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We report on two-photon absorption (TPA) and second harmonic generation (SHG) spectroscopy of para- and
orthoexcitons in Cu2O subject to a strong magnetic field up to 10 T. The magnetic field splits the orthoexciton
into its three quasispin components M = 0, ±1 and activates the symmetry and spin forbidden paraexciton by an
admixture from the M = 0 component of the orthoexciton. For the excitation of the paraexciton we suggest an
alternative mechanism of TPA without an external perturbation. It involves instead of the electric dipole-electric
dipole the electric quadrupole-magnetic dipole excitation process. By application of group theory we derive for
both mechanisms of TPA and SHG polarization selection rules for each of the four resonances (one para- and
three orthoexcitons) and present experimental results for different crystalline orientations which agree perfectly
with the derivations from group theory. High spectral resolution of the used SHG technique allows us to refine
the exchange splitting between the para- and orthoexciton of ε = 12.120 meV and the g values of the upmost
valence band gv = −0.72 ± 0.03 and the lowest conduction band gc = 2.38 ± 0.08.
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I. INTRODUCTION

The 1S paraexciton of the yellow exciton series of Cu2O
has gained a lot of interest mainly as a candidate for the ob-
servation of Bose-Einstein condensation (BEC). For a recent
review on these attempts we refer to Ref. [1]. The paraexciton
is the lowest energy exciton in Cu2O. From the upmost va-
lence band (�+

7 symmetry) and the lowest conduction band
(�+

6 symmetry) one derives the threefold orthoexciton (�+
5

symmetry) and the single paraexciton (�+
2 symmetry). The

paraexciton is a pure spin triplet state 12.1 meV [2] below
the orthoexciton. The small exciton radius of the 1S exciton
of 0.7 nm [3] leads to the rather large exchange splitting of
12.1 meV. In linear optical spectroscopy the paraexciton can
only be excited if an external perturbation like stress [4] or
magnetic field [2,5] is applied, which leads to an admixture
of the orthoexciton to the pure triplet paraexciton and thus to
a nonvanishing oscillator strength. In a high quality natural
crystal a very narrow paraexciton resonance of 80 neV was
measured [2].

In Ref. [6] details of two-photon magnetoabsorption of
para- and orthoexcitons are derived. The low sensitivity of
the two-photon absorption (TPA) experiments, however, did
not allow us to detect paraexcitons. Resonant two-photon
absorption of the 1S paraexciton in a potential trap is reported
in Refs. [7–9]. Here the paraexciton gets allowed by strain-
induced admixture of the 1S green orthoexciton [4].

TPA for odd parity excitons without external perturbation
can be achieved by replacing one of the electric dipole op-
erators in the TPA process by a magnetic dipole operator as
was shown in alkali halides in Ref. [10] and for GaAs in
Ref. [11]. In Cu2O, however, we are dealing with even parity

excitons. For the direct TPA excitation of the paraexciton
(�+

2 symmetry) the other odd parity electric dipole operator
(�−

4 symmetry) has to be replaced by the even parity elec-
tric quadrupole operator (�+

5 symmetry). There are thus two
mechanisms to excite the paraexciton in Cu2O: (i) by electric
dipole-electric dipole (DD) excitation of the orthoexciton ad-
mixture either by a magnetic field or strain or (ii) by direct
two-photon electric quadrupole-magnetic dipole (QMD) ex-
citation. The latter excitation is expected to be rather weak,
since two higher order processes are needed to excite the even
parity paraexciton.

For both mechanisms (i) and (ii) we will derive the de-
tailed polarization dependencies by merely group theoretical
techniques. In Ref. [12] we did not take into account the
degeneracy of the excited states (e.g., threefold excitons of
�+

5 symmetry) for the derivation of polarization selection
rules, which was sufficient for the higher excited exciton
states (n � 3) to distinguish between the different processes
considered (magneto-Stark and Zeeman effect). For the 1S
excitons, however, one has to take into account the threefold
degeneracy of the orthoexciton and the single paraexciton,
which are coupled by a magnetic field and split into three
separate orthoexciton components (M = ±1, M = 0) and the
12.1 meV lower paraexciton. As shown in detail in Ref. [12]
we will only use the tables of Koster et al. [13] to derive
for any crystalline orientation the polarization dependence for
the different excitation channels of TPA and second harmonic
generation (SHG) of paraexcitons.

The paper is organized as follows: In Sec. II details of
the experiments are explained. In Sec. III we derive the mag-
netic field dependence of the 1S para- and orthoexcitons and
present experimental results. From the spectra we extract the
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FIG. 1. Setup for SHG spectroscopy: AL, alignment laser; CCD,
charge-coupled device; D, diaphragm; F, color filter; fxx, lens with
xx-cm focal length; GT, Glan Thompson linear polarizer; λ/2, half-
wave plate; OPA, optical parametric amplifier; T(×4), telescope
with a magnification factor of four. The double side alignment laser
(AL) in front of the 1 m Spex spectrometer is useful for aligning the
SHG beam into the Spex spectrometer.

exchange splitting, g values, and the magnetic field dependent
oscillator strength of the paraexciton. In Sec. IV A we derive
the TPA and SHG polarization dependencies for the three
orthoexciton components and the paraexciton. In Sec. IV B
experimental results of TPA and SHG polarization depen-
dencies are shown and compared to simulations derived in
Sec. IV A. In Sec. V we present conclusions and an outlook. In
Appendix A we show a full diagonalization of the magnetic
field interaction and band structure effects [14], which is
relevant for the low field regime (B < 0.1 T). In Appendix
B we show two-dimensional (2D) polarization diagrams for
selected crystalline orientations of direction k of the exciting
laser beam. We distinguish between Voigt (magnetic field
B ⊥ k) and Faraday configuration (B ‖ k).

II. EXPERIMENT

The experimental setup is shown in Fig. 1. For more details
we refer to Ref. [12]. For the spectra of the magnetic field
dependence of para- and orthoexcitons we used the 1 m Spex
spectrometer in first order (resolution 20 μeV [12]). The po-
larization dependencies were recorded with the 0.5 m Acton
spectrometer, since the signals are by a factor 4 larger than in
the 1 m Spex setup and the lower resolution (80 μeV) is for
the polarization dependence of no relevance.

The samples are cut from a natural Cu2O crystal. For the
TPA experiments we use a 5.1 mm thick sample with the
orientation k ‖ Z ‖ [112̄], B ‖ X ‖ [111], and Y ‖ [11̄0]. For
the SHG experiments by DD excitation we use a 30 μm thick
sample with the orientation k ‖ Z ‖ [111], B ‖ X ‖ [11̄0], and
Y ‖ [112̄]. This orientation is shown in Fig. 2. For the SHG
experiments by QMD excitation we use a 50 μm thick sample
with the orientation k ‖ Z ‖ [001], B ‖ X ‖ [11̄0], and Y ‖
[110].

For all measurements the samples were mounted strain-
free and cooled to T = 1.4 K in superfluid helium. For the
polarization dependent experiments the polarizer angle ψ and
the analyzer angle ϕ can be tuned independently. For the
1D polarization diagrams the polarization angle was tuned in
steps of 5◦ and for the 2D polarization diagram both polariza-
tion angles (ψ, ϕ) were tuned in steps of 10◦. The magnetic

FIG. 2. Example of an experimental geometry in Voigt configu-
ration: k ‖ Z ‖ [111], X ‖ B ‖ [11̄0], and Y ‖ [112̄].

field dependent exciton intensities are measured in steps of
0.5 T up to 10 T.

In order to separate the excitation of the paraexciton from
the much more efficient excitation of the orthoexciton we used
the picosecond optical parametric amplifier (OPA). It emits
pulses with a duration of 3.3 ps at a repetition rate of 30 kHz.
The laser beam with an average power of 60 mW is focused
onto the sample to a spot with a diameter of 100 μm, which
results in an intensity of 7.7 GW cm−2. The spectral width
of the picosecond pulse is determined by a measurement of
the second harmonic in a BBO (beta Barium Borate) crystal
placed in the excitation beam behind the cryostat. The width
of 1.1 meV is much less than the separation of the para- and
orthoexciton of 12.1 meV, thus leading to a sufficient suppres-
sion of a direct excitation of orthoexcitons. The spectra are
obtained by setting the central photon energy of the laser at
half of the exciton energy (2.0206 eV for the paraexciton and
2.0328 eV for the orthoexcitons).

As a demonstration of the high resolution and high
signal-to-noise ratio we present in Fig. 3 spectra of the 1S
orthoexcitons and the paraexciton, which were taken with the

FIG. 3. SHG spectrum of the orthoexciton (M = 0, M = ±1)
and the paraexciton at B = 10 T in Voigt geometry. The 30 μm thick
sample is oriented with k ‖ [111], B ‖ [11̄0] and Eω,2ω(90◦) ‖ [112̄]
(Fig. 2). The spectrum is measured with a resolution of 10 μeV.
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1 m Spex spectrometer in second order (resolution 10 μeV) in
a magnetic field of 10 T. The polarization settings indicated
in the graph are derived for arbitrary crystalline and magnetic
field orientations in Sec. IV A.

In Sec. III we derive for the ratio of the ortho- to paraexci-
ton oscillator strength fo/ fp(10 T) ≈ 177. For the ratio of the
SHG signals in Fig. 3 we get a ratio of ≈300. In our deriva-
tion of the polarization dependencies we did not take phase
matching [15] into account. For para- and orthoexcitons we
expect perfect phase matching on the upper polariton branches
[16,17]. For the orthoexciton, however, the expected higher
reabsorption of the orthoexciton might be the reason for this
discrepancy.

III. MAGNETO-OPTICAL SPECTROSCOPY
OF PARA- AND ORTHOEXCITONS

In this section we first derive the theory of the 1S para- and
the 1S orthoexciton. From spectra taken in a magnetic field
up to 10 T we extract the relevant parameters (as exchange
splitting and g values) and compare them to literature values
from linear optical experiments. We diagonalize the 4 × 4
Zeeman matrix and neglect the impact of the valence band
structure as derived in Ref. [14], since it turns out that the k2

dependent perturbation, which was first interpreted as being
due to a k2 exchange term [18], has a measurable effect only
in the low-field regime (B < 0.2 T). The full diagonalization
including band structure effects is given in Appendix A. The
expected splitting and field dependence is beyond our spectral
resolution. From a fit of the field dependence we will derive
the relevant parameters (exchange splitting ε, g values of
valence and conduction band gv and gc) and magnetic field
dependent oscillator strength fp(B) of the paraexciton.

Neglecting k2 effects due to the band structure we start
with the 4 × 4 matrix in the M = 0,±1 basis for the orthoex-
citon and the paraexciton, which interacts with the M = 0
component of the orthoexciton. We get for the Zeeman Hamil-
tonian [6]

HZeeman(a, b, B) =

⎛
⎜⎝

−ε −iaB 0 0
iaB 0 0 0
0 0 −bB 0
0 0 0 bB

⎞
⎟⎠, (1)

where ε is the exchange splitting, a = μB(gc − gv )/2 is the
ortho/para mixing parameter, b = μB(gc + gv )/2 is the split-
ting parameter of the orthoexciton [6], and μB is the Bohr
magneton.

The diagonalization of the Zeeman matrix [Eq. (1)] leads
to the eigenvalues for the field dependence of the orthoexciton
components (Eo,M with M = 0,±1) and the paraexciton Ep:

Ep = 1

2
(−ε −

√
ε2 + 4a2B2) ≈ −ε − a2B2

ε
, (2)

Eo,0 = 1

2
(−ε +

√
ε2 + 4a2B2) ≈ a2B2

ε
, (3)

Eo,±1 = ±bB. (4)

The magnetic field dependent admixture of the orthoexci-
ton to the paraexciton is derived from the eigenfunction

FIG. 4. Magnetic field dependence of the orthoexciton (M = 0,
M = ±1) and the paraexciton. The dots represent measured data
and the lines represent the fits. The M = ±1 components of the
orthoexciton show a linear shift in energy. The paraexciton and
the M = 0 component of the orthoexciton show a quadratic shift. The
inset diagram shows the additional splitting due to the band structure,
which is relevant for low magnetic fields. This is discussed in more
detail in Appendix A. The 30 μm thick Cu2O sample is oriented with
k ‖ [111], B ‖ [11̄0], and Eω,2ω(90◦) ‖ [112̄]. The spectra are mea-
sured with the 1 m Spex spectrometer in first order with a resolution
of 20 μeV (Sec. II).

ψp(B) = α(B)|�+
2 〉 + β(B)|�+

5,o〉. The admixture parameters
of the eigenvector are given by

α(B) ≈ 1√
1 − (

aB
ε

)2
≈ 1, (5)

β(B) ≈ iaB

ε

√
1 − (

aB
ε

)2
≈ iaB

ε
. (6)

Since SHG of the paraexciton gets allowed by its admixture
to the orthoexciton the field-dependent oscillator strength for
the paraexciton fp [2] is given by

fp(B) = |β(B)|2 fo, (7)

where fo is the oscillator strength of the orthoexciton.
In Fig. 4 we present the magnetic field dependence of the

SHG energies of the three components of the orthoexciton and
the paraexciton. The spectral positions are gained by a fit of
the SHG lines by Gaussians. For the fit of the magnetic field
dependent spectral positions of the exciton components, we
use Eq. (2) for the paraexciton, Eq. (3) for the M = 0, and
Eq. (4) for the M = ±1 orthoexciton components. It is noted
that the fits of the orthoexciton components do not intersect at
the same energy at 0 T. This is explained by the derivation in
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TABLE I. Comparison of ε and g values with literature data.

Source ε (meV) gc gv |gc + gv| |gc − gv|
this paper 12.120 2.38 −0.72 1.66 3.1
[5] 12 2.68 −1.02 1.66 3.70
[6] 3.17 −1.53 1.64 4.70
[20] 12.117 3.26
[21] 1.7

Appendix A and shown in the inset of Fig. 4. Strain induced
splitting of the components as discussed in Ref. [19] could
also be of relevance. The parameters of the fits are:

a = 91 ± 3
μeV

T, (8)

|gc − gv| = 3.1 ± 0.1, (9)

b = 48.1 ± 0.3
μeV

T, (10)

|gc + gv| = 1.66 ± 0.01, (11)

ε = 12.120 meV, (12)

fp(B) = (5.6 ± 0.4) × 10−5B2 fo. (13)

For the g values we get

gc = 2.38 ± 0.08, (14)

gv = −0.72 ± 0.03. (15)

A comparison of the parameters of different sources is
presented in Table I. Compared to the literature values, our
fits lead to slightly different parameters for ε and the g values,
which might be due to the fact that the SHG resonances
are expected to be slightly shifted as compared to the one-
photon absorption data of Refs. [2,18] due to the polariton
dispersion.

The field dependent oscillator strength fp(B) agrees well
with the value derived from high resolution data (Ref. [2],
fp(B) = 5.8 × 10−5B2 fo). According to the theory the ratio
of oscillator strengths is fo/ fp(10 T) ≈ 177.

IV. POLARIZATION DEPENDENCIES
OF PARA- AND ORTHOEXCITONS

In Sec. IV A we derive the polarization dependencies of
para- and orthoexcitons by a group theory analysis for DD
as well as QMD excited TPA and SHG. In Sec. IV B we
present experimental data of the polarization dependencies
and compare them to the calculations.

A. Theory of polarization dependencies

In this subsection we present the theory of two-photon
absorption (TPA) and second-harmonic generation of the 1S
para- and orthoexcitons of Cu2O. The paraexciton as a spin
triplet is forbidden to all orders for electric dipole transitions
[7]. By application of an external perturbation as, e.g., strain
[4] or a magnetic field [2,5] the paraexciton gets allowed by

FIG. 5. Schematics of the SHG processes. (a) Excitation of
eigenvectors 
i(B) of para- and orthoexcitons by �+

5 DD excitation
and �+

5 electric quadrupole emission. (b) Excitation of eigenvector

0(0) by �+

2 QMD excitation and �+
5 electric quadrupole emission

from 
0(B).

its admixture to the orthoexciton. The paraexciton can thus be
observed in TPA and also in SHG.

As outlined in the introduction there is a new mechanism of
direct excitation of the paraexciton without external perturba-
tion: Instead of a magnetic field (Zeeman operator of �+

4 ) the
coupling between the singlet-triplet mixed orthostates and the
pure triplet paraexciton is already achieved in the two-photon
excitation process by replacing the two odd-parity electric
dipole operators (�−

4 symmetry) by two even parity operators
(electric quadrupole operator of �+

5 symmetry and magnetic
dipole operator of �+

4 symmetry). Obviously the magnetic
dipole operator replaces the Zeeman operator in the mixing
process.

TPA of paraexcitons is thus allowed without application
of a static magnetic field. Experimentally, however, TPA by
QMD excitation could not be detected, since excitation spec-
troscopy experiments (e.g., by detection through phonon side
bands of the paraexciton) were not successful up to now, since
impurity emission in our natural crystals does not allow us to
resolve emission from the paraexciton. SHG, however, needs
the Zeeman operator to couple the directly excited paraexciton
to the �+

5 orthoexciton, which then allows electric quadrupole
emission. This new QMD excitation mechanism can only
be detected in Voigt configuration in a fourfold crystalline
direction (e.g., k ‖ [001] and B ‖ [010] or [110]). The SHG
process by DD and by QMD excitation are sketched in Fig. 5.

As outlined in the introduction we have to take into account
the threefold degeneracy of the orthoexciton, which is coupled
to the single paraexciton by a magnetic field. We therefore
start with the diagonalization of the 4 × 4 matrix taking into
account the exchange splitting ε and Zeeman effect. For the
derivation of the polarization dependence for arbitrary crys-
talline and magnetic field orientation we have to start with
the 4 × 4 matrix in the basis of the single paraexciton (�+

2
symmetry) and the three orthoexciton components (�+

5yz, �
+
5zx,
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�+
5xy). We thus get for the Zeeman matrix [22]:

MB(a, b, B) =

⎛
⎜⎝

−ε iaBx iaBy iaBz

−iaBx 0 −ibBz ibBy

−iaBy ibBz 0 −ibBx

−iaBz −ibBy ibBx 0

⎞
⎟⎠. (16)

For the derivation of the polarization dependence of TPA
and SHG of the four resonances (three orthoexcitons and one
paraexciton) we need the four eigenvectors |
i(B)〉 (i = 0..3),
where each eigenvector has four components. From the matrix
[Eq. (1)] it is obvious that there is an admixture of the paraex-
citon only to the M = 0 orthoexciton. As will be discussed in

Appendix A, in general this is not valid, if k2 effects are taken
into account [14].

The polarization dependence of TPA is derived in terms
of second order [23] and for SHG in terms of third order
perturbation theory. In the second order excitation process we
have to distinguish between DD excitation (only �+

5 contri-
bution) and QMD excitation (only �+

2 contribution), whereas
for the additional first order emission process in SHG we
apply for both cases the electric quadrupole operator (only �+

5
contribution). We proceed as in Ref. [12] with the difference
that the magnetic-field dependence (magnetic field orientation
and strength) is taken care of in the eigenvectors |
i(B)〉. For
the nomenclature of the relevant physical quantities we follow
closely Ref. [12]. The orientations are sketched in Fig. 2.

As in Ref. [12], we start our analysis with the rotation
matrix:

Mrot(k, ψ ) =
⎛
⎝

k2
1 (1 − cos ψ ) + cos ψ k1k2(1 − cos ψ ) − k3 sin ψ k1k3(1 − cos ψ ) + k2 sin ψ

k2k1(1 − cos ψ ) + k3 sin ψ k2
2 (1 − cos ψ ) + cos ψ k2k3(1 − cos ψ ) − k1 sin ψ

k3k1(1 − cos ψ ) − k2 sin ψ k3k2(1 − cos ψ ) + k1 sin ψ k2
3 (1 − cos ψ ) + cos ψ

⎞
⎠, (17)

where k = (k1, k2, k3)T is the normalized wave vector of light.
By multiplying the horizontal crystal direction X with the
rotation matrix, we get the polarization vectors Eω(ψ ) and
E2ω(ϕ) for the in- and outgoing light:

Eω(ψ ) = (u(ψ ), v(ψ ),w(ψ ))T = Mrot(k, ψ ) · X, (18)

E2ω(ϕ) = (m(ϕ), n(ϕ), o(ϕ))T = Mrot(k, ϕ) · X. (19)

We now define the relevant operators for the different ex-
citation and emission processes. The TPA operator for �+

5
excitation [23] is given by

ODD(ψ ) =
√

2

⎛
⎜⎝

0
v(ψ )w(ψ )
u(ψ )w(ψ )
u(ψ )v(ψ )

⎞
⎟⎠, (20)

the electric quadrupole operator for the outgoing photon is
given by

OQ(k, ϕ) = 1√
2

⎛
⎜⎝

0
k2o(ϕ) + k3n(ϕ)
k1o(ϕ) + k3m(ϕ)
k1n(ϕ) + k2m(ϕ)

⎞
⎟⎠, (21)

and the magnetic dipole operator is given by

OMD(k, ψ ) = 1√
2

⎛
⎜⎝

0
k2w(ψ ) − k3v(ψ )

−k1w(ψ ) + k3u(ψ )
k1v(ψ ) − k2u(ψ )

⎞
⎟⎠. (22)

Since the eigenvectors 
i(B) have four components and the
polarization dependencies are derived from scalar products of
the 
i(B) and the operators, the operators are extended to four
components. The first component in each operator vanishes,
since none of them leads to an excitation of the paraexciton.

We derive the TPA polarization dependence from second
order perturbation theory [23]. From the necessary condition
of a nonvanishing excitation matrix element we derive the po-
larization dependencies for TPA via DD excitation processes:

〈
i(B)|ODD(k, ψ )|G〉 	= 0. (23)

Since |G〉 as the ground state transforms as |�+
1 〉, the �+

1
contribution of the direct product and thus the scalar product
of 
i(B) and ODD(k, ψ ) leads to

I2ω
TPA,DD, i(k, ψ, B) ∝ |
i(B) · ODD(k, ψ )|2. (24)

For each of the four eigenvectors (i = 0: paraexciton, i =
1: M = 0 orthoexciton and i = 2, 3: M = ±1 orthoexcitons)
we derive a polarization dependence, where the paraexciton
and the M = 0 orthoexciton should exhibit the same polar-
ization dependence, as seen from the 4 × 4 matrix [Eq. (1)].
It turns out that TPA of paraexcitons can be excited in
Voigt configuration for k ‖ [110], [111], and [112], but not
for k ‖ [001]. As shown in Ref. [12] TPA is detected by
excitation spectroscopy from exciton phonon side bands or
impurities. Since the paraexciton eigenvector depends linearly
on the magnetic field strength, a B2 field dependence is ex-
pected for the TPA intensity of the paraexciton. As expected
I2ω
TPA,DD,0(k, ψ, B) vanishes for B = 0, since the paraexciton

eigenvector 
0(0) = (1, 0, 0, 0)T is orthogonal to ODD(k, ψ )
[Eq. (20)].

From Eq. (21) [rewritten for the polarization vector of the
incoming photon Eω(ψ )] and Eq. (22) we derive from the
Koster tables the two-photon operator for QMD excitation of
the �+

2 paraexciton:

OQMD(k, ψ ) = OQ(k, ψ ) · OMD(k, ψ )/
√

3. (25)

For the QMD excitation we get again the necessary condi-
tion for a nonvanishing matrix element:

〈
0(0)|OQMD(k, ψ )|G〉 	= 0. (26)
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Since OQMD(k, ψ ) is a scalar and 
0(0) is a unit vector this
leads to TPA of the paraexciton via QMD excitation to:

I2ω
TPA,QMD,0(k, ψ, B) ∝ |OQMD(k, ψ )|2. (27)

TPA of the paraexciton is thus for QMD excitation indepen-
dent of B. It turns out that the scalar OQMD(k, ψ ) vanishes
for k ‖ [110] and [111] but does not vanish for k ‖ [112] and
[001]. One thus expects for these crystalline orientations a
paraexciton resonance at B = 0, which might be detected by
excitation spectroscopy via the �+

5 phonon side band of the
paraexciton.

For the derivation of the SHG polarization dependence we
have to apply third order perturbation theory, since the para-
and orthoexciton excited by two-photon processes [Eqs. (24)
and (27)] have to be coupled to the ground state by the electric
quadrupole operator [Eq. (21)]. For the DD excitation we get
the condition:

〈G|OQ(k, ϕ)|
i(B)〉〈
i(B)|ODD(k, ψ )|G〉 	= 0. (28)

The polarization dependence for the outgoing photon is given
by the scalar product of 
i(B) and OQ(k, ϕ). The polarization
dependence of SHG is thus for DD excitation given by:

I2ω
SHG,DD, i(k, ψ, ϕ, B)

∝ |[
i(B) · OQ(k, ϕ)][
i(B) · ODD(k, ψ )]|2. (29)

It turns out that SHG of paraexcitons can be DD excited in the
following configurations of k/B: [111]/[112̄], [111]/[1̄10],
[112̄]/[1̄10], but not in [112̄]/[111], [11̄0]/[001],
[11̄0]/[110]. Since TPA for k ‖ [001] is not allowed in
Voigt configuration there is no SHG possible. An overview
is given for Voigt configuration in Fig. 11 and for Faraday
configuration in Fig. 12 in Appendix A. Since there are two
field dependent eigenvectors involved in the SHG signal,
a B4 dependence is expected for the SHG intensity of the
paraexciton.

For the SHG by QMD excitation of the paraexciton we get:

I2ω
SHG,QMD,0(k, ψ, ϕ, B)

∝ |[
0(B) · OQ(k, ϕ)][OQMD(k, ψ )]|2. (30)

In this case only the magnetic field dependence of the
eigenvector for the outgoing photon is relevant. A B2 field
dependence is thus expected for the paraexciton. It has to
be noted that the mechanism of QMD excitation can eas-
ily be extended to excitation of orthoexcitons by coupling
the electric quadrupole operator [Eq. (21) rewritten for the
polarization vector of the incoming photon Eω(ψ )] and the
magnetic dipole operator [Eq. (22)] to �+

5 (orthoexcitons) by
use of the Koster tables.

We do not consider these processes, since for the �+
5 or-

thoexcitons the signals are expected to be too weak because
of the higher order QMD mechanism excitation process as
compared to DD excitation. As pointed out, the excitation
of the paraexciton by the higher order is only detected in
the crystalline orientation (k ‖ [001]), where SHG by DD

FIG. 6. TPA polarization dependence of para- and orthoexcitons
as a function of ingoing polarization angle ψ at B = 10 T. Experi-
mental results (dots) of TPA are monitored by the emission from the
�−

3 phonon side bands 13.5 meV below the corresponding para- or
orthoexciton. Simulations are solid lines as calculated from Eq. (24).
(a) The para- and M = 0 orthoexciton as well as (b) the M = ±1 or-
thoexcitons show the same polarization dependence. The TPA signal
of the paraexciton is multiplied by a factor of 100. The experimental
configuration is k ‖ Z ‖ [112̄], B ‖ X ‖ [111], and Y ‖ [11̄0].

excitation is forbidden. Examples of TPA and SHG polariza-
tion dependencies as well as magnetic field dependencies will
be presented with the experimental results in Sec. IV B.

FIG. 7. Experimental results (dots) of magnetic field dependent
intensities and fits (solid lines): TPA by DD excitation (blue), fit
leads to B1.91±0.04, B2 (gray line) expected from Eq. (24). SHG by
DD excitation (red), fit leads to B3.71±0.08, B4 (black line) expected
from Eq. (29)]. SHG by QMD excitation (green), fit leads to B2.5±0.2,
B2 (gray line) expected from Eq. (30). For a clear presentation of the
magnetic field dependent mechanisms appropriate scaling factors are
chosen for their intensities.
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FIG. 8. (a) Theory and (b) experiment of 2D polarization dependent intensity of SHG by DD excitation [according to Fig. 5(a) and Eq. (29)]
of 1S orthoexcitons at B = 7 T and of the paraexciton at 2.0206 eV and B = 10 T. Blue, light blue, yellow, green, and red indicate 0%, 25%,
50%, 75%, and 100% of maximum SHG intensity, respectively. In (c) we show the ψ- and ϕ-tuning lines of the experimental data (dots) and
simulation (solid line) corresponding to the black and red lines in (a) and (b). As expected, the paraexciton exhibits the same polarization
dependence as the M = 0 component of the orthoexciton. The experimental configuration is k ‖ Z ‖ [111], B ‖ X ‖ [11̄0], and Y ‖ [112̄], as
shown in Fig. 2.

B. Experimental results of polarization dependencies

In this section we present our experimental results to-
gether with simulations with reference to the TPA and SHG

polarization dependencies derived in Sec. IV A. In the DD
mechanism [Fig. 5(a)] the paraexciton (�+

2 symmetry) is ex-
cited by its magnetic field induced admixture to the M = 0

115203-7



A. FARENBRUCH et al. PHYSICAL REVIEW B 102, 115203 (2020)

component of the orthoexciton (�+
5 symmetry). As an ex-

ample for a TPA polarization dependence we have chosen
in Fig. 6 the configuration k ‖ [112̄] and B ‖ [111] (Voigt
configuration). We show the TPA dependence as a function
of ψ , where ψ = 0◦ corresponds for this configuration to
the [111] crystalline direction and thus ψ = 90◦ to [11̄0]. As
expected the paraexciton and the M = 0 orthoexciton exhibit
the same polarization dependence and also the M = +1 and
M = −1 components. The M = 0 orthoexciton simulation is
normalized to 1. The other components are scaled accord-
ingly. Experiments are scaled to simulations. There is good
agreement of the polarization dependencies between experi-
ment (dots) and simulations (solid lines) according to Eq. (24).

In Fig. 7 we present experimental results of B-dependent
intensities for different excitation mechanisms. Deviations of
the fits from the expected magnetic field dependence (B2 and
B4) might be caused by slight misalignment or strain. In the
case of QMD excitation the alignment of the kω is very crit-
ical, because a slight misalignment might lead to signals via
the much stronger DD excitation mechanism, which exhibits a
B4 dependence and thus might be the reason for the measured
B2.5 instead of the expected B2 dependence.

In Fig. 8 we present experimental results and simulations
[according to Eq. (29)] of the 2D and 1D polarization depen-
dent SHG intensities of the para- and orthoexcitons for the
orientation k ‖ [111] and B ‖ [11̄0]. The M = ±1 resonances
exhibit the same polarization dependence with a fourfold
ψ dependence on a constant SHG of 1/3 of the maximum
value and a twofold ϕ dependence [Fig. 8(c)]. The M = 0
component of the orthoexciton exhibits the same polarization
dependence as the paraexciton. The experimental 1D diagram
along selected tuning lines exhibit a fourfold pattern with a
90◦ period for a tuning of the laser polarization ψ with SHG
polarization ϕ fixed to 180◦ [Fig. 8(c)]. The SHG polarization
dependence as a function of ϕ (ψ = 45◦) exhibits the expected
twofold pattern, which is determined by the contribution of
the electric quadrupole operator [Eq. (21)] in Eq. (29). From
a comparison of Fig. 8(a) (simulation) and Fig. 8(b) of the
paraexciton SHG one can notice approximately 25% weaker
maxima at ϕ = 360◦ in the experimental 2D diagram. This
might be explained by an intensity drift of the exciting pi-
cosecond laser during the long scan time of four hours. In
Fig. 7 the expected B4 dependence of the paraexciton SHG
by DD excitation according to Eq. (29) is well confirmed.

As addressed already in the introduction the QMD exci-
tation leads to a direct population of the pure spin triplet
paraexciton, since no admixture to the singlet/triplet mixed
orthoexciton by an external magnetic field is necessary.
It turns out that TPA by QMD excitation [Eq. (27) and
Fig. 5(b)] is allowed for k ‖ [001], where TPA by DD exci-
tation [Eq. (24) and Fig. 5(a)] is forbidden. Because of two
second order processes in the two-photon QMD excitation the
oscillator strength is expected to be much smaller than for the
DD excitation.

By careful alignment of k ‖ [001], where TPA and
SHG are forbidden for DD excitation, we succeeded to
detect SHG for QMD excitation. TPA by this excitation
mechanism was not detected, because it could not be dis-
tinguished from luminescence from impurities in our natural
samples.

FIG. 9. SHG polarization dependence for paraexciton by QMD
excitation. (a) 2D diagram derived from Eq. (30) [Fig. 5(b)] with
tuning lines for experiments (dots) shown in (b) together with the
corresponding simulations (lines). The experimental configuration is
k ‖ Z ‖ [001], B ‖ X ‖ [110], and Y ‖ [1̄10].

In Fig. 9 we present the simulation of SHG [2D diagram
(a) derived from Eq. (30)] and 1D diagrams (b) for the tuning
lines marked in (a). Because of the weak signals (about 1/200)
compared to those by DD excitation (e.g., Fig. 8), we did not
succeed to measure the full 2D diagram. The theoretical 1D
diagram for TPA [Eq. (27)] exhibits the same ψ dependence
as SHG for fixed ϕ = 180◦.

The QMD mechanism might be interpreted as nonresonant
dynamical Zeeman effect [24,25], where the 1S orthoexciton
is coupled to the paraexciton by the magnetic component of
the photon field. If the coupling to light is treated nonperturba-
tively, this would lead to a Hamiltonian equivalent to Eq. (1).
The off-diagonal elements of the frequency-dependent mag-
netic dipole operator couple the ortho- to the paraexciton. This
effect is equivalent to the optical Stark effect in Cu2O [26]. In
this experiment the 1S exciton is resonantly coupled to the 2P
exciton by a tunable CO2 laser. For a resonant Zeeman effect
in our case we would need a light source at 12.1 meV (photon
wavelength of 102 μm).

V. CONCLUSIONS AND OUTLOOK

In this paper we have presented theoretical and experimen-
tal results for the nonlinear magneto-optical properties of the
1S para- and orthoexciton of the lowest exciton series (yellow
series) in Cu2O. The paraexciton is of special interest, since it
is the lowest resonance and a pure spin-triplet state and thus
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FIG. 10. Magnetic field dependent energies of the orthoexciton
components (M = 0, M = ±1) resulting from the diagonalization of
the sum of the Zeeman- and band structure matrix given in Eq. (A1),
plotted in the magnetic field range of 0 to 0.1 T. The calculation
is done for the orientation k ‖ [111] and B ‖ [11̄0]. The zero SHG
energy marks the energy position of the unperturbed orthoexciton.

forbidden for excitation in linear optics. The magnetic-field
dependent SHG spectra of the 1S para- (M = 0 admixture

to paraexciton) and orthoexcitons (M = 0, M = ±1 compo-
nents) are measured in magnetic fields up to 10 T. From the
diagonalization of the relevant 4 × 4 matrix, electron and
hole g values and the exchange splitting are derived, which
agree well with data from linear optical experiments. Com-
pared to a previous publication [12], we first diagonalize
the 4 × 4 matrix of the coupled para- and orthoexcitons and
then derive polarization selection rules for TPA and SHG
for each of the four components. For the group theoretical
treatment, the eigenvectors as well as the photon interaction
operators have to be taken into account. We suggest a QMD
mechanism of two-photon excitation, which is applied to the
paraexciton. Contrary to the classical DD excitation the QMD
mechanism allows a two-photon excitation of paraexcitons
without external perturbation. For SHG one needs a pertur-
bation like a magnetic field leading to a B2 dependence for
the QMD mechanism as compared to a B4 dependence for
DD excitation.

Detailed polarization dependencies are derived for arbi-
trary crystalline and magnetic field orientations. Despite the
fact that for the QMD mechanism two higher order processes
(QMD instead of DD excitation) are required and thus much
weaker signals are expected, we succeeded to detect SHG by
the QMD mechanism by the choice of a special configuration
(k ‖ [001]) where SHG by DD excitation is forbidden. We
report experimental results for SHG of both mechanisms in

FIG. 11. 2D polarization diagrams of SHG of the four 1S components in Voigt configuration (k ‖ Z and B ‖ X) for selected crystalline
orientations. Experimental results are taken in the configuration (Z ‖ [111], Y ‖ [112̄], and X ‖ [11̄0] for DD excitation and Z ‖ [001], Y ‖
[1̄10], and X ‖ [110] for QMD excitation) as marked in bold.
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FIG. 12. 2D polarization diagrams of SHG of the four 1S components in Faraday configuration (k ‖ B ‖ Z) for selected crystalline
orientations. The red diagrams show a constant nonzero SHG intensity of the M = ±1 components for all polarization angles.

Voigt configuration which in all cases confirm the derivations
of Sec. IV A. TPA by the QMD mechanism, however, was
not seen up to now because we did not succeed to distinguish
the expected weak �+

5 phonon emission of the paraexciton
from impurity luminescence in our natural crystals. Thermal
treatment of the samples might help to overcome this problem.

As an outlook we propose further nonlinear optical ex-
periments to detect BEC [1]. Two-photon excitation leads to
polaritons of low group velocity (≈10−5 of speed of light)
[17], thus increasing the density as compared to the outside
photon flux. Excitation at half of the paraexciton energy might
also be advantageous as compared to resonant excitation in a
trap, since high intensity resonant excitation leads to nonlinear
excitation of continuum states, thus causing larger heating of
the sample as compared to resonant two-photon excitation. It
is certainly of interest to compare two-photon excitation with
one-photon excitation in a trap, where hints of a BEC were
claimed [27].
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APPENDIX A: BAND STRUCTURE EFFECTS

In the main part we limited our calculation to the Zeeman
effect [Eq. (16)] in the basis of {�+

2 , �+
5yz, �

+
5zx, �

+
5xy}. Here we

add band structure effects to the diagonalization of the Hamil-
tonian. We take the sum of the B-dependent Zeeman matrix as
given in Ref. [22] and the k-dependent band structure matrices
as given in Ref. [14]:

Mtotal(�3,�5, k, a, b, B)

= J3(�3, k) + J5(�5, k) + MB(a, b, B)

= �3

⎛
⎜⎜⎝

0 0 0 0
0 3k2

x − k2 0 0
0 0 3k2

y − k2 0
0 0 0 3k2

z − k2

⎞
⎟⎟⎠

+ �5

⎛
⎜⎜⎝

0 0 0 0
0 0 kxky kxkz

0 kxky 0 kykz

0 kxkz kykz 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

ε iaBx iaBy iaBz

−iaBx 0 −ibBz ibBy

−iaBy ibBz 0 −ibBx

−iaBz −ibBy ibBx 0

⎞
⎟⎟⎠. (A1)
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FIG. 13. Experimental data of 2D polarization diagrams of SHG of the three 1S orthoexciton components in Voigt configuration (k ‖ Z
and B ‖ X) at B = 10 T for four selected crystalline orientations. The experimental results agree with the simulations shown in Fig. 11. A
2D diagram for the paraexciton was only measured for k ‖ [111] and B ‖ [11̄0] (Fig. 8). As expected, in all orientations considered, the 2D
paraexciton diagrams exhibit the same polarization dependence as the M = 0 orthoexciton.

k is the wave vector, ki are its components, B is the mag-
netic field, Bi are its components, �3 = −1.3 μeV and �5 =
2.0 μeV are the coefficients of the band structure matri-
ces as given in Ref. [18], a corresponds to a = μB(gc −
gv )/2 of the main part of this paper, and b corresponds to
b = μB(gc + gv )/2. The resulting magnetic field dependent
energies of the orthoexciton components are presented in
Fig. 10.

It would be interesting to do high resolution experiments
of the orthoexciton components in the low-field regime (0 �
B � 0.5 T), where M is not a good quantum number due to
mixing by the k2 terms in Eq. (A1). For the low-symmetry
orientation k ‖ [112] there is a splitting into three components
expected [18]. From the magnetic-field dependent eigenvec-
tors one can derive how the three components at B = 0 can be
characterized with increasing magnetic field by M quantum
numbers (similar to the Paschen-Back effect in atomic spec-
troscopy).

APPENDIX B: SHG POLARIZATION DIAGRAMS
FOR DIFFERENT CRYSTAL ORIENTATIONS

In this paper we have presented theoretical and experi-
mental 2D polarization diagrams for selected orientations.
In Faraday configuration SHG experiments with linearly po-
larized light have to take Faraday rotation in the sample
as well as in the windows of the cryostat into account. In
Faraday configuration measurements with circularly polarized
light are therefore more appropriate. SHG with circularly
polarized light for arbitrary crystalline orientation was ad-
dressed in Ref. [28]. Our derivation applies to any crystalline
and magnetic field orientation. In the following, we extend
the derivation for the four components to other crystalline
orientations and present for each orientation 2D polariza-
tion diagrams for two selected magnetic field orientations
(Voigt configuration in Fig. 11 and Faraday configuration in
Fig. 12). Additional experimental data for Voigt configuration
are shown in Fig. 13 and can be compared to the correspond-
ing diagrams in Fig. 11.
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