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Revisiting semiconductor band gaps through structural motifs: An Ising model perspective
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We present an alternative perspective on semiconductor band-gap energies in terms of structural motifs,
viewed through the lens of an Ising model as a means of quantifying the corresponding degree of lattice
ordering. The validity of the model is demonstrated experimentally first through ZnSnN2 as an archetype ternary
heterovalent semiconductor, in which variation of cation disorder enables the band gap to be tuned from above
its equilibrium phase value, through zero, to negative values which correspond to inverted bands. The model
is then applied to example binary compounds InN, GaN, and ZnO where anion-cation antisite defects form the
basis for structural motifs, and we present experimental evidence that the same range of band-gap tuning is also
possible for such materials. The case of alloys is treated by applying a three-spin Potts model to InxGa1−xN. The
Ising model also applies to elemental semiconductors, and is used to explain the wide range of reported values
for silicon and nanoporous graphene in the context of vacancy-based structural motifs.
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I. INTRODUCTION

Semiconductor materials are characterized by multiple
properties that must be considered when contemplating the
fabrication of an electronic device, but arguably the most
fundamental of them is the band-gap energy. Often described
as arising from the periodic potential describing the lattice
in which a particular material crystallizes [1], the intrinsic
gap of a semiconductor is defined as the energy difference
between the valence band the uppermost band containing
electrons which participate in chemical bonding and the band
immediately above it, referred to as the conduction band. Dis-
order is acknowledged as having an impact on the band gap,
although largely categorized as undesirable, except perhaps
in the context of what is termed an amorphous semiconduc-
tor. Engineering of the band-gap energy dates to the early
days of light-emitting diodes [2], and can be accomplished
by alloying one or more compounds in order to achieve a
desired value. It is also well known that strain can also be
used to engineer the energy gap, by exploiting heteroepitaxial
structures potentially in tandem with alloying. However, the
traditional perspective masks what may be best described
as a hidden variable, requiring a variety of phenomena to
be invoked including many-body effects, degenerate carrier
populations, and impurity doping to explain a wide range
of experimentally determined numerical values for the band-
gap energy. While generally successful at predicting trends,
a fundamental limitation of the conventional approach is a
lack of recognition for the full range of achievable band-gap
values, which we demonstrate can only be discerned through a
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quantitative description of disorder cast in terms of structural
motif composition.

The concept of structural motifs provides the basis for
describing a wide range of constructs, spanning such diverse
fields as biology [3–6], music [7,8], and art [9]. The term has
its origin as a means of understanding RNA conformations
and corresponding secondary structures [3,4], and structural
similarities among different kinase enzymes performing the
same function [5]; in such a context, a motif can be defined
as a component of a structure with identifiable but variable
order, where the resulting physical modification leads to al-
tered properties or functionality. In the case of semiconductor
compounds, a structural motif describes any of the possible
variants to the nearest-neighbor bonding environment of a
given atom. In an ideal crystal of a given compound with fixed
stoichiometry, the number of structural motifs is limited to
a single type; the occurrence of variations of this base motif
depends directly upon the degree of disorder and stoichiome-
try characterizing the corresponding lattice. Cluster expansion
theory also describes disorder, but does so from a viewpoint
of lattices and sublattices, building up clusters that can occur
within a given lattice from single points, to bonds (pairs) to
triangles and higher-order clusters. While cluster expansion
theory can include the complete set of structural motifs, such a
lattice-based approach can mask the fundamental importance
of the variety of structural motifs.

In an otherwise interstitial-free lattice, the set of structural
motifs arising from disorder is defined through the range of
possible antisite defects. Since such defects can have large en-
ergies of formation, it is usually argued that they are unlikely
to form in lattices. A disordered lattice, however, has a higher
entropy than a perfectly ordered lattice, and as such the driv-
ing force behind the formation of disordered lattices and their
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corresponding numerical distribution of the complete set of
possible structural motifs is, as for any endothermic process,
entropy. Thus, by designing processes to be entropy driven
instead of energy driven, it is possible to obtain a wide range
of structural motif distributions. For example, by varying the
conditions during crystal growth, different degrees of ordering
can be achieved [10]; the two-step process of annealing and
quenching a sample is another common technique employed
to obtain a desired degree of ordering [11,12]. Additionally,
nonequilibrium crystal growth techniques, which can easily
access metastable structures, are frequently used to grow dis-
ordered lattices. In reality, even so-called equilibrium growth
conditions will only be approximately so, and hence will yield
nonzero distributions of nonequilibrium structural motifs.

Initial efforts directed toward quantifying the effects of
varying degrees of order on semiconductor properties focused
on alloys, where exchanging atoms with the same number
of valence electrons does not violate the octet rule. Wei,
Laks, and Zunger first proposed constructing an Ising model
to describe cation ordering in common-anion (A1−xBxC)
semiconductor alloys: In their formulation, A cations were
assigned a +1 spin and B cations were assigned a spin of
−1 [13,14]. To quantify the degree of ordering characterizing
the cation sublattice, they applied the Bragg-Williams order
parameter [15–18] S, which takes on values between 1 and 0
for ordered and completely disordered lattices, respectively.
Specifically, they defined S = rA + rB − 1, where rA is the
fraction of A cations on A-cation sites and rB is the fraction of
B cations on B-cation sites (as defined in terms of the perfectly
ordered structure). Within the Wei-Laks-Zunger formulation,
then, any property P characterizing a binary alloy sample of
mole fraction x in a given state of cation sublattice ordering S
is expressed as

P(x, S) = P(x, 0) + S2[P(0.5, 1) − P(0.5, 0)] (1)

so long as P is dominated by pair (in this case, cation atom)
interactions. Wei et al. note that while their model is accu-
rate for the case of x = 0.5, it becomes inaccurate as the
stoichiometry moves away from equal cation composition.
Recently, we extended the concept of a cation ordering Ising
model to the case of two ternary heterovalent, environmentally
friendly, sustainably sourced, earth-abundant element semi-
conductors, ZnSnN2 and MgSnN2, which have the ability to
span the visible spectrum not through traditional alloying, but
rather through the controlled introduction of varying degrees
of cation ordering [10]. We further demonstrated that the same
model accurately predicts the reported experimental measured
band-gap values for similar compounds, including ZnGeN2,
ZnSnP2, CuGaS2, and CuInS2. The Bragg-Williams order pa-
rameter can be extracted through any number of experimental
techniques, including Raman spectroscopy, x-ray diffraction,
reflection high-energy electron diffraction (RHEED), and, as
we demonstrate in this paper, scanning electron microscopy
(SEM) with a high degree of reproducibility. All data regard-
ing band gaps and measurements of S for every sample used
in this paper can be found in the Supplemental Material [19].

Our previous study focused exclusively on stoichiometric
material [10]. Since the two different cations have opposite
effects on the relative energy of the valence band, deviations

from stoichiometry should also lead to variation in the band-
gap energy, which can be combined with variable ordering
for additional tuning ability. Here, we demonstrate that this is
indeed the case, and enables the band-gap energy to not only
exceed the value corresponding to the stoichiometric equilib-
rium structure, but also provides the means to tune the band
gap, through zero, and into negative values (corresponding to
band inversion). This ability can be understood in terms of the
direct numerical relationship between S and the distribution of
different structural motifs, which has a stoichiometry depen-
dence; the Ising model enables us to predict the full range of
accessible band-gap values. We subsequently invoke the Potts
model to properly describe alloys, which can have any degree
of sublattice ordering.

However, the fundamental method we describe here also
applies to binary compounds such as GaN, and to elemental
semiconductors such as silicon and nanoporous graphene. As
we illustrate, it is then possible to accurately account for the
range of reported band-gap energies for these and other mate-
rials, without invoking phenomena such as the Burstein-Moss
effect [20,21] or band-gap renormalization [22].

II. GENERALIZED ISING MODEL FOR ARBITRARY
CATION STOICHIOMETRY

Wei, Laks, and Zunger express any lattice property P as
a series expansion using the orthonormal basis of correlation
functions of all possible class of figures (groupings of k =
1, 2, 3 . . . lattice sites) [13,14]. Following their framework of
limiting the cluster expansion to just single and pair figures,
we express a property of a lattice (that is dominated by single
and pair interactions) with a given degree of ordering and
stoichiometry as

P(x, S) = pp�p(x, S), (2)

where pp is the contribution of pair interactions to the lattice
property and �p = 〈σ0σr〉 is the spin-pair correlation func-
tion. Departing from the derivation of Wei et al., we equate
S2 with the reduced spin-pair correlation function �(r) =
[〈σ0σr〉 − 〈σ0〉2]/[〈σ 2

0 〉 − 〈σ0〉2], and rearranging we can find
�p in terms of S2 and spins

�p = S2
[〈
σ 2

0

〉 − 〈σ0〉2
] + 〈σ0〉2. (3)

In the completely disordered state (S = 0), no spins are corre-
lated, and the spin-pair correlation function reduces to 〈σ0〉2;
in the completely ordered lattice (S = 1), the spins are com-
pletely correlated and thus the spin-pair correlation function
has unity value. Thus,

�p(x, S) = S2[�p(0.5, 1) − �p(x, 0)] + �p(x, 0) (4)

which yields

P(x, S) = S2[P(0.5, 1) − P(x, 0)] + P(x, 0). (5)

Consequently, we may express the expected value of the band
gap as

Eg(x, S) = S2[Eg(0.5, 1) − Eg(x, 0)] + Eg(x, 0). (6)

Depending on the band gap in the fully disordered state
for a particular stoichiometry, as we will demonstrate, Eq. (4)
allows for the possibility to completely close the band gap,
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FIG. 1. (a) Measured band-gap energy of a series of ZnSnN2 thin films with a range of cation stoichiometries as a function of Bragg-
Williams order parameter S (plotted as S2). Symbols represent experimental values, and linear fits include the perfectly ordered (S = 1)
stoichiometric point determined in Ref. [10]. The yellow dot indicates the extrapolated end point. The dashed lines indicate physically
inaccessible values of S. Inset: Band-gap energy as a function of temperature for the two Zn0.62Sn0.38N samples with inverted bands, plotted
as a negative band-gap energy, and one sample having a nearly zero (∼10 meV) room-temperature gap. The same symbols are used as those
in the corresponding Ising model line. No features consistent with secondary phases (e.g., Zn3N2) were detected by electron diffraction during
growth. (b) Plot of the motif composition (normalized to unity) corresponding to a fully randomized cation sublattice (S = 0) as a function of
the cation stoichiometry (Zn + Sn = 1). The inset depicts the structural motif corresponding to each curve, with the central atom representing
nitrogen, the blue atoms representing tin, and the red atoms representing zinc. The numbers in parentheses indicate the corresponding number
of cation antisite defects. The color scheme is preserved in the plots of motif composition, with motifs having equal numbers of Zn and Sn
atoms indicated with a black dashed line (labeled mt-1 and mt-3) or a gray line (mt-2). Details pertaining to calculation of the motif distributions
are provided in the Supplemental Material [19].

and even force it to a negative value (corresponding to in-
version of the valence and conduction bands) by tuning S. It
is worth noting, however, that a perfectly ordered structure
(S = 1) is only achievable under balanced conditions, when
the number of A cations equals the number of B cations, and
none of them lie on anion sites (or vice versa). More generally,
the maximum achievable value of S is 2x for x � 0.5, and
2(1 − x) for x � 0.5.

In order to evaluate the predictive ability of the
stoichiometry-dependent Ising model as formulated, a series
of ZnSnN2 thin films were grown with different Zn:Sn ratios
using plasma-assisted molecular beam epitaxy (PAMBE). The
experimentally determined band gaps are plotted in Fig. 1(a)
as a function of S2. As expected, all samples with the same
stoichiometry exhibit a linear relationship between band gap
and S2, and share the S = 1 band-gap end point, confirming
the validity of this cation ordering Ising model for ternary
heterovalent materials. Furthermore, two films intentionally
grown Zn rich and with low-S values exhibit clear evidence
of inverted bands, indicated in Fig. 1(a) as negative band-gap
values and confirmed through the temperature dependence of
the magnitude of the band-gap energy [23]. A third film with
a nearly zero room-temperature band gap (∼10 meV) was
also successfully grown as part of the same series. Two films
grown with slightly Sn-rich stoichiometries are included in

Fig. 1(a) to demonstrate that the equilibrium phase stoichio-
metric end point is not in fact the maximum band-gap energy
for the material. Consequently, it is possible to tune the band-
gap energy of this semiconductor from a value significantly
in excess of 2 eV, through zero, to comparable separations of
inverted bands.

The underlying mechanism responsible for the trends evi-
dent in Fig. 1(a) is the direct correlation of the Bragg-Williams
order parameter to cation motif distributions as influenced by
stoichiometry. For ZnSnN2 there are nine types of such mo-
tifs, each of which is based upon a central N atom surrounded
by four cation atoms, as illustrated in Fig. 1(b). For the two ex-
treme stoichiometries (i.e., ZnN, SnN), only one type of motif
will exist. At intermediate stoichiometries, however, a mixture
of motifs occurs for S < 1, the precise distribution of which is
dictated by the stoichiometry in conjunction with the value of
the Bragg-Williams order parameter. In the perfectly ordered
(S = 1) ZnSnN2 lattice which, by definition, must also be
stoichiometric, only one type of motif exists the zero antisite
defect Zn2Sn2 motif (Supplemental Material Fig. 2 [19]).
However, as S is decreased, other motifs appear in directly
correlated amounts. The Zn2Sn2 motifs are neutral since the
average charge of the cations is balanced by the nitrogen
atom. The other types of motifs all have unequal numbers of
Zn and Sn atoms, and so the cation charges are not locally
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FIG. 2. The Ising model applied to example compound semiconductors. (a) Measured band-gap energy of InN as a function of order
parameter. Experimental points are identified by symbols. Upper curve: nominally stoichiometric material. Light blue solid circles from [29].
Light blue solid squares from [30]. Red cross: Data extracted from [31]. Lower curve: an indium-rich sample which exhibits inverted bands
(represented as a negative band gap). (b) Experimentally derived measured band-gap energy of GaN as a function of order parameter, including
a range of gallium-rich samples which are characterized by inverted bands. Open symbols: this work. Closed diamond: data from [32].
(c) Measured band-gap energy as a function of ordering for stoichiometric ZnO (data extracted from [33]). (d) Temperature dependence
of InN and GaN samples (preserving the same symbols) in (a) and (b) characterized by inverted bands, plotted as a negative gap. (e) Plot of the
motif-type composition (normalized to unity) corresponding to the fully randomized case (S = 0) as a function of the stoichiometry. The inset
depicts the structural motif corresponding to each distribution curve, with the green atoms representing anions and the red atoms representing
cations. The numbers in parentheses indicate the number of corresponding antisite defects.

balanced by the nitrogen atom. Motifs consisting of more
Sn than Zn atoms will therefore be positively charged, while
Zn-rich motifs will be negatively charged. In ZnSnN2 samples
with excess Sn concentration, Sn-rich motifs occur in higher
quantities than Zn-rich motifs and thus dominate the band-gap
behavior. Specifically, the nitrogen p level (and hence the
valence band) is pushed down by the Coulombic attraction
of the positively charged Sn to its counterpart anion [10,24];
thus, as more Sn-rich motifs appear with decreasing cation
ordering, the band gap will correspondingly increase. We note
that in the case of excess Sn, the corresponding weakening
of p-d repulsion (2p nitrogen states and 3d Zn states) would
also be expected to have a similar effect on the valence band.
For ZnSnN2 samples with excess Zn concentration, Zn-rich
motifs, which as result of their negative charge push up the
nitrogen p levels, will occur in larger quantities than Sn-rich
motifs, and therefore will dominate the band-gap behavior.
Consequently, the band gap will shrink, and ultimately the
valence and conduction bands will invert, as the imbalance
between Zn-rich and Sn-rich motifs pushes the nitrogen p
level (and hence the valence band) upward.

III. APPLICATION TO BINARY SEMICONDUCTORS

The Ising model framework can also be applied to binary
semiconductors, if we assign one spin to cations and the
other spin to anions. As examples, we have extracted data

for InN, GaN, and ZnO from the literature as well as from
samples previously grown using the same PAMBE technique
employed for the ZnSnN2 films. The order parameters were
calculated from either Raman spectra, RHEED, x-ray diffrac-
tion, or SEM. As can be seen in Fig. 2, each of the three
materials follows the Ising model trend predicted by Eq. (4),
including the effects of off stoichiometry. Significantly, the
range of reported band-gap values for InN, the subject of
considerable controversy and discussion in the literature [25],
is accounted for through variable ordering (i.e., a distribution
of different motifs consisting of antisite defects), without the
need for invoking the effects of degenerate electron popula-
tions [26] or oxygen contamination [27]. Further, as shown in
Fig. 2(a), there is experimental evidence that the band gap of
this material can also be tuned through zero and into negative
values corresponding to band inversion, in the same fashion
as ZnSnN2. There is a considerably larger body of literature
for GaN, making it straightforward to identify a series of
samples within one study in which separate measures of both
the band gap and the order parameter are provided. As seen
in Fig. 2(b), the same trends exist for GaN as they do for
InN (and ZnSnN2). If we extrapolate the plots to the perfectly
ordered stoichiometric case, we obtain the value of the S = 1
band gap of the material in this case, 1.60 eV, in contrast
with the generally accepted value of 3.4 eV; a similar situation
exists for ZnO [Fig. 2(c)], with the Ising model predicting an
S = 1 gap of 1.55 eV, as opposed to the accepted value of
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FIG. 3. Employing the Potts model to correctly represent a ternary alloy. (a) The three fundamental motifs for perfectly ordered,
stoichiometric InGaN. (b) Measured band-gap energy for InxGa1−xN as a function of mole fraction x and order parameter S, illustrating the
wide range of accessible band-gap values. (c) The plot in (a) recast in Cartesian coordinates, with experimental points identified. Squares: [35].
Circles: [36]. Up triangles: [37]. Down triangles: [38]. Diamonds: [39]. Note that there is a maximum value of S corresponding to each mole
fraction value, with physically unattainable values represented by dashed lines. Top inset: trend of S = 0 band gap as a function of indium
mole fraction x. Bottom inset: trend of nitrogen-rich, In-rich, and Ga-rich motifs at S = 0 for InxGa1−xN as a function of the indium mole
fraction. The motif equations for InGaN are provided in the Supplemental Material [19].

3.37 eV [28]. In Fig. 2(d), we plot the temperature dependence
of the band gap for InN and GaN samples characterized by
inverted bands.

As in the case of ZnSnN2, the trends which become ap-
parent for binary compounds within the context of the Ising
model can be explained by the motif distribution dictated by
the stoichiometry and order parameter. There are 10 types
of motifs possible in fourfold-coordinated binary materials as
illustrated in Fig. 2(e); the cation and anion charges are bal-
anced within the AB4 motifs, but this is not the case in cation-
or anion-rich motifs. The cation-rich motifs, all of which have
a central atom and are positively charged, will push down the
cation s levels and thus lower the conduction band maximum.
In contrast, the anion-rich motifs will push up the anion p
levels due to Coulombic repulsion, however, the anion p levels
are pushed down due to strong anion bonds that form between
the anions in the anion-rich motifs. For stoichiometric par-
tially ordered lattices, the highest percentage motifs are anion
rich, and thus increasingly dominate the band-gap behavior
as the order parameter decreases. For cation-rich binaries,
the cation-rich motifs dominate the band-gap behavior, which
causes the band gap to decrease and even invert for large
cation concentrations, as shown for InN in Fig. 2. Similarly,
for anion-rich binaries, the anion-rich motifs dominate the
motif distribution, and this results in an increase of the band
gap. We can also understand the quantitative differences in
behavior among the compounds in Fig. 2 from the context of
structural motifs. In ZnO, the O-O bonds in antisite motifs
are not as strong as the N-N bonds in GaN antisite motifs,
and thus the variation in the band gap for the stoichiometric
case is less for ZnO than it is for GaN. Because Ga is slightly

more electronegative than In, the Ga cation-centered motifs in
stoichiometric GaN will push down the cation s levels less
than In will for stoichiometric InN, resulting in a slightly
larger (∼280 meV) increase in the band gap with decreasing
S2 for GaN than for InN.

IV. ALLOYS AND GENERALIZATION
TO THREE OR MORE SPIN STATES

The spin-based disorder model we have presented, which
leads to Eqs. (5) and (6), can also be applied to materials
with more than two elements that may exchange sites (e.g.,
a common-anion or common-cation alloy) by generalizing
from the Ising model to the multispin Potts model [34]. The
Potts model assigns each of the q total spins a complex
vector exp(i2πσn/q) where σn = 1, 2, 3, . . . q, and reduces to
the Ising model when q = 2. The derivation in Eqs. (1)–(4)
makes no assumption about the number of spin states, and
therefore applies directly to the more general Potts model.
Thus, even with multiple elements that can exchange sites in
a lattice, any lattice property (such as band-gap energy) which
is dominated by pair interactions will follow Eq. (3). As an
illustration, we consider the alloy InxGa1−xN. We begin by
defining the order parameter as S = (ra+rb+rc)

2 − 1
2 , where ra

is the fraction of In atoms on In sites, rb is the fraction of Ga
atoms on Ga sites, and rc is the fraction of N atoms on N sites.
The terminal case of S = 1, corresponding to the zero-field
state in the Potts model, is comprised of equal numbers of
In, Ga, and N atoms, not the charge-balanced stoichiometric
composition InxGa1−xN. This necessitates that a minimum of
three motifs, shown in Fig. 3(a), must be used to describe the
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FIG. 4. (a) Motif-driven Ising model analysis applied to silicon, with experimental points extracted from the literature. The inset illustrates
how silicon atoms and vacancies represent the two spin states within the Ising model. Hence, S = 1 corresponds to a lattice with equal numbers
of silicon atoms and vacancies in a perfectly ordered structure, with a predicted band gap of 3.1 eV. Data extracted from [40] (solid upward
triangle), [41] (solid square), [42] (solid circle), [43] open diamond, [44] (open square), and [45] (open downward triangle). (b) A similar
analysis applied to nanoporous graphene sheets (data extracted from [46]). The solid circle represents the S = 0 vacancy-free case [47].
(c) Plot of the motif distribution for graphene with a range of vacancy concentrations corresponding to the fully randomized (S = 0) case. The
inset defines the eight possible structural motifs, with vacancies represented by white circles. The extreme represented by zero carbon fraction
would be a nonexistent layer, and the other extreme is a graphene ribbon having no vacancies. (d) Ising model applied to the hybrid perovskite
MAPbI3. Data extracted from [48]. (e) Band gap of InSb (n type, ∼6 × 1015 cm−3 [49] and p type, ∼1018 cm−3 [50]) as a function of S2.
The additional point (red square) is a commercially obtained bulk sample with n = 1.9 × 1016 cm−3. The inset shows the band gap for the
commercial sample as a function of temperature.

alloy since any number less than three will not result in the
correct composition for the S = 1 state.

Figure 3 shows the results of plotting the band gap of
InGaN as a function of S2 for a range of mole fractions; values
were extracted from the literature, as well as from films pre-
viously grown using the same PAMBE system later employed
for ZnSnN2. Consistent with what is expected from applying
the Ising model to two-atom disordered lattices, the band gap
of InGaN across a range of mole fractions follows a linear
trend with S2 as predicted by Eq. (4), and hence is strongly
influenced by the distribution of structural motifs dictated by
specific combinations of S and x. We note that the extrapolated
value of the perfectly ordered, stoichiometric, S = 1 struc-
ture corresponds to a negative band gap, caused by the high
concentration of the InGa motif (characterized by an overall
positive charge), which pushes down the conduction band. All
of the compositions in Figs. 3(b) and 3(c) have a 50% nitrogen
composition, and so relative to the ordered S = 1 state (in
the Potts model this corresponds to 1:1:1 In:Ga:N) they are
nitrogen rich and hence dominated by nitrogen-rich motifs.
As in the binary materials, the nitrogen-rich motifs will push
nitrogen p levels lower due to the stronger N-N bonds, and
cause the band gap to increase with increasing disorder.

The top inset of Fig. 3(c) shows the variation of the S =
0 Eg as a function of the mole fraction x; the S = 0 Eg

increases with x initially, until it peaks at x = 0.5, and then
decreases until x = 1. This variation can be understood by
considering the changing motif percentages at S = 0 as x

changes. As shown in the bottom inset of Fig. 3(c), at x = 0
(GaN) there are equal percentages of Ga-rich and N-rich
motifs, and as x increases the fraction of nitrogen-rich motifs
increases, which causes the band gap to increase. The maxi-
mum fraction of nitrogen-rich motifs occurs at x = 0.5, which
corresponds to the largest S = 0 Eg band gap. As x increases
to 1, the fraction of nitrogen-rich motifs decreases causing the
band gap to decrease.

Consequently, this alloy (and any such alloy, for that mat-
ter) has a profoundly larger range of band-gap energies than
is presently appreciated, accessible through combined tuning
of cation ordering and alloy composition. This also provides
an alternative explanation for the wide variation in reported
emission wavelengths in InGaN for ostensibly similar mole
fractions.

V. ELEMENTAL AND HYBRID TERNARY
SEMICONDUCTORS

Returning to the Ising model, the basic framework can also
be applied to elemental semiconductors if one spin is assigned
to atoms of the element and the other spin to vacancies. Thus,
for silicon in the S = 1 case, one of the atoms in the two-
atom basis of the diamond lattice is replaced by a vacancy
[Fig. 4(a), inset]. The motifs in the vacancy model framework
for silicon then map to the same motifs as the binary materials,
with the cation replaced by a Si atom and the anion by a
vacancy, and thus exhibit the same band-gap dependencies
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as a function of S and stoichiometry [Fig. 4(a)]. For single-
layer graphene in the S = 1 case, one of the atoms in the
two-atom basis of the planar hexagonal unit cell is replaced
by a vacancy [Fig. 4(b), inset]; the carbon atoms are threefold
coordinated and thus there are only eight possible motif types,
as illustrated in Fig. 4(c). In both materials, vacancies cause
the band gap to increase, and so as seen in Fig. 4 the extrapo-
lated S = 1 cases for silicon and graphene have a larger band
gap than the vacancy-free S = 0 end points. Consequently,
both silicon and graphene (specifically nanoporous graphene)
follow the predictions of Eq. (4) when vacancies are properly
accounted for.

It should be noted that the solid triangles and open squares
in Fig. 4(a) correspond to samples identified as amorphous
silicon (a-Si) and all other points (solid squares, solid circles,
open diamonds, open downward triangle) in Fig. 4(a) corre-
spond to samples identified as porous silicon (p-Si). While
these types of silicon have been previously treated separately,
they both fit within the framework of the vacancy-based Ising
model. In fact, there are reports of porous silicon, which
has been regarded as having a higher degree of order than
amorphous Si, exhibiting signatures of amorphous silicon in
Raman spectra [51,52]. Additionally, while a-Si shows no
discernible order, signs of short-range tetrahedral ordering
of the diamond lattice have been observed in a-Si, and a-
Si is generally regarded to have a latticelike structure [53].
Furthermore, many features of a-Si point to the presence of
vacancies: a-Si is less dense than crystalline silicon; the av-
erage atomic coordination in amorphous silicon is less than
4 [54], and evidence points to the main defect in amorphous
silicon being a threefold-coordinated Si atom with a dangling
bond [53,54]. Consequently, viewed from the perspective of
structural motifs which incorporate vacancies, there is no
physical difference between amorphous and porous silicon in
general, as indicated by the Ising model relationship. It also
suggests that a more overt pathway to tuning the band-gap
energy of silicon (and nanoporous graphene, as well as other
elemental semiconductors) exists by the controlled introduc-
tion of disorder in terms of vacancies or potentially impurity
atoms, at either doping or alloy levels.

The Ising model spins can also represent whole molecules
on a lattice site, such as in hybrid perovskites, which are
the focus of considerable recent interest for potential appli-
cations in photovoltaics. Figure 4(d) shows the results of such
an analysis for methylammonium lead iodide (MAPbI3) us-
ing order-parameter and band-gap values extracted from the
literature [48]. In this case, one spin represents the methylam-
monium (CH3NH+

3 , or MA) molecule and the second spin
represents the Pb atom. As can be seen in Fig. 4(d), this
material also follows the linear trend predicted by Eq. (4).
Consequently, an Ising model of disorder can be invaluable
in predicting the band gap of such materials for purposes of
tuning the property to the precise value desired for a particular
device application, and assist in the determination of which
crystal processing parameters might be responsible for any
observed sample-to-sample variation.

A final note is in order regarding the fitting of experi-
mentally determined band-gap energies. As discussed, there

are typically a wide range of reported values for any given
material. This was noted by Burstein [20] and separately by
Moss [21] for the particular case of InSb, with the varia-
tion attributed to significant band-filling effects arising from
degenerate doping and a very light electron effective mass.
However, the Burstein-Moss effect leads exclusively to an
apparent increase in the band gap as the carrier concentra-
tion increases, and thus is insufficient to properly account
for the full range of reported values. Subsequently, band-gap
renormalization was proposed [22], which has the effect of
reducing the electronic band gap through a rigid shift of either
the conduction band, the valence band, or both [55]. Conse-
quently, the two effects, arising from the same phenomenon
(degenerate carrier populations), shift the band gap in opposite
directions, and a mixture of the two can be used to match
an experimentally observed trend of band-gap variation with
carrier concentration. Both effects have been the subject of
numerous investigations [56–59]. In this work, neither effect
is necessary to match the experimentally observed band-gap
values, including InSb [Fig. 4(e)].

VI. CONCLUSIONS

We have presented a spin-based model perspective on the
physical mechanism which controls the value of band-gap
energy in any semiconductor material, specifically, the variety
and numerical distribution of structural motifs which define
a particular lattice. The validity of the approach has been
verified using experimentally determined values of band-gap
energy and stoichiometry-dependent Bragg-Williams order
parameter for a variety of different semiconductors, including
the ternary heterovalent compound ZnSnN2, binary com-
pounds InN, GaN, and ZnO, the representative alloy InGaN,
Si, graphene and the hybrid perovskite MAPbI3. Conse-
quently, focusing on exerting control over structural motif
composition enables the realization of a previously (unap-
preciated) range of accessible band-gap energies, and an
alternative route to engineering the critical parameter of a
semiconductor for electronic device applications.
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