spin of the same component are
taken into account correctly. Moreover, the spin length after a
pulse is always given by |Sa| = √

3/2.
The ensuring discrete distribution function is defined by

P

(
Sα

a = +1

2

)
= 1

2
+ E

[
Sα

a

]
, (B1a)

P

(
Sα

a = −1

2

)
= 1

2
− E

[
Sα

a

]
, (B1b)

α ∈ {x, y, z}, where E[Sα
a ] is the mathematical expectation

value of this probability distribution, which is given by
Eq. (14).

This approach works well as long as |Sα| � 1/2, e.g., for
the first pulse. But since the spin with initial length

√
3/2

precesses according to the equation of motion (3a), this con-
dition does not necessarily hold for every pulse, leading to the
appearance of negative probabilities in Eq. (B1). Our heuris-
tic solution consists of effectively truncating the probability
distribution, i.e., we set P(Sz

a = 1/2) = 1 when Sz
b > 1/2.

However, this alters the resulting expectation value of the
distribution and thereby, also the SML steady state. Another
drawback of the DTWA is the broken rotational spin symme-
try because certain spin axes are treated in a special way.

2. Trion probability approach

In this approach, we use Sz
b to determine the probability

for the excitation of a trion. In this interpretation, the system
realizes either the ground state electron spin S or the trion
pseudospin J directly after the pulse.

The circularly polarized laser pulse σ− only excites the
electron spin if it is in the state |↓〉. In the classical represen-
tation, this means that Sz

b = −1/2 leads to the excitation of a
trion, thus Sz

a = 0 and Jz
a = −1/2. For Sz

b = +1/2, no trion is
excited so that Sz

a = +1/2 and Jz
a = 0 follows. More general,

the probability to find the spin in the state |↓〉 and therefore to
excite a trion is given by

P↓ = 1
2 − Sz

b. (B2)

If no trion is excited, the z component of the electron spin sim-
ply takes the value Sz

a = +1/2 while the x and y component
are sampled from a normal distribution with expectation value
zero and variance 1/4 to account for the second moment of
spin-1/2 operators. Alternatively, sampling from the discrete
phase space introduced in Appendix B 1 is possible, but the
results are worse.

Mathematically, this procedure leads to expectation values
which are identical to the deterministic pulse relation (7).
However, the same issue as discussed in Appendix B 1 arises.
Since negative probabilities can appear, the probability distri-
bution requires needs to be truncated, i.e., we set P↓ = 1 if
Sz

b < −1/2 and P↓ = 0 if Sz
b > 1/2. Eventually, this leads to a

deviation of the expectation value from (14) and accordingly,
also to a deviation from the SML steady state.

A possible solution consists of scaling the spin Sb to the
Bloch sphere of spin length 1/2 before applying the pulse. We
will see, however, that this procedure leads to the emergence
of an unwanted phase shift.
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FIG. 9. Build-up of the revival amplitude S⊥ (upper panel) and
its z component (lower panel) to the SML steady state for the dif-
ferent pulse descriptions discussed in the main text of Appendix B,
combined with the equations of motion (3) and (5) used for the initial
model in Sec. II. The gray horizontal dashed line represents the ana-
lytical steady state SSML ≈ 0.07735 [Eq. (9)]. Parameters: Bext = 1 T,
γ = 0.01, averaged over M = 106 independent trajectories.

3. Comparison to established pulse descriptions

Let us compare the various nondeterministic pulse descrip-
tions to the established deterministic pulse relation (7) [21]
and its quantum mechanical realization used in Ref. [10] in the
SML regime. Note that we do not include the trion pseudospin
dynamics here because it has no relevant influence on the
SML regime.

Figure 9 shows the revival amplitudes S⊥ (upper panel) and
the corresponding z components Sz (lower panel) for the fol-
lowing pulse descriptions: quantum mechanical (QM, black),
deterministic semiclassical (DS, green dashed) [Eq. (7)],
TWA [Eq. (14), orange dotted], DTWA [Eq. (B1), blue], trion
probability approach (TPA) [Eq. (B2), red dashed], and TPA
with scaling to the Bloch sphere (see end of Appendix B 2,
brown dash-dotted).

As expected, the QM and the DS results are almost identi-
cal. Small deviations stem from the fact that the QM results
are obtained for only N = 6 nuclear spins, which requires
an additional ensemble average to get rid of finite-size ef-
fects. These results serve as our benchmark. They show the
expected revival amplitude of the SML steady-state value
SSML ≈ 0.07735 and there is almost no difference between S⊥
and its z component, i.e., there is no phase shift.

The results for the TWA pulse, which we introduce and
apply in the EM I of Sec. III, are in perfect agreement with
the benchmark results (QM and DS). Small deviations stem
mainly from the statistical nature of the ensemble average.
We use M = 106 configurations here to calculate the ensemble
average; the statistical deviations are proportional to 1/

√
M.

For the remaining nondeterministic pulse description, we
find no satisfying agreement with the benchmark results. As
expected, the DTWA and TPA pulse show a too small steady-
state revival amplitude. Interestingly, the results are identical
apart from small statistical fluctuations in the SML regime,
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but the behavior in the NIFF regime is extremely different (not
shown).

By scaling the spin vector Sb to the Bloch sphere before the
application of the TPA, the revival amplitude S⊥ reaches the
correct steady state. However, the revival amplitude is about
two times larger than its z component, i.e., a significant phase
shift is introduced by scaling to the Bloch sphere. Such a
phase shift does not appear in the benchmark data.

APPENDIX C: IN-PLANE ORIENTATION OF THE
QUANTUM DOT ENSEMBLE

The g factor of the unpaired heavy-hole spin gh of the
negatively charged trion X − strongly depends on the in-
plane orientation of the QD sample, with values ranging from
gh = 0.05 to 0.15 [72,73]. In the extended models (EM) II
and III, the spin precession of this hole spin around the ex-
ternal magnetic field [see Eq. (17)] acts as a perturbation
to the recombination dynamics which is responsible for the
ORC (10b).

In Fig. 10(a) we compare the results for the revival am-
plitude S⊥

lim as a function of the external magnetic field Bext

using γ = 0.004 for gh = 0.15 and gh = 0.05 (EM II). We
also study the influence of a finite spread of the g factors
existing in an inhomogeneous quantum dot ensemble (EM
III). We choose ge = 0.005 [5,66] and gh = 0.05 [72]
as in Sec. V. While the results for gh = 0.15 with (EM III,
orange) and without (EM II, blue) the spread of the g factors
are identical within the accuracy of our data, there is a shift
of S⊥

lim for gh = 0.05 when comparing the EM II (green) with
III (red), with larger revival amplitudes when the spread is
included. The behavior is very similar in the limit of an infinite
bath size (γ → 0, not shown). For γ = 0.01 at Bext = 7.8 T
using gh = 0.05, we actually find S⊥

lim > SSML (not by much),
hinting at the emergence of a weak ERC instead of the usual
ORC at this particular magnetic field. In the limit γ → 0,
the revival amplitude is also larger than zero at this particular
magnetic field, but it is still smaller than SSML (ORC).

Comparing gh = 0.05 (red) to 0.15 (orange) for the EM III,
the revival amplitude is slightly larger for gh = 0.05. Differ-
ences between two samples of QD ensembles were reported
in Ref. [10]. In this context, it would be interesting to study a
potential influence of the in-plane orientation of the samples
on these measurements experimentally.

We compare the complementary results for the DNP BDNP

as a function of the magnetic field Bext in Fig. 10(b). The DNP
reached after S⊥

lim is approximately in saturation is plotted, i.e.,
BDNP is not in its steady state yet as this would require about
two orders of magnitude more pulses, which is out of reach for
our simulations for the broad range of magnetic fields. Again,
for gh = 0.15 no significant differences are found between the
EMs II and III. For gh = 0.05, the DNP is generally weaker.

0 2 4 6 8

Bext (T)

0.00

0.05

0.10

0.15

0.20

S
⊥ li
m

gh = 0.15, EM II

gh = 0.15, EM III

gh = 0.05, EM II

gh = 0.05, EM III

(a)

0 2 4 6 8

Bext (T)

−6

−4

−2

0

2

4

6

B
D

N
P

(m
T

)
gh = 0.15, EM II

gh = 0.15, EM III

gh = 0.05, EM II

gh = 0.05, EM III

(b)

FIG. 10. Influence of the g factor of the trion pseudospin gh

on NIFF and DNP for the extended models (EM) II and III for
γ = 0.004: (a) Limiting values S⊥

lim of the revival amplitude as a
function of the external magnetic field Bext . The vertical dashed lines
represent the NRC (13) for k = 1 and 2, the horizontal dashed line
indicates the SML steady statue value SSML. (b) DNP BDNP as a
function of the external magnetic field Bext. The number of applied
pulses is chosen such that S⊥

lim is approximately in its steady state.

This also holds true for Bext = 0.5 T and 1 T in the DNP
saturation regime (not shown).

Interestingly for gh = 0.05 using the EM III, there is a
slight buckling around Bext = 3.9 T, where no DNP is found
for the other cases. We also find a rather large DNP at
Bext = 7.8 T, where no DNP occurs in the other simulations.
But note that this particular case needs to be treated cautiously
because the value gh = 0.05 was measured for gh = 0.15
[72]. The behavior probably is related to the fact that we have
chosen gh = gh = 0.05 here, i.e., the g factor can change its
sign, and it can be very close to zero in many cases. Especially
when it is close to zero, there is no fast Larmor precession of
the trion pseudospin around the external magnetic field acting
as a perturbation anymore, resulting in a qualitative change of
the physics.
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