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Nonlinear time-domain spectroscopy near a band inversion
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We develop a theory for the nonlinear time-domain response of a semimetal driven by an ultrafast optical
pulse. At quadratic order in the driving field we find that the response near a band inversion transition contains
a coherent oscillating component proportional to field intensity with a frequency that can be tuned over a wide
range (from terahertz to the near IR) selected by the chemical potential. We illustrate the effect by calculating
the induced current as a function of time for a two-band system with time-reversal symmetry but broken parity
symmetry to study semimetals where large Berry curvature near a band inversion transition promotes this
nonlinear response.
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I. INTRODUCTION

Electrodynamic constitutive relations in the bulk of a crys-
tal can be used to interrogate the quantum geometric character
of its band structure. When formulated in the frequency do-
main, nonlinear responses quadratic in the driving fields have
been identified as probes of the distribution of momentum
space Berry curvature in systems with broken inversion sym-
metry [1–3] or broken mirror symmetries [4,5]. Generally,
point nodes in a band structure are associated with regions
of k space with enhanced Berry curvatures and large inter-
band matrix elements, both of which are known to promote
nonlinearities in the frequency-dependent optical response.

In many band-inverted systems large Berry curvatures
are often found in the momentum space region close to a
band contact point and below a small Lifshitz energy scale.
Above this energy, isoenergy surfaces in the band structure
do not close around isolated singularities, which prevents
direct identification of the band topology. Frequency-domain
spectroscopy below this Lifshitz scale typically requires in-
terrogation at infrared or terahertz (THz) frequencies. In this
work we consider instead the manifestations in nonlinear
time-domain spectroscopy. We find that excitation with an ul-
trafast high-intensity pulse produces a nonlinear response, one
part of which describes a coherent oscillation of the induced
currents at a tunable frequency set by the chemical poten-
tial. We demonstrate that a nonlinear response near a Pauli
blocked threshold selects a frequency-tunable response from
a broadband source. This generically occurs for a narrow-gap
system near a band inversion transition, and the strength of
the nonlinearity can be enhanced by the large matrix elements
that can be associated with a topological transition in the band
structure.

This application is a variant of a class of well-studied
phenomena at higher frequencies where one drives electronic
motion with ultrafast high-intensity electromagnetic pulses.
This family of novel nonlinear responses has been studied
in interference measurements with attosecond electric fields
[6–9] and has been observed in the petahertz dynamics in

semiconductors like gallium nitride using few-cycle near-
infrared electromagnetic pulses [10]. Similarly, in silicon the
transfer of electrons from valence band states to conduc-
tion band states has been observed in the extreme-ultraviolet
absorption spectrum using attosecond interferometry [11].
Subcycle motion of electrons in driven terahertz phase-locked
pulses has been studied in real time by studying the interband
quantum interference of electrons in Bloch states far below
the Fermi energy [12,13].

Here we develop the theory for time-domain dynamics
for electrons in semimetals and narrow-gap semiconductors
near a band inversion transition. We study nonlinearities to
quadratic order in the driving fields and show that dipole-
mediated transitions between states on the Fermi surface and
above the Fermi surface can generate a coherent current os-
cillation with a frequency tuned by the chemical potential.
We find that all other allowed electronic transitions add in-
coherently and lead to nonoscillatory current generation. The
frequency of current generated by the ultrafast pulses is set by
the energy scale between the Fermi energy and the energy of
the band states above the Fermi surface.

Charge currents in materials produced by nonlinear cou-
pling to optical fields are often studied in the frequency
domain [14–16]. These theoretical treatments are useful when
investigating the low-frequency charge currents that are pro-
duced by the nonlinear downconversion of optical fields. For
example, at second order in a perturbing electric field, DC
currents like the shift and injection currents are generated
by electric fields with a single frequency [17–22]. Con-
versely, processes like second-harmonic generation produce
currents with double the frequency of the driving electric field
[1–3].

Here we are interested in currents generated by ultrafast
electric field pulses. The simple processes that lead to shift,
injection, and second harmonic currents are difficult to iso-
late in this limit. Instead, we directly study the currents in a
time-domain formulation and isolate second-order processes
by their dependence on the field intensity. Previous work
studying nonlinear responses in the time domain has focused
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on two-photon photoemission and second-harmonic genera-
tion primarily for pump-probe-type measurements [23]. Here
we focus on ultrashort light illumination and work in length
gauge to extract terms that contribute to the current propor-
tional to dipole-mediated transitions along the Fermi surface.
We compute the time-dependent quantum density matrix to
second order in a perturbing electric field and trace with
the current operator to obtain the time-dependent induced
current density. We illustrate the phenomena using a simple
model for a time-reversal-symmetric, but inversion-breaking,
two-dimensional semiconductor to calculate these induced
currents. We find oscillating currents at frequencies selected
by a Pauli threshold set by the electronic doping level of the
semiconductor.

II. QUANTUM KINETIC EQUATION FOR BLOCH
ELECTRONS IN AN EXTERNAL ELECTRIC FIELD

In order to calculate the time-dependent charge current to
quadratic order in a perturbing electromagnetic field we first
solve for the electronic charge density to second order in
an external electric field by iteratively solving the quantum
kinetic equation for the density matrix ρ̂(t ). This equation
derives from the von Neumann equation that describes the
time evolution of this quantum operator [24]:

d ρ̂(t )

dt
= − i

h̄
[Ĥ (t ), ρ̂(t )]. (1)

The Hamiltonian can be broken into three parts, Ĥ (t ) = Ĥ0 +
Ĥ ′ + Ĥext (t ). Before application of a perturbing electromag-
netic field the noninteracting part of the unperturbed Hamil-
tonian Ĥ0 has eigenstates |�n(k)〉 that are crystalline Bloch
modes whose energy εn(k) is indexed by the state’s crystal
momentum k and band n and whose periodic part we denote
by the ket |un(k)〉. We can write the von Neumann equation
in this unperturbed basis and denote matrix elements of the
density matrix as ρnm(k, t ) = 〈�n(k)| ρ̂(t ) |�m(k)〉. We will
consider spatially homogeneous perturbing fields E(r, t ) →
E(t ) that couple only Bloch electrons with the same Bloch
wave vector k such that the perturbed density matrix is
diagonal in crystal momentum k: 〈�n(k)| ρ̂(t ) |�m(k′)〉 =
δk,k′ 〈�n(k)| ρ̂(t ) |�m(k)〉. Here we treat the coupling of the
electromagnetic field to fermionic matter in the electronic
dipole approximation Ĥext (t ) = eE(t ) · r̂ [25]. The von Neu-
mann equation can then be written as

d ρ̂(t )

dt
= − i

h̄
[Ĥ0(t ), ρ̂(t )] − i

h̄
[er̂ · E(t ), ρ̂(t )]

− i

h̄
[Ĥ ′, ρ̂(t )]. (2)

For simplicity we encode the effects of other interac-
tions in our system in a relaxation time approximation
such that −i/h̄[Ĥ ′, ρ(t )] ≈ −[ρ̂(t ) − ρ̂0]/τ , where ρ̂0 is
the unperturbed density matrix. In the Bloch basis we
have 〈�n(k)| Ĥ0 |�m(k)〉 = δnmεn(k) and 〈�n(k)| r̂ |�m(k)〉 =
〈un(k)| i∂k |um(k)〉 [26]. Substitution into Eq. (2) leads to the
quantum kinetic equation for the density matrix written in the
Bloch basis and perturbed by a time-dependent homogeneous

external electric field [27]:

∂ρnm(k, t )

∂t
+

(
i

h̄
[εn(k) − εm(k)] + 1

τ

)
ρnm(k, t )

− δnm f T
n (k, μ)

τ

=
∑

i,l

eEi(t )

h̄

(
∂kiρnm(k, t ) − i

[
Ri

nl (k)ρlm(k, t )

− ρnl (k, t )Ri
lm(k)

])
. (3)

Here f T
n (k, μ) is the Fermi occupation function that depends

on both the temperature T and chemical potential μ of the
system, Ri

nm(k) = 〈un(k)| i∂ki |um(k)〉 are the matrix elements
of the dipole operator, and τ is a phenomenological relax-
ation constant arising from the relaxation time approximation
denoted above. As will be shown, this constant will set the
timescale for the system to return to its unperturbed equilib-
rium configuration.

Gauge covariance

The dynamics of the system, like the charge density
and current density, should be invariant under gauge trans-
formations of the Bloch functions of the form |�n(k)〉 →
eiθn (k) |�n(k)〉 for all n. As such the quantum kinetic equation
for the quantum density matrix should remain covariant under
such a transformation. The matrix elements of both the density
operator ρnm(k, t ) and dipole operator Rnm(k) are changed by
the gauge transformations |�n(k)〉 → eiθn (k) |�n(k)〉 via

ρnm(k, t ) → ei(θm (k)−θn(k))ρnm(k, t ), (4)

Rnm(k) → ei(θm (k)−θn(k))Rnm(k) + δnmi∇θm(k). (5)

The left-hand side of Eq. (3) under this gauge transformation
is simply multiplied by the phase ei[θm (k)−θn(k)], while elements
on the right-hand side of Eq. (3) transform as

∂kiρnm(k, t ) → ei[θm (k)−θn(k)](∂kiρnm(k, t )

+ iρnm(k, t )[∂kiθm(k) − ∂kiθn(k)]), (6)

∑
l

Ri
nl (k)ρlm(k, t ) → ei[θm (k)−θn(k)]

( ∑
l

Ri
nl (k)ρlm(k, t )

− i∂iθn(k)ρnm(k, t )

)
. (7)

Combining the above results demonstrates that the right-
hand side of Eq. (3) is also simply multiplied by the phase
ei[θm (k)−θn(k)] under this type of gauge transformation, imply-
ing that the quantum kinetic equation for the density matrix
is gauge covariant. The solutions to the quantum kinetic
equation for the density matrix ρnm(k, t ) will maintain this co-
variance such that the density Tr[ρ̂(t )] and the current density
Tr[ρ̂(t )ev̂] are invariant under these gauge transformations.
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III. CURRENT DENSITIES FIRST ORDER IN AN
EXTERNAL ELECTRIC FIELD

Charge currents that are linearly proportional to the electric
field can be found by solving Eq. (3) for the density matrix to
first order in the electric field. First, we expand the density
matrix in powers of the electric field ρnm(k) = ∑

p ρ
(p)
nm (k),

where p indexes the order to which ρ
(p)
nm (k) is proportional

to E(t ). For p = 0 the density matrix is unperturbed by the
electric field, and the solution to Eq. (3) at zeroth order in
the external field is just the equilibrium Fermi distribution:
ρ (0)

nm = δnm f T
n (k, μ). The first-order equation can now be writ-

ten as

∂ρ (1)
nm (k, t )

∂t
+ αnm(k)ρ (1)

nm (k, t ) = eE(t ) · gnm(k)

h̄
, (8)

where the density matrix to first order in the electric field
ρ (1)

nm couples to αnm(k) = i/h̄[εn(k) − εm(k)] + 1/τ and the
external perturbing field couples to gi

nm(k) = δnm∂i f T
n (k, μ) +

i[ f T
n (k, μ) − f T

m (k, μ)]Ri
nm(k). At zero temperature this cou-

pling leads to two types of terms in the equation of
motion for the density matrix. For T = 0 terms propor-
tional to ∂i f T

n (k, μ) are only nonzero on the Fermi surface
as ∂i f T =0

n (k, μ) = ∂kiεn(k)δ[εn(k) − μ], leading to intraband
processes that contribute to ρnm(k, t ). The other terms in
gi

nm(k) describe interband processes mediated by the matrix
elements of the dipole operator Rnm(k).

The solution to Eq. (8) is

ρ (1)
nm (k, t ) =

∫ t

tp

dt ′e−αnm (k)(t−t ′ ) eE(t ′) · gnm(k)

h̄
. (9)

Here we have assumed that the perturbing electric field is zero
for times t < tp [E(t ) ∼ θ (t − tp)]. Equation (8) demonstrates
that, indeed, ρ (1)

nm (k, t ) are matrix elements of a Hermitian
operator such that taking its trace with respect to n, m, and k or
the trace of a product of it and other Hermitian operators will
lead to quantities whose values are purely real. The associated
current density, for example, whose values are purely real is
found by tracing over the operator product ev̂ρ̂(t ):

j(t ) = 1

V

∑
k,n,m

evnm(k)ρmn(k, t ). (10)

Here vi
nm(k) are the matrix elements of the velocity operator

in the î direction written in the Bloch basis. In general v̂ =
i/h[Ĥ , r̂]. Here we work in length gauge, where the coupling
of fermionic matter to the external electric field can be written
as eE(t ) · r. For this electromagnetic gauge choice the veloc-
ity operator is v̂ = i/h[Ĥ0, r̂] and independent of the electric
field. Here we choose the gauge on the Bloch states |un(k)〉
such that the velocity operator takes the representation

vi
nm(k) = 1

h̄
〈un(k)| ∂ki Ĥ0(k) |um(k)〉 . (11)

If we had decided to work in the velocity gauge, where the
coupling to the external electromagnetic potential is described
by the perturbation Ĥ ′(k) ∼ v(k) · A(t ), the velocity operator
would contain terms proportional to the external perturbing
field [16,25]. In this work we choose to work in length gauge,
where the velocity operator is independent of the perturbing
electric field and is simply given by Eq. (11).

Usually, one is interested in systems perturbed by electric
fields that are oscillatory in time with a single frequency ω.
In these cases it is usually advantageous to look at the Fourier
transform J (ω) = ∫

dte−iωt j(t ) of the current density j(t ).
Equation (9) is in the form of a convolution such that the
Fourier transform of j(t ) to first order in the electric field is
simply

J (1)(ω) = 1

V

∑
k,n,m

e2E(ω) · gnm(k)

h̄αnm − ih̄ω
vmn(k), (12)

where, again, αnm(k) = i/h̄(εn(k) − εm(k)) + 1/τ .
Here we are interested in electric field pulses that are

short compared to all other timescales of our system. We
thus consider an electric field pulse E(t ) = E0�tδ(t − t0).
For this type of perturbing field the first-order contribution to
the current is

j (1)(t ) = θ (t − t0)

V

∑
k,n,m

e−αnm (t−t0 ) e2E0 · gnm(k)

h̄
�tvmn(k).

(13)

The current decays exponentially in time [ j (1)(t ) ∼ e−(t−t0 )/τ ].
At zero-temperature intraband contributions proportional to
the diagonal part of the velocity matrix vnm(k) on the Fermi
surface are nonoscillatory as αnn(k) is purely real, while in-
terband contributions between bands n and m oscillate with
frequency [εn(k) − εm(k)]/h̄. These interband contributions
are summed incoherently across all crystal momentum, lead-
ing to smooth behavior of j (1)(t ) for all times t > tp.

IV. CURRENT DENSITIES SECOND ORDER IN AN
EXTERNAL ELECTRIC FIELD

The current density to second order in a perturbing electric
field can be found by solving Eq. (3) for the density matrix to
second order in the perturbation. Like in the previous section
we first expand the density matrix in powers of the electric
field and equate terms on the left- and right-hand sides of
Eq. (3) that are quadratically proportional to the perturbation.
This leads to a second-order equation for ρ (2)

nm (k, t ),

∂ρ (2)
nm (k, t )

∂t
+

(
i

h̄
[εn(k) − εm(k)] + 1

τ

)
ρ (2)

nm (k, t ) =
∑

i,l

eEi(t )

h̄

(
∂kiρ

(1)
nm (k, t ) − i

[
Ri

nl (k)ρ (1)
lm (k, t ) − ρ

(1)
nl (k, t )Ri

lm(k)
])

. (14)
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With knowledge of ρ (1)
nm (k, t ) we can use this equation to solve for ρ (2)

nm (k, t ). The solution can be broken into three parts,

ρ (2)
nm (k, t ) =

∫ t

tp

dt ′′
∫ t ′′

tp

dt ′ e2

h̄2

∑
i j

E j (t
′′)Ei(t

′)e−αnm (k)(t−t ′′ )[χ1
i j,nm(k, t ′, t ′′) + χ2

i j,nm(k, t ′, t ′′) + χ3
i j,nm(k, t ′, t ′′)

]
. (15)

Here the tensors χ
p
i j (k, t ′, t ′′) each contribute uniquely to the quantum density matrix:

χ1
i j,nm(k, t ′, t ′′) = ∂k j αnm(k)(t ′ − t ′′)e−αnm (t ′′−t ′ )gi

nm(k),

χ2
i j,nm(k, t ′, t ′′) = e−αnm (k)(t ′′−t ′ )∂k j g

i
nm(k),

χ3
i j,nm(k, t ′, t ′′) =

∑
l

(−iR j
nl (k)gi

lm(k)e−αlm (k)(t ′′−t ′ ) + igi
nl (k)R j

lm(k)e−αnl (k)(t ′′−t ′ )). (16)

To demonstrate the solution to these equations for short electric field pulses we again use E(t ) = E0�tδ(t − t0). Integration
in Eq. (15) over this field leads to t ′ → t0 and t ′′ → t0. The first contribution to the second-order density vanishes as
χ1

i j,nm(k, t0, t0) = 0. This leads to the current density

j (2)(t ) = θ (t − t0)

V

∑
n,m,i, j

e3

h̄2 e−αnm (k)(t−t0 )vmn(k)Ei
0E j

0 �2
t × (

∂ jg
i
nm(k) − i

[
R j

nl (k)gi
lm(k) − gi

nl (k)R j
lm(k)

])
. (17)

At zero temperature we can further divide this response into two pieces, j (2)(t ) = 1/V
∑

k[ jA(k, t ) + jB(k, t )]. Here jA(k, t ) is
nonzero only at the crystal momentum on the Fermi surface, while jB(k, t ) has support across the entire Brillouin zone. This
division can be done uniquely after demanding that each contribution be itself gauge invariant [28]. With this constraint,

jA(k, t ) =
∑

n,m,i, j

e3

V h̄
Ei

0E j
0 �2

t δ(εn − μ)vi
nn(k)

× {−δnm∂ jv
p
nm(k)e−αnm (k)(t−t0 ) + 2i

[
e−αnm (k)(t−t0 )R j

nm(k)vp
mn(k) − e−αmn(k)(t−t0 )vp

nm(k)R j
mn(k)

]}
, (18)

jB(k, t ) =
∑

n,m,i, j

e3

V h̄2 Ei
0E j

0 �2
t e−αnm (k)(t−t0 )

([
f T =0
n (k, μ) − f T =0

m (k, μ)
]
i∂ki R

j
nm(k)vp

mn(k)

+
∑

l

{
2 f T =0

l (k, μ) − [
f T =0
n (k, μ) + f T =0

m (k, μ)
]}

Ri
nl (k)R j

lm(k)vp
mn(k)

)
. (19)

Both contributions decay exponentially in time with timescale
τ . Each contribution jB(k, t ) oscillates with a frequency
determined by the energy differences between bands. This
incoherent summation over the entire Brillouin zone leads to a
contribution to the current smooth in time (see Fig. 4 below).
The contributions jA(k, t ) each have two parts. One part is
proportional to the diagonal elements of αnm(k), leading to
nonoscillatory contributions to the current. The other part
oscillates with frequency again defined by the energy differ-
ence between bands. We will show in the next section that
for certain band structures the sum of these terms across the
Fermi surface can add coherently when the energy differences
between band states on the Fermi surface and the states just
above the Fermi surface are nearly constant. This coherent su-
perposition of terms that oscillate at a fixed frequency can lead
to currents that oscillate in time with frequency determined by
these energy differences, as we will now demonstrate.

V. MINIMAL MODELS FOR OSCILLATORY CHARGE
CURRENT GENERATION

In the previous section we proved that the induced charge
current to second order in an ultrafast electric field pulse has

two contributions. The contribution deriving from jB(k, t ) de-
velops a contribution to the current that is smooth in time, and
the contribution jA(k, t ), for the right model, can develop a
contribution to the current that oscillates in time with a nearly
constant frequency. Here we demonstrate this phenomenon in
a minimal two-band model.

The model consists of a continuum theory of two valleys
that can represent the low-energy dynamics of spinless elec-
trons in a two-dimensional crystal. The Bloch Hamiltonian in
an orbital basis takes the form

Ĥχ (k) = χ h̄b · kI + h̄vF (χkxσx + kyσy) + m0σz. (20)

Here χ = ±1 indexes the valley degree of freedom. For
spinless electrons time reversal T is just the complex-
conjugation operator K. We imagine that the valleys are
centered at opposite crystal momenta in the Brillouin zone
such that the Hamiltonian is time reversal invariant and sat-
isfies Ĥ∗

χ (k) = Ĥ−χ (−k). For vanishing m0 and b the theory
consists of linear bands that cross at k0 = (0, 0) for each
valley [Fig. 1(a)]. In this limit the Hamiltonian has a chiral
symmetry {Ĥχ (k), σz} = 0 such that its energy eigenvalues
come in plus-minus pairs. Also in this limit the Hamiltonian
satisfies σxĤχ (k)σx = Ĥ−χ (−k) and has inversion symmetry.
Nonzero b tilts the linear bands such that the chiral symmetry
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FIG. 1. (a)–(c) Band structures of various two-band models described by Eq. (20). (a) Model preserving time-reversal, inversion, and chiral
symmetries. (b) Model with time-reversal and inversion symmetries but with broken chiral symmetry. (c) Model with time-reversal symmetry
but broken inversion and chiral symmetries.

is broken and the spectrum at each valley no longer consists of
plus-minus pairs [Fig. 1(b)]. Nonzero m0 breaks inversion and
introduces a gap that breaks the twofold-degenerate crossing
at k0 for each valley [Fig. 1(c)].

For our ultrafast electric field pulses E(t ) = E0�tδ(t − t0)
the intraband contribution to the current will be nonzero if
both chiral and inversion symmetries are broken and at elec-
tron fillings for which the chemical potential sits below the
energy gap. In these situations the Fermi surface will be an
ellipse in the kxky plane. The contributions jA(k, t ) come from
transitions between these Fermi surface states and the states
in the unoccupied band with the same Bloch momenta. These
terms each have a contribution that oscillates at a frequency
determined by the energy difference between these bands at
momenta along the Fermi surface. For vanishing b the energy
difference would be constant across the Fermi surface and
equal to 2μ. This would lead to terms jA(k, t ) that oscillate
at frequency ω = 2μ/h̄. Nonzero b leads to a distribution of
energy differences across the Fermi surface. Figure 2 shows
the band structure in a single valley for a typical time-reversal-
invariant but chiral- and inversion-broken system. The Fermi

FIG. 2. Typical time-reversal-invariant, inversion, and chiral-
breaking band structure for a single valley χ . The Fermi surface
is schematically shown in red. Contributions to jintra (k) derive from
interband matrix elements between states on the Fermi surface and
Bloch states along the purple ellipse. Terms in jintra (k) oscillate at
frequencies �Emin/h̄ � ω � �Emax/h̄.

surface is schematically shown in red. States with momenta
along the Fermi surface but in the unoccupied band are shown
in purple. The terms jA(k, t ) contributing to the Fermi sur-
face contribution to the current will oscillate over a range
of frequencies: �Emin/h̄ � ω � �Emax/h̄, where �Emax and
�Emin depend on m0, b, and μ.

(a)

(b)

FIG. 3. The contribution to the current arising from jA(k, t ) as a
function of time for a system with b = (0.5, 0.2)v f , v f = 106 m/s,
and τ = 6.3 × 10−15 s perturbed by an electric field pulse with �t =
0.2 ps and E0 = 5 MV/cm. (a) System with small gap size m0 =
0.001h̄v f /a for two different chemical potentials, μ = −1.2 meV
and μ = −2.3 meV, with average terahertz frequency modulation
ω̄ = 2.79 × 1012 s−1 and ω̄ = 4.21 × 1012 s−1, respectively. (b) Sys-
tem with large gap size m0 = 0.5h̄v f /a for two different chemical
potentials, μ = −1.37 eV and μ = −1.81 eV, with average peta-
hertz frequency modulation ω̄ = 2.86 × 1015 s−1 and ω̄ = 3.69 ×
1015 s−1, respectively.
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FIG. 4. Example of the contribution to the current arising from
contributions jB(k, t ) with model parameters b = (0.5, 0.2)v f , v f =
106 m/s, τ = 6.3 × 10−15, �t = 0.2 ps, E0 = 5 MV/cm, m0 =
0.5h̄v f /a, and μ = −1.37 eV. These contributions to the currents
oscillate at frequencies determined by the energy difference between
bands and tend to add incoherently across the Brillouin zone, pro-
ducing a nonoscillatory current that decays exponentially in time.

In order to observe an oscillatory current generated from
an ultrafast electric field pulse the terms in jA(k, t ) must
add coherently, and thus, we must be in the limit where
(�Emax − �Emin)/h̄ 	 �Ē , where �Ē is the average energy
difference between the two bands across the Fermi surface. In
this regime these interband matrix coefficients will lead to a
current that oscillates with frequency ω̄ = �Ē/h̄. To tune this
frequency one can adjust the chemical potential of the system,
thereby changing the average energy difference between the
two bands around crystal momentum along the Fermi surface
and thus changing ω̄. Furthermore, the current generated from
these ultrafast electric field pulses decays exponentially in
time with timescale τ . To measure multiple periods of oscilla-
tion 2π/ω̄ 	 τ .

Figure 3 shows the contribution to the current arising
from contributions jA(k, t ) for a system with b = (0.5, 0.2)v f ,
v f = 106 m/s, and τ = 6.3 × 10−15 s perturbed by an electric
field pulse with �t = 0.2 ps and E0 = 5 MV/cm. In Fig. 3(a)
the system has a small gap size with m0 = 0.001h̄v f /a. The
intraband contribution to the current as a function of time
is plotted for this system at two different chemical poten-
tials, μ = −1.2 meV and μ = −2.3 meV. The currents are
shown to modulate in time with mean terahertz frequencies
ω̄ = 2.79 × 1012 s−1 and ω̄ = 4.21 × 1012 s−1, respectively.
In Fig. 3(b) the system has a large gap size m0 = 0.5h̄v f /a.
Again, the intraband contribution to the current is shown for
two different chemical potentials, μ = −1.37 eV and μ =
1.81 eV. The average petahertz frequency modulations of the
currents are ω̄ = 2.86 × 1015 s−1 and ω̄ = 3.69 × 1015 s−1,

respectively. These examples demonstrate the robustness to
generate coherent oscillating currents at frequencies from ter-
ahertz all the way to petahertz by manipulation of a chemical
potential.

In contrast, Fig. 4 shows an example of the contribution
to the current arising from contributions jB(k, t ) for a system
with b = (0.5, 0.2)v f , v f = 106 m/s, τ = 6.3 × 10−15, m0 =
0.5h̄v f /a, and μ = −1.37 eV perturbed by an external field
with �t = 0.2 ps and E0 = 5 MV/cm. These contributions
tend to add incoherently across the Brillouin zone, leading to
a nonoscillatory current that decays exponentially in time.

VI. CONCLUSION

Here we have demonstrated that ultrafast electronic field
pulses can induce currents nonlinear in the perturbing electric
field that modulate at a frequency determined by the energy
differences between bands. These oscillating currents arise
from interband transitions from electronic states on the Fermi
surface to unoccupied states with equal crystal momentum.
Other contributions to the current derive from matrix elements
located across the Brillouin zone that oscillate with a wide
range of frequencies and ultimately lead to an incoherent
superposition of terms that result in nonoscillatory current
behavior. The frequency of the intraband contribution to the
current can be manipulated by changing the chemical po-
tential which tunes the average energy difference between
states on the Fermi surface and states above it. This tool, in
principle, can be used as a mechanism for generating currents
that oscillate at various frequencies from THz to the near IR.

Once an induced current is generated, it can radiate into the
outgoing solutions of the Maxwell wave equation,

jind
i (r, t ) =

∑
j

1

μ0

(
δi j

1

c2

∂2

∂t2
− ∇ · ∇ + ∂ri∂r j

)
Aind

j (r, t ).

(21)

Induced charge currents at frequency ω will generate induced
electromagnetic fields Aind(r, t ) at the same frequency.

For high-frequency current modulations, measurement of
these induced electromagnetic fields can be done through
techniques like attosecond interferometry [29]. Studying the
high-frequency electronic dynamics in materials creates a new
platform for ultrafast electronic logic and signal processing.
Identifying the precise mechanism for their generation now
allows for the development of new control and manipulation
protocols implemented in the context of semiconductor band
engineering.
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