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Susceptibility anisotropy and its disorder evolution in models for Kitaev materials
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Mott insulators with strong spin-orbit coupling display a strongly anisotropic response to applied magnetic
fields. This applies in particular to Kitaev materials, with α-RuCl3 and Na2IrO3 representing two important
examples. Both show a magnetically ordered zigzag state at low temperatures, and considerable effort has been
devoted to properly modeling these systems in order to identify routes towards realizing a quantum spin liquid.
Here, we investigate the relevant Heisenberg-Kitaev-� model primarily at elevated temperatures, focusing on the
characteristic anisotropy between the in-plane and out-of-plane uniform susceptibility. For α-RuCl3, we find that
the experimentally observed anisotropy, including its temperature dependence, can be reproduced by combining
a large off-diagonal �1 coupling with a moderate g-factor anisotropy. Moreover, we study in detail the effect of
magnetic dilution and provide predictions for the doping evolution of the temperature-dependent susceptibilities.
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I. INTRODUCTION

Spin-orbit coupling has moved center stage in the field of
quantum magnetism primarily because it generates new states
of matter, with spin ices and Kitaev spin liquids as prominent
examples [1,2]. Sizable spin-orbit coupling also renders the
magnetic-field response of magnets highly nontrivial, leading
to strongly anisotropic magnetization processes, novel field-
induced states that may feature complex spin textures, and
associated quantum phase transitions [3–9].

Following Kitaev’s seminal paper [2] on a solvable spin-
liquid model on the honeycomb lattice and the subsequent
proposal for realizing Kitaev interactions in particular ex-
change geometries [10,11], a number of layered honeycomb
magnets have been synthesized and investigated with the aim
to find spin-liquid phases. Among those materials, A2IrO3

(A = Na, Li) and α-RuCl3 have been studied in considerable
detail [12–20]: All of them order antiferromagnetically at low
temperature, but display a number of anomalies. Many of
these anomalies have been attributed on phenomenological
grounds to proximate or field-induced spin-liquid behavior,
such as excitation continua in neutron scattering [21,22]
and the approximately half-quantized thermal Hall effect
[23] observed in α-RuCl3. In the discussion of spin liquid-
ity, randomness due to crystalline defects or substitutions is
an additional relevant ingredient: The compound H3LiIr2O6

has been suggested as a quantum spin-liquid candidate, but
is likely heavily disordered [24,25]. For both Na2IrO3 and
α-RuCl3, magnetic dilution has been proposed as a route
to suppress bulk magnetic order, and α-(Ru1−xIrx )Cl3 for
x � 0.22 has been argued to show spin-liquid-like signatures
[26,27].

Remarkably, there is still no established consensus about
the proper microscopic modeling of the various Kitaev

materials because (i) the parameter space spanned by all
symmetry-allowed interactions, including second-neighbor
and third-neighbor couplings, is huge, and (ii) results from ab
initio calculations tend to depend sensitively on structural in-
put and computational details. Moreover, partially conflicting
results have been reported based on fits of the experimental
data.

In this paper, we focus on modeling a particularly in-
triguing and, at the same time, simple magnetic property of
Kitaev materials, namely, the susceptibility anisotropy. This
anisotropy is huge in α-RuCl3, with the response for in-plane
fields being much larger than that for out-of-plane fields, and a
consistent and detailed modeling is lacking. We employ both
high-temperature expansions and classical Monte Carlo (MC)
simulations to extract the magnetic susceptibilities at elevated
temperatures, and we use MC to track these as function of
temperature across the magnetic ordering transition. At low
temperatures, our results are shown to agree with those from
spin-wave calculations for the same models, provided that do-
main averaging is properly taken into account. We argue that
most of the measured anisotropy data in α-RuCl3 are consis-
tent with the presence of a sizable symmetric off-diagonal �1

interaction combined with a moderate g-factor anisotropy. By
contrast, the �1 interaction is small in Na2IrO3. To describe
diluted Kitaev materials, we perform MC simulations for the
spin models with a fixed number of randomly distributed
vacancies and extract the magnetic properties as a function
of dilution level. We show that the low-temperature suscepti-
bilities are strongly enhanced, displaying Curie-like tails; in
the presence of a large �1 interaction this applies in particular
to the in-plane susceptibility. We make concrete predic-
tions for the doping evolution of the anisotropy at different
temperatures.
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The remainder of the paper is organized as follows:
Section II provides a quick overview of the published experi-
mental results concerning magnetic anisotropies in α-RuCl3

and Na2IrO3 and their diluted versions. In Sec. III, we
introduce the relevant microscopic models and simulation
techniques. Section IV then shows the numerical results for
the clean, i.e., undiluted, case. Section V is devoted to the
magnetically diluted systems. A concluding discussion closes
the paper in Sec. VI. The effects of the so-called �′

1 coupling
are discussed in the Appendix.

II. REVIEW OF EXPERIMENTAL STATUS

We focus on the honeycomb Mott insulators α-RuCl3 and
Na2IrO3, for which a number of experimental results are
available [3,28]. Both compounds display a low-temperature
transition towards an antiferromagnetically ordered state of
the zigzag type. In both cases, diluted sister compounds have
been possible to synthesize by substituting magnetic Ru3+

and Ir4+ by nonmagnetic Ir3+ (Refs. [26,29,30]) and Ti4+

(Ref. [31]), respectively.

A. α-RuCl3

In α-RuCl3, the out-of-plane susceptibility χ⊥ for fields
along the direction perpendicular to the honeycomb plane
is significantly smaller than the in-plane susceptibility χ‖
[4,15,32,33]. Furthermore, this anisotropy is strongly tem-
perature dependent [34]: The ratio between in-plane and
out-of-plane susceptibility χ‖/χ⊥ is around 1.5 at room tem-
perature and increases up to a maximum of around 9–10 close
to the Néel temperature TN � 7 K in the most recent samples.
The anisotropy ratio again decreases in the ordered phase and
levels off at around 5–8 at the lowest available temperatures
[35]. Note that these values are sample dependent, likely as
a consequence of stacking faults [36]: Earlier samples with
two transitions at 8 and 14 K exhibit a significantly less
pronounced anisotropy [4,32]; for instance, in the ordered
phase, the anisotropy ratio in these early samples may be
up to 50% smaller than in the more recent single-transition
samples. Microscopically, this may arise either from �1 (and
possibly �′

1) interactions modified by stacking faults, or by
anisotropic interlayer interactions being different for different
stackings [37].

The anisotropic susceptibility leads to a corresponding
anisotropy in the Curie-Weiss temperatures for the differ-
ent field directions. They have been estimated as �CW

‖ �
+(30–60) K for in-plane fields and �CW

⊥ � −(150–200) K for
out-of-plane fields, depending on the sample and the particular
fitting range [4,15,34].

B. α-(Ru1−xIrx)Cl3

Upon substituting Ru3+ with nonmagnetic Ir3+, current
samples with 0 < x � 0.1 show again two transition tem-
peratures, indicating the presence of stacking faults [26].
Increasing the doping concentration x suppresses both Néel
temperatures. The magnetic anisotropy shows a peculiar x
dependence: The in-plane susceptibility χ‖ increases with x at
low temperatures, but decreases with x at high temperatures.
The out-of-plane susceptibility χ⊥, on the other hand, displays

at high temperatures the same decreasing trend with x as χ‖,
but exhibits at low temperatures a nonmonotonic behavior as a
function of x [29]: χ⊥ increases steeply with x for small dop-
ing, decreases in an intermediate regime up to x = 0.1, and in-
creases again for x > 0.1. The strong increase of χ⊥ for small
doping leads to a reduced anisotropy at low temperatures.

Similarly, for small doping, the magnitude of the Curie-
Weiss temperature for out-of-plane fields strongly decreases
with increasing x, while the in-plane Curie-Weiss temperature
only moderately decreases [29].

C. Na2IrO3

Na2IrO3 displays a weaker and qualitatively different
susceptibility anisotropy as compared to α-RuCl3. For all
measured temperatures, the in-plane susceptibility χ‖ is sig-
nificantly smaller than the out-of-plane susceptibility χ⊥, with
an anisotropy ratio χ‖/χ⊥ of around 0.6 at room tempera-
ture, which decreases to around 0.4 at low temperatures, with
a weak dip at the Néel temperature TN � 15 K [12,38,39].
The Curie-Weiss temperatures for the two different directions
have been estimated as �CW

‖ � −(150–200) K and �CW
⊥ �

−(30–50) K [40].

D. Na2(Ir1−xTix)O3

Upon substituting Ir4+ with nonmagnetic Ti4+, a hysteresis
between field-cooled and zero-field-cooled susceptibilities is
found at low temperatures, characteristic of spin-glass behav-
ior [31]. The freezing temperature decreases with increasing
x; at the same time, the low-temperature susceptibility steeply
increases. The high-temperature part can be fitted to Curie-
Weiss behavior, with the magnitude of the Curie-Weiss
temperature decreasing substantially with increasing x. An
experimental investigation of the susceptibility anisotropy is
currently lacking.

III. MODEL AND MONTE CARLO SIMULATION

As a minimal model to understand the novel physics of
the Kitaev materials, we consider the extended Heisenberg-
Kitaev-� (HK�) model [11,41],

H =
∑
〈i j〉γ

[
J1 �Si · �S j + K1Sγ

i Sγ

j + �1
(
Sα

i Sβ
j + Sβ

i Sα
j

)]

+ J3

∑
〈〈〈i j〉〉〉

�Si · �S j − gαhα

∑
i,α

Sα
i . (1)

Here, J1,3 is the first-neighbor and third-neighbor Heisenberg
coupling, and K1 and �1 are the first-neighbor Kitaev and
off-diagonal symmetric couplings, respectively. 〈i j〉γ denotes
the first-neighbor γ bond, with γ = x, y, z, and 〈〈〈i j〉〉〉 denotes
third neighbors along opposite points of the same hexagon.
(α, β, γ ) = (y, z, x), (z, x, y), and (x, y, z) for the x, y, and z
bonds, respectively. The magnetic field is �h := μBμ0 �H , with
μB the Bohr magneton, and gα are the diagonal components
of the effective g tensor. The symmetry-allowed nearest-
neighbor couplings also include an additional �′

1 term which,
however, is believed to be small. We defer its discussion to the
Appendix. Finally, we note that we neglect distortions which
would spoil the C∗

3 symmetry of combined spin and lattice
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TABLE I. Minimal spin models for α-RuCl3 and Na2IrO3 used in this paper and the resulting Néel temperatures TN and Curie-Weiss
temperatures �CW

‖ and �CW
⊥ . The Néel temperatures have been estimated from the MC simulations by replacing S2 → S(S + 1) with S = 1/2;

see text. With this replacement, the Curie-Weiss temperatures obtained from fits of the high-temperature MC data agree with the results from
the high-temperature expansion.

Model Material J1 (meV) K1 (meV) �1 (meV) J3 (meV) TN (K) �CW
‖ (K) �CW

⊥ (K)

1 α-RuCl3 −0.5 −5.0 2.5 0.5 9 22 0
2 α-RuCl3 −1.7 −6.6 6.6 2.7 34 30 −28
3 Na2IrO3 0 −17 0 6.8 48 −10 −10

rotations in Eq. (1). For α-RuCl3, such distortions are absent
in the rhombohedral R3̄ structure, which is most likely real-
ized below the structural transition at 100–150 K [32,42,43].

A large number of different parameter sets have been sug-
gested to be relevant for the Kitaev materials α-RuCl3 and
Na2IrO3, and we refer the reader to Ref. [44] for a (partial)
overview and discussion. In this paper, we shall employ three
different minimal models displayed in Table I: models 1 and
2 feature both large Kitaev and �1 couplings and have been
proposed to describe α-RuCl3 [41,44–48]. By contrast, model
3 has vanishing �1 and has been suggested as a simple model
for Na2IrO3 [46,49–51].

We simulate Eq. (1) using classical MC simulations on
lattices of linear size L and periodic boundary conditions. Our
spins are then replaced by classical vectors of fixed length
S. The honeycomb lattice is spanned by the primitive lattice
vectors �a1(2) = (3/2,±√

3/2), with each unit cell containing
two sites, and thus N = 2L2, where N is the total number of
sites. Depletion is simulated by randomly removing a fraction
x of spins, with x varying between 5% and 30%, with the total
number of spins Ns = (1 − x)N . We perform equilibrium MC
simulations using single-site updates with a combination of
the heat-bath and microcanonical (or over-relaxation) meth-
ods. For simulations at high temperatures, the simulations
reach equilibrium quickly and tens of thousands of MC steps
per spin are sufficient to evaluate the thermal averages. Disor-
der averages are taken over Nrl samples, with Nrl ∼ 100.

IV. RESULTS FOR THE CLEAN LIMIT

A. Ordering temperature

The classical limit of the nearest-neighbor Heisenberg-
Kitaev model for �1 = J3 = 0 and �h = 0 was previously
investigated in Refs. [52,53]. The results in Refs. [52,53]
show two thermal transitions upon cooling from the high-
temperature paramagnetic phase to the ordered zigzag phase.
At Tu, the system enters a critical phase with power-law spin
correlations, and at Tl < Tu, the zigzag state is reached. This
unusual behavior manifests itself, for instance, in a maximum
of the specific heat, or magnetic susceptibility, above both
Tl and Tu. There is a well-defined crossing point in ξ (T )/L
at Tl for different system sizes, where ξ (T ) is the zigzag
correlation length, below which long-range order appears. The
existence of the critical intermediate phase has been related
to the behavior of the two-dimensional six-state clock model
[54], given that the ordered state of the Heisenberg-Kitaev
model is sixfold degenerate. In the presence of a weak inter-
layer exchange coupling, the critical phase disappears and Tl

coincides with TN, the ordering temperature [55].

The �1 term does not break the C∗
3 symmetry and hence

preserves the degeneracy of the six zigzag domains. However,
the accidental continuous degeneracy of the moment direction
(at T = 0) is lifted for �1 > 0 [44,50,56,57]. As shown in
Figs. 1(a) and 1(b), the specific heat for the HK� model
displays a maximum with weak L dependence above the tran-
sition temperature. This is analogous to the behavior of the
Heisenberg-Kitaev model [52,53], suggesting that a critical
phase above the ordering temperature is still present. Since
the existence of this critical phase is restricted to the purely
two-dimensional case, we will not investigate it further and
simply assume that TN = Tl [55].
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FIG. 1. (a)–(c) Specific heat cv and (d)–(f) zigzag correlation
length ξ as a function of temperature T for (a),(d) model 1, (b),(e)
model 2, and (c),(f) model 3, and different linear lattice sizes
L. The vertical dashed line marks the position of the ordering
temperature TN.
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For the K1-J3 model, shown in Fig. 1(c), the specific-
heat peak approximately coincides with the crossing point in
ξ (T )/L, suggesting that the critical phase is absent in this
model. This may be due to the fact that the mechanism for the
stabilization of zigzag order is different in this case [44]. In
particular, there is a U(1) degeneracy of the classical ground
states for each zigzag propagation direction, in contrast to
the situation in the generic HK� model. If ones assumes a
second-order transition and attempts finite-size scaling of the
data in Figs. 1(c) and 1(f), using either Ising or three-state
Potts critical exponents, one does not get a good data collapse.
This may either suggest a weak first-order transition, similar
to, e.g., the situation in the six-state Potts model [58], or
the presence of a critical phase in a much reduced interval.
Deciding between these scenarios is beyond the scope of this
work.

To extract the ordering temperature TN, we adopt a prag-
matic approach, which works well for moderate system sizes,
and look for crossing points in the curve ξ (T )/L for different
system sizes, where ξ (T ) is the zigzag correlation length.
The results are displayed in Figs. 1(d)–1(f), from which we
extract kBTN/S2 = 1.00(5) meV, kBTN/S2 = 3.9(1) meV, and
kBTN/S2 = 5.46(6) meV, for the models 1, 2, and 3, respec-
tively.

We may contrast these ordering temperatures with the ex-
perimentally measured Néel temperatures. As we demonstrate
explicitly when comparing our MC data with the results from
the high-temperature expansion below, at high temperatures,
quantum fluctuations amount to an effective energy rescaling,
which can be incorporated by replacing S2 → S(S + 1). In
this way, a simple estimate of the Néel temperatures for S =
1/2 can then be obtained from the classical MC simulations;
see Table I. In the case of model 1, which is assumed to be
relevant to α-RuCl3 [44,48], we find TN ∼ 9 K for S = 1/2,
which is in the range of the experimentally reported values
[4,15–18,21,22,32,34]. A similar exercise for models 2 and 3
produces TN ∼ 34 K and TN ∼ 48 K, respectively, which are
both unrealistically high [12,13,38].

B. Susceptibilities and Curie-Weiss temperatures

From the MC data, we calculate the uniform magnetic
susceptibilities as

χαβ (T ) = ∂Mα

∂hβ

= gαgβ

Ns

T
〈σασβ〉, (2)

where 〈·〉 denotes the MC average, Mα = gα〈σα〉 is the
uniform magnetization, and σα = N−1

s

∑
i Sα

i , with α, β ∈
{x, y, z}. Because the ordered state carries no uniform mo-
ment, we do not subtract the term gαgβ〈σα〉〈σβ〉, which we
expect to go to zero in the thermodynamic limit. In the linear-
response limit of Eq. (2), the g factors do not enter the MC
simulations directly, appearing only as prefactors.

In α-RuCl3, for example, the cubic axes point along
nearest-neighbor Ru-Cl bonds [3]. For convenience, we take
the crystallographic a and b axes along the directions [112̄]
and [1̄10], respectively, defining the honeycomb plane. The
direction perpendicular to this plane is labeled as the [111]
direction. These three directions form a basis in which the
susceptibility tensor is diagonal. Projecting Eq. (2) onto an

in-plane direction then defines the in-plane susceptibility,

χ‖ = χzz − χxz. (3)

Here, we have assumed that the three bond directions are
equivalent, thus rendering only two independent components
of the tensor susceptibility in Eq. (2): χzz and χxz. Anal-
ogously, projecting the susceptibility tensor onto the [111]
direction perpendicular to the honeycomb layer gives the out-
of-plane susceptibility,

χ⊥ = χzz + 2χxz. (4)

For an isotropic g tensor, we obtain χxz �= 0 only if �1 �= 0,
and thus the anisotropy in the susceptibility can be traced back
to the off-diagonal coupling �1. In Ref. [44], it was pointed
out that the �1 term alone, without any g-factor anisotropy, can
lead to a ratio χ‖/χ⊥ ∼ 3–4 at low temperatures, i.e., deep in
the ordered zigzag phase. Note that these values correspond to
the susceptibilities of the respective thermodynamically stable
finite-field single-domain state. In α-RuCl3 such field-driven
domain selection only happens for fields above 2 T [22]; at
smaller fields, typically all zigzag domains contribute to the
susceptibility, with relative weights that depend on the sample
[35].

1. High-temperature expansion

To get started, it is useful to consider a high-temperature
series expansion of the model in Eq. (1), which we link both
to experiments and to the MC simulations. The leading cor-
rection to the Curie susceptibility is given by [34,41,59]

χ‖ = g2
‖

c

3T

(
1 + �CW

‖
T

)
+ O(T −3), (5)

χ⊥ = g2
⊥

c

3T

(
1 + �CW

⊥
T

)
+ O(T −3), (6)

with the constant

c =
{

S(S + 1) for quantum spins,

S2 for classical spins,
(7)

and where g‖ (g⊥) is the g factor along an in-plane
(out-of-plane) direction. The asymptotic Curie-Weiss tem-
peratures, defined as χ−1

‖,⊥(T ) ∼ T − �CW
‖,⊥ + O(T −1), are

given by

�CW
‖ = − c

3
[3(J1 + J3) + K1 − �1], (8)

�CW
⊥ = − c

3
[3(J1 + J3) + K1 + 2�1]. (9)

These expressions explicitly show that an intrinsic anisotropy
in the model can be traced back to the �1 term.

2. MC results

In Figs. 2(a)–2(c), we plot the out-of-plane and in-plane
susceptibilities measured in the MC simulations together
with the high-temperature results of Eqs. (5) and (6), us-
ing c = S2. For model 3, we obtain χ‖ = χ⊥ [see Fig. 2(c)]
since there is no intrinsic anisotropy for �1 = 0. As in the
specific-heat curves in Fig. 1, the maximum in the sus-
ceptibility curves (more visible in χ‖) occurs above TN.
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FIG. 2. Out-of-plane susceptibility χ⊥ (black) and in-plane sus-
ceptibilities χ‖ (red) for (a) model 1, (b) model 2, and (c) model 3,
as a function of temperature T . Susceptibility anisotropy ratio χ‖/χ⊥
in units of (g‖/g⊥)2 for (d) model 1, (e) model 2, and (f) model 3 as
a function of temperature T . (a)–(c) MC results on an L = 24 lattice
in units of g2

‖ and g2
⊥, displaying the g-factor independent intrinsic

anisotropy arising from the �1 interaction in (a) and (b). Inset:
Comparison between MC results (full lines) and high-temperature
series expansion (dashed lines) in a log-log scale, using c = S2. The
vertical dashed line marks the position of the ordering temperature
TN. (d)–(f) Susceptibility anisotropy ratio χ‖/χ⊥ for two values of
the ratio (g‖/g⊥)2 from the data in (a)–(c). We considered (d),(e)
g‖ = 2.3 and g⊥ = 1.3 and (f) g‖ = 1.9 and g⊥ = 2.7.

At very high T , we recover Curie’s law, whereas the low-
temperature susceptibilities become essentially constant as
expected for an antiferromagnetic state. We find the finite-
size effects for these susceptibility curves to be small, and
the L = 24 result is representative of the thermodynamic
behavior.

Reassuringly, the susceptibility anisotropy found at the
lowest temperatures in the MC simulation [see Fig. 2(a)]
essentially agrees with that found for the same model from
T = 0 spin-wave calculations [44]. For this comparison, it
is important to notice that the MC simulation, performed
in the linear-response limit, averages over all zigzag do-
mains, whereas the spin-wave calculation is performed for
a particular domain. The results of both agree once do-
main averaging in the spin-wave calculation is properly
performed.

3. Comparison to experiments on α-RuCl3

For models 1 and 2 in Table I, which are thought to be rel-
evant for α-RuCl3, we find that χ‖ > χ⊥ for all temperatures
we consider, with the maximum value of (χ‖/g2

‖)/(χ⊥/g2
⊥)

close to 3.3 (model 1) or 2.0 (model 2) in the paramagnetic
regime just above TN; see Figs. 2(d) and 2(e). This is smaller
than the values for χ‖/χ⊥ observed in α-RuCl3 experiments,
indicating that either (i) the present models have to be signifi-
cantly adapted [34] or (ii) the observed magnetic anisotropy
has further extrinsic contributions arising from a g-factor
anisotropy. Since, in particular, model 1 (or slight modifica-
tions thereof [37]) is found to describe well many properties
of α-RuCl3 at low temperatures [3,60], we consider it likely
that anisotropies in the g factor are present due to a trigonal
crystal field and should be taken into account. Further effects
arising from a �′

1 interaction are discussed in the Appendix.
Previous work [57,61,62] suggested that g⊥ � 1.3 and

g‖ � 2.3 at low T . In Figs. 2(d) and 2(e), we explore the
effects of including these anisotropic g factors, assuming that
their temperature dependence is small. For model 1 (model 2),
this gives χ‖/χ⊥ ≈ 3.3 (3.7) at T � 40c meV/kB � 350 K
for S = 1/2. Close to the transition to the zigzag phase,
we obtain χ‖/χ⊥ ≈ 10 (6.4), whereas at low temperature,
χ‖/χ⊥ ≈ 7.5 (5). Overall, model 1 provides a satisfactory
description of the experimental trend, even if the anisotropy
at room temperature is too large. Part of this disagreement
may be due to the fact that the single-transition samples—
incidentally, those samples which agree quite well with model
1 at low and intermediate temperatures—have a first-order
structural transition between 100 and 150 K, which has a siz-
able effect on the out-of-plane susceptibility [29,34]. It is thus
possible that the high-temperature phase requires a different
modeling, especially of χ⊥. In the Appendix, we demonstrate
that inclusion of a small positive �′

1 may further improve the
overall agreement with the experimental data.

We note that a previous attempt [34] of fitting α-RuCl3

model parameters from high-temperature susceptibilities us-
ing a nearly isotropic g factor [63] yielded large values for
the �1 coupling of around 30 meV. Since the g factor enters
quadratically in the susceptibility [see Eq. (2)], the suscepti-
bility anisotropy is very sensitive to a g-factor anisotropy. As
shown above, with moderate g anisotropy, the experimental
data can be described with moderately large �1.

For T � 4TN, the asymptotic high-temperature expansion
describes well the MC data; see the insets of Figs. 2(a)–
2(c). The resulting anisotropic Curie-Weiss temperatures are
�CW

‖ = 2.5c meV/kB and �CW
⊥ = 0 (model 1), and �CW

‖ =
3.4c meV/kB and �CW

⊥ = −3.2c meV/kB (model 2). While
the signs of the Curie-Weiss temperatures (mostly) agree with
the experimental results [4,15,34], the absolute values for
S = 1/2 as displayed in Table I are too small, in particular in
the case of �CW

⊥ . As with the high-temperature susceptibility
anisotropy, this discrepancy may be tied to the fact that χ⊥ is
particularly sensitive to the first-order structural transition.

We can contrast these result with an effective Curie-Weiss
temperature [59] obtained by performing a linear fit of the
inverse susceptibility in a finite-temperature interval, as done
in experimental analyses. We choose the temperature inter-
val 20c meV/kB � T � 40c meV/kB, which corresponds to
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175 K � T � 350 K for S = 1/2, similar to the one employed
in Ref. [34]. In this way, we obtain �CW

‖ = 2.1(1)c meV
and �CW

⊥ = −0.3(1)c meV for model 1, whereas for model
2, we get �CW

‖ = 2.0(1)c meV and �CW
⊥ = −4.5(1)c meV.

Thus, the magnitude of the effective �CW
‖ (�CW

⊥ ) decreases
(increases) with decreasing temperature. Note that the tem-
perature dependence of the effective Curie-Weiss temperature
is enhanced in model 2, which can be traced back to the larger
value of TN in this case.

4. Comparison to experiments on Na2IrO3

Without any g-factor anisotropy, model 3, which was pro-
posed as a minimal model for Na2IrO3, does not show any
anisotropy in the susceptibility data; see Fig. 2(c). However,
previous susceptibility measurements [38] pointed to a signifi-
cantly anisotropic g factor, suggesting g⊥ � 2.7 and g‖ � 1.9.
Using these estimates, the resulting susceptibilities in model 3
are shown in Fig. 2(f). The corresponding ratio χ‖/χ⊥ � 0.5
roughly agrees with the experiments in Na2IrO3 [38], support-
ing the view that the �1 term is likely small in this compound.

V. EFFECTS OF DILUTION

We now move to the evolution of the magnetic anisotropy
with magnetic dilution by randomly removing a fraction x
of spins. Because the HK� model is frustrated, we expect
the combination of randomness and frustration to generically
lead to a spin-glass ground state [31,55,64–67]. In strictly
two spatial dimensions, the freezing temperature is zero [68].
Studying the thermodynamic glass transition thus requires a
detailed description of the interlayer coupling [37], and we
thus leave this for future work. Here, our focus will be ex-
clusively on the disorder evolution of the uniform magnetic
susceptibility and its anisotropy.

A. Heisenberg limit and Curie tail

As a warmup, let us consider the nearest-neighbor Heisen-
berg limit, J1 > 0 and K1 = �1 = J3 = 0. We then have a Néel
state as ground state, while long-range order is absent for finite
T > 0. In the classical limit, the uniform susceptibility in the
low-temperature limit is [69] χ (x = 0) = g2/(9J1) + O(T ),
which agrees with our numerical simulations; see black dot in
Fig. 3.

As we turn on the dilution, the asymptotic Curie-Weiss
temperature in Eqs. (8) and (9) is now reduced as �CW(x) =
(1 − x)�CW(0), where �CW(0) = −cJ1 corresponds to the
x = 0 value and c = S2 [c = S(S + 1)] for classical (quan-
tum) spins. This is because we effectively diminish the
number of neighbors of a given site.

Besides this overall suppression of the magnetic energy
scale, we also observe a Curie-like tail in the low-temperature
magnetic susceptibility; see Fig. 3. We fit the disorder-
averaged value of the susceptibility in this regime as

χ (x) = g2

[
x · m2

T
+ (1 − x) · χ (0)

]
, (10)

where χ (0) is the low-temperature susceptibility in the clean
case, and we find that m2 = AS2/3, with A a numerical
prefactor.
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FIG. 3. Uniform susceptibility χ , in units of g2, as a function of
temperature T in the diluted Heisenberg model for different vacancy
concentrations x, as obtained from classical MC simulations for L =
24 and uniform g factors. The black dot shows the analytical result
for x = 0 in the low-temperature limit: χ (x = 0) = g2/(9J1). Inset:
Zoom into the low-temperature region with the dashed lines showing
the fit given by Eq. (10).

This result can be rationalized as follows: A single vacancy
induces a local impurity moment because the magnetization of
each sublattice no longer cancels. Because the bulk magnetic
order is destroyed by thermal fluctuations, the direction of
this impurity moment is not fixed, but is free to rotate with
the local orientation of the bulk magnetic domain surrounding
it, leading to a low-temperature Curie-like response at low
fields [70–75]. Since our focus is the low-T regime, for a
finite concentration of impurities we are interested in the limit
ξ � limp, where ξ is the bulk correlation length and limp ∝
x−1/2 is the mean-impurity distance. In this case, the effective
total impurity moment Seff is given by the difference of the
vacant sites on each sublattice, S2

eff ∼ xNS2, and we arrive at
the Curie-tail contribution in Eq. (10). If we take A ≈ 2/3,
Eq. (10) fits the numerical results remarkably well for small
x; see the inset of Fig. 3. As we increase x, the mean-impurity
separation diminishes and corrections to the single-impurity
result become apparent, although the leading effect is still well
described by Eq. (10).

B. Anisotropy evolution with dilution

We now investigate how the intrinsic anisotropy of the
HK� model evolves with random dilution. Here, the long-
range zigzag magnetic order is destroyed for x > 0 in favor
of a spin glass in the classical limit, and we expect that the
peaks in the susceptibility can no longer be associated with
the onset of order, but instead mark a crossover regime below
which spin fluctuations are suppressed. Actually, in d = 2, the
spin-glass order takes place only [68] at T = 0. Therefore, we
can, in principle, expect a finite-T susceptibility that resem-
bles that of the Heisenberg limit. Our numerical results indeed
indicate the presence of a Curie tail in the susceptibility, both
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FIG. 4. Uniform susceptibilities χν , ν = ⊥, ‖, as a function of temperature T in units of g2
⊥ and g2

‖, respectively, for (a) model 1, (b) model
2, and (c) model 3, from classical MC simulations on an L = 24 lattice. Insets: Susceptibilities for x = 0.20 in a log-log scale. The dashed
lines correspond to the high-temperature results, given by Eq. (11).

for χ‖ and χ⊥. This is demonstrated in Fig. 4, which shows the
susceptibilities as a function of temperature for models 1–3.

The evolution of the anisotropy ratio χ‖/χ⊥ as a function
of doping x for models 1 and 2 is displayed in Fig. 5. For
small doping levels, the low-temperature anisotropy increases
with increasing x, while at the same time, high-temperature
anisotropy decreases. One way to rationalize this observation
is to realize that the introduction of vacancies leads to an
overall reduction of the exchange energy scales. Therefore,
upon diluting, one effectively shifts the system to higher tem-
peratures, which enhances the anisotropy at low temperatures,
but suppresses it at high temperatures; cf. Fig. 2. For coupled
layers, this increase in the susceptibility upon cooling should
be bounded at low T by the freezing temperature Tg, and we
expect this bound to be suppressed with x [55].

Combining Eqs. (5) and (6) with the dilution-induced
suppression of the Curie-Weiss temperature, �CW

‖,⊥(x) = (1 −
x)�CW

‖,⊥(0), where �CW
‖,⊥(0) is their clean value, we obtain the

high-temperature disorder evolution of the susceptibilities,

χ‖,⊥(x) = χ‖,⊥(0) − xg2
‖,⊥

c

3T 2
�CW

‖,⊥(0) + O(T −3), (11)

where χ‖,⊥(0) are the x = 0 susceptibilities. As shown in the
insets of Fig. 4, this equation is consistent with our numeri-

Model 1 Model 2
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FIG. 5. Susceptibility anisotropy ratio χ‖/χ⊥ in units of (g‖/g⊥)2

as a function of doping level x for different temperatures for
(a) model 1 and (b) model 2, from classical MC simulations on
an L = 24 lattice. For small doping level x, the low-temperature
anisotropy increases with increasing x, while its high-temperature
counterpart decreases.

cal data. Therefore, whether disorder enhances or suppresses
the high-temperature susceptibility can be traced back to the
sign of the respective clean Curie-Weiss temperature. Con-
sequently, at high temperatures, the in-plane susceptibility
decreases with increasing x in models 1 and 2, while the
out-of-plane susceptibility increases, at least in model 2. This
trend agrees with our simulation results; cf. Fig. 5. For model
3, where the anisotropy is absent, we have �CW

0 < 0, and we
obtain a corresponding increase in χ (x) for increasing x.

C. Comparison to experiments

1. Na2(Ir1−xTix)O3

The diluted version of model 3 may be relevant for
Na2(Ir1−xTix )O3. In fact, our results, shown in Fig. 4(c), are
broadly consistent with the reported measurements in this
compound [31]: (i) Upon the introduction of vacancies, the
long-range order gives way to a spin glass. This glass state
is identified via the separation between field-cooled and zero-
field-cooled susceptibilities as measured at a very low field
of 5 mT. (ii) Both the freezing temperature and the abso-
lute value of the Curie-Weiss temperatures decrease with x
[31,55]. (iii) The low-temperature part of the susceptibility is
enhanced with x. However, the available experimental data do
not address the anisotropy evolution with doping.

2. α-(Ru1−xIrx)Cl3

For α-(Ru1−xIrx )Cl3, the introduction of vacancies is ac-
companied by the return of two transition temperatures
[26,29], indicating the presence of stacking faults in the doped
samples. These two ordering temperatures, as well as the
temperature of the structural first-order phase transition, de-
crease with x. Despite the broadening of the specific-heat
peak with x, the experimental susceptibilities show no sign
of separation between field-cooled and zero-field-cooled runs.
However, these susceptibility measurements were performed
at comparatively high fields, �100 mT [26,29]. A weakly
glassy state can therefore not be fully excluded.

The behavior of χ‖ in model 1, as displayed in Fig. 4(a),
describes qualitatively well the experimental results for α-
(Ru1−xIrx )Cl3: The low-temperature increase of the in-plane
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susceptibility with x can be linked to the impurity-induced
Curie tail, whereas its decrease at high temperature can
be associated with the suppression of �CW

‖ with doping.
On the other hand, the evolution of χ⊥ with doping in α-
(Ru1−xIrx )Cl3 is more involved. Equation (11) suggests a
slight increase of χ⊥ with doping at high temperatures, op-
posite to the experimental observation. Since this is a weak
effect, we suspect again that the structural transition may
be relevant, especially because it affects χ⊥ more strongly.
The nonmonotonic behavior of χ⊥ as a function of x at low
temperatures is also not captured by our classical models: The
MC results show a monotonic increase of χ⊥ with x, although
it does so more slowly than χ‖.

Overall, we believe one should be very careful when
comparing susceptibilities between different samples. This is
because the direction-specific susceptibilities are extremely
sensitive to stacking faults, which are inevitably introduced
with doping [26]. Typically, the in-plane susceptibility de-
creases upon the introduction of stacking faults, while
at the same time the out-of-plane susceptibility increases.
Lower-quality samples are therefore more isotropic than
higher-quality samples [4,15,34]. One observable that is po-
tentially less sample dependent is the averaged (“powder”)
susceptibility χavg = (2χ⊥ + χ‖)/3, which, however, natu-
rally lacks information about the anisotropy.

VI. CONCLUSIONS AND OUTLOOK

We have studied the magnetic susceptibilities in ex-
tended Heisenberg-Kitaev models, with focus on their spatial
anisotropy and its evolution with temperature and magnetic
dilution. We have reported results from both high-temperature
expansion and large-scale classical MC simulations.

For α-RuCl3, our findings reconcile different results re-
ported in the literature. We show that a set of exchange
parameters, originally obtained inside the ordered phase at
low temperature, describes well the behavior of the suscepti-
bilities and their anisotropy over a large range of temperatures.
This set includes a sizable off-diagonal �1 interaction and
a moderate g-factor anisotropy, with the temperature depen-
dence of the anisotropy arising solely from the �1 interaction.

In Na2IrO3, the susceptibility anisotropy is mostly temper-
ature independent, which is consistent with the assumption of
a small �1. The experimental behavior is well captured by our
model, if one assumes a suitable g-factor anisotropy.

In the presence of doping, we find that the high-
temperature susceptibilities may be mildly enhanced or
suppressed, depending on the sign of the clean Curie-Weiss
temperature. At low temperatures, our model generically pre-
dicts the suppression of long-range order and the emergence
of a spin-glass state, which agrees with the experimental
observation for Na2(Ir1−xTix )O3 [31]. By contrast, the exper-
iments on α-(Ru1−xIrx )Cl3 have been interpreted in terms of a
disordered spin liquid [26,27,29,30], which goes beyond our
semiclassical modeling. At low temperatures, we also find a
Curie-tail contribution to the magnetic susceptibility, which
gives rise not only to an enhancement of the individual sus-
ceptibilities, but also of their anisotropy. This is in accordance
with the experimental trends observed at small doping.

For α-(Ru1−xIrx )Cl3, the qualitative behavior of in-plane
susceptibility χ‖ is well captured by our modeling. By con-
trast, the agreement for the out-of-plane susceptibility χ⊥
is less satisfactory. This may be linked to the presence of
stacking faults, which appears to have a particularly strong
influence on χ⊥. In this respect, a systematic study of the
out-of-plane susceptibility χ⊥ on different α-RuCl3 and α-
(Ru1−xIrx )Cl3 samples of varying quality would be desirable.
For Na2(Ir1−xTix )O3, we are not aware of any measurements
on the anisotropy evolution, but our results for the averaged
susceptibility agree well with the experiments [31].

Ideally, the evolution of the magnetic anisotropy in Kitaev
materials, both with temperature and doping, could be used
to further constrain the values of the symmetry-allowed ex-
change constants, in order to complement the usual modeling
in the low-temperature regime. This, however, requires more
information concerning the sample dependence of the experi-
mental behavior seen in the current data.

On the theoretical side, we have employed in this work
a simple semiclassical modeling. While this approximation
should yield reasonable results at intermediate and high
temperatures, qualitatively new physics can emerge in the
low-temperature quantum regime. This is, in particular, true
when the ground state realizes a (disordered) Kitaev quan-
tum spin liquid [25,76]. While the low-doping behavior may
potentially be understood in terms of isolated vacancies
[77,78], a description of the behavior at finite doping and its
temperature dependence requires a full many-body quantum
computation [79–81]. This represents an excellent direction
for future research.
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APPENDIX: TRIGONAL DISTORTIONS AND �′
1

The Hamiltonian presented in Eq. (1) does not contain all
nearest-neighbor spin interactions that are allowed by the C∗

3
symmetry. This symmetry corresponds to a 2π/3 spin rotation
about the [111] direction in spin space combined with a 2π/3
lattice rotation about one site. A trigonal distortion (compres-
sion or elongation along the [111] axis) fully preserves this
symmetry and generates an extra nearest-neighbor magnetic
coupling [45],

H′ = �′
1

∑
〈i j〉γ

(
Sα

i Sγ
j + Sβ

i Sγ
j + Sγ

i Sα
j + Sγ

i Sβ
j

)
, (A1)
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using the same notation as in Eq. (1). For α-RuCl3, ab initio
calculations suggest a small negative �′

1 [46,82,83]; however,
recently it has been argued that empirical constraints require
a sizable positive �′

1 [84]. We have simulated H + H′ in the
high-temperature regime to investigate the effects of �′

1 on the
magnetic anisotropy.

In Fig. 6, we show the in-plane and out-of-plane magnetic
susceptibilities for different values of �′

1. In the clean limit, we
see that the anisotropy ratio χ‖/χ⊥ decreases (increases) for
�′

1 < 0 (�′
1 > 0), resulting from a strong dependence of the

in-plane susceptibility χ‖ on �′
1 at low temperatures. Note that

when J1, K1, �1, and J3 are chosen as in model 1, the zigzag
ground state is stable only up to �′

1 � 0.45 meV. For large
negative �′

1 � −�1, the anisotropy inverts, such that χ‖ drops
below χ⊥ in the low-temperature limit. We have checked that
dilution does not alter this trend.

Inclusion of �′
1 in the high-temperature expansion modifies

the Curie-Weiss temperatures accordingly to

�CW
‖ = − c

3
[3(J1 + J3) + K1 − (�1 + 2�′

1)], (A2)

�CW
⊥ = − c

3
[3(J1 + J3) + K1 + 2(�1 + 2�′

1)], (A3)

and we show in the inset of Fig. 6 that this expression de-
scribes well the MC results at elevated temperatures.

Note that �′
1 has a stronger influence on the low-

temperature part of the anisotropy than on its high-
temperature tail. This indicates that inclusion of a small
positive �′

1 may help to improve agreement with the ex-
perimental results for α-RuCl3. For instance, choosing �′

1 =
0.25 meV and J1, K1, �1, and J3 as in model 1, together with
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FIG. 6. In-plane, ν = ‖, and out-of-plane, ν = ⊥, uniform mag-
netic susceptibilities χν in units of g2

‖ and g2
⊥, respectively, as a

function of temperature for different values of �′
1 (in units of meV).

These results were obtained from classical MC simulations on an
L = 24 lattice with J1, K1, �1, and J3 chosen as in model 1. Inset:
Susceptibilities for �′

1 = 0.25 meV in a log-log scale. The dashed
lines show the results from the high-temperature expansion.

a slightly reduced g-factor anisotropy of g‖/g⊥ � 1.33, we
obtain χ‖/χ⊥ ≈ 1.9, 8.8, 6.2 above room temperature, near
the transition, and in the low-temperature limit, respectively.
This is in good agreement with the experimental values for
α-RuCl3.
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