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We present a theory of charge density wave (CDW) states in Weyl semimetals and their interplay with
the chiral anomaly. In particular, we demonstrate a special nature of the shortest-period CDW state, which is
obtained when the separation between the Weyl nodes equals exactly half a primitive reciprocal lattice vector. Its
topological properties are shown to be distinct from all other Weyl CDW states. We make a connection between
this observation and the three-dimensional fractional quantum Hall state, which was recently proposed to exist
in magnetic Weyl semimetals.
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I. INTRODUCTION

Our understanding of topological phases of matter relies on
the concept of quantum anomalies. Anomalies were originally
discovered in the particle physics context [1,2], and have
historically been described in terms of “violation of classical
symmetry by quantum effects.” In the context of topological
phases of condensed matter, the meaning of the term is some-
what more general: anomaly means a topological obstruction
to a gapped symmetric nondegenerate ground state [3–6]. The
simplest example of this is the electron filling per unit cell of a
crystal, odd versus even, which determines whether the mate-
rial is a metal or an insulator (or an accidental semimetal).
The corresponding anomaly is the chiral anomaly and its
topological nature is behind the universality of the Luttinger
volume in metals [7–9]. More recently discussed examples are
gapless surface states of topological insulators (TI) [10–12],
and gapless bulk states of Weyl and Dirac semimetals [13–16].

Of particular interest is the interplay of the anomalies with
electron-electron interactions. Even though topological nature
of the anomaly gives the corresponding gapless state some
degree of immunity from the effect of the interactions (or
disorder), interactions that are strong enough may defeat the
anomaly-mandated gaplessness. Since the logical path from
the anomaly to gaplessness relies on gauge invariance and
quantization of the electron quantum numbers, one way the
gaplessness may be avoided is via fractionalization of the
quantum numbers and the formation of a gapped topologi-
cally ordered state. In the context of Weyl semimetals, this
has recently been explored in Refs. [17–23]. In particular, in
Refs. [22,23] we have shown that one may open a gap in a
magnetic Weyl semimetal without breaking any symmetries
and the resulting state is a three-dimensional (3D) generaliza-
tion of the familiar 2D fractional quantum Hall effect (FQHE).

The 3D fractional quantum Hall (FQH) state in Weyl
semimetals is interesting for a number of reasons. The stan-
dard 2D FQHE relies on the existence of dispersionless
Landau levels. This dispersionless property does not easily
generalize to 3D: if one, for example, makes a stack of

coupled 2D FQH liquids, the Landau levels will inevitably
acquire dispersion in the stacking direction, which will result
in a metal at fractional filling factors, whose ultimate fate in
the presence of interactions is not obvious [24]. Our proposal
relies on gapping band touching points rather than fractionally
filling flat Landau levels (or their generalization, bands with
nontrivial Chern numbers) and in this sense is somewhat re-
lated to a recent proposal of a “fractional excitonic insulator”
in 2D [25].

Landau levels aside, there is a deeper reason to be skep-
tical that FQHE can be generalized to 3D. The established
theoretical picture of the 2D FQHE relies on the idea of
transmutability of the exchange statistics and the existence of
anyons, which is a strictly 2D phenomenon, only bosons and
fermions are possible in 3D. We have demonstrated however
that FQHE is still possible in 3D, even though quasiparti-
cle excitations are only bosons or fermions [22,23]. Anyons,
which are essential for FQHE, are hidden in this case, but
are revealed as intersections of vortex loop excitations with
crystalline topological defects, such as the extra half-atomic
plane of an edge dislocation.

Interactions may also affect gapless anomaly mandated
states in less exotic ways. In particular, gaplessness may be
eliminated by symmetry breaking, such as the formation of
a charge density wave (CDW), which breaks crystal transla-
tional symmetry and changes the size of the unit cell. Recent
experiments have in fact identified (TaSe4)2I as a likely Weyl
CDW material [26,27]. Our present work is motivated in part
by these experiments (see Refs. [28–34] for earlier theoretical
work on CDW states in Weyl semimetals). One of our goals
here is to connect certain properties of the Weyl CDW states,
which have been overlooked before, and the 3D FQH state,
proposed in Refs. [22,23].

Weyl semimetal is a gapless topological phase protected
by translational symmetry. A common starting point when
modeling Weyl semimetals is a low-energy Hamiltonian with
an even number, two in the simplest case, of independent
linearly dispersing species of Weyl fermions, with an equal
number of right-handed (R) and left-handed (L) fermions. In

2469-9950/2020/102(11)/115159(9) 115159-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6516-8523
https://orcid.org/0000-0003-2139-0792
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.115159&domain=pdf&date_stamp=2020-09-28
https://doi.org/10.1103/PhysRevB.102.115159


SEHAYEK, THAKURATHI, AND BURKOV PHYSICAL REVIEW B 102, 115159 (2020)

this low-energy picture crystal translational symmetry acts
as a continuous chiral symmetry, which is “violated” by the
chiral anomaly. The formation of a CDW state breaks this
continuous chiral symmetry. An important manifestation of
the chiral anomaly is the appearance of gapless 1D chiral
modes in the vortex core of the CDW order parameter [35,36],
which was first pointed out in a different context by Callan
and Harvey [37]. These chiral modes, or “axion strings,” lead
to a topological term in the nonlinear sigma model (NLSM),
governing the fluctuations of the phase of the CDW order
parameter, which makes it impossible to obtain a gapped
symmetric state by disordering the phase [38,39].

This picture, however, is oversimplified, since the phys-
ical crystal translational symmetry, broken by the CDW, is
not continuous. In this paper we show that this does in cer-
tain cases lead to significant qualitative differences from the
picture based on low-energy continuum models. Particularly
interesting turns out to be the case when the separation be-
tween the Weyl nodes is half the primitive reciprocal lattice
vector, which leads to the smallest period, i.e., double the
original lattice constant, CDW. The order parameter is then
purely real, with the phase taking only two possible values,
0 and π . This means that topological defects are not vortices
but domain walls, which qualitatively changes the nature of
the defect-bound gapless states. We show that this provides
a complementary picture of the 3D FQHE, which exists in
correlated Weyl semimetals at precisely this value of the Weyl
node separation.

The rest of the paper is organized as follows. In Sec. II we
discuss mean-field theory of the CDW states in a simple lattice
model of a magnetic Weyl semimetal with a pair of nodes.
We point out a qualitative difference between the period-
two CDW order parameter, obtained when the Weyl nodes
are separated by half the primitive reciprocal lattice vector,
and CDW order parameters at all other values of the node
separation. In Sec. III we discuss the consequences of this
qualitative distinction for the nature of gapless bound states
on topological defects of the CDW order parameter and the
corresponding topological term in the field theory, describing
its phase fluctuations. In Sec. IV we make a connection to our
earlier work on the 3D FQHE in Weyl semimetals and show
how this state may be obtained by proliferating domain walls
in the period-two CDW, rather than by condensing vortices
in a Weyl superconductor, which was the picture used in our
earlier work [22,23]. We conclude in Sec. V with a brief recap
of the main results.

II. MEAN FIELD THEORY OF THE WEYL CDW

We start from the simplest lattice model of a magnetic Weyl
semimetal with a pair of bands touching at two Weyl nodes,
located on the z axis in momentum space at kz = ±Q [40]:

H0(k) = sin(kx )σx + sin(ky)σy + m(k)σz. (1)

Here the Pauli matrices σa act on the band index and

m(k) = cos(kz ) − cos(Q) − m̃[2 − cos(kx ) − cos(ky)]. (2)

Equation (1) may be viewed as a 2D Dirac Hamiltonian with a
kz-dependent mass [41]. The mass changes sign at kz = ±Q,
which are the locations of the Weyl nodes. Throughout this

paper we will use units in which h̄ = c = e = a = 1, where
a is the lattice constant of the simple cubic lattice on which
Eq. (1) is defined. We will also take the hopping matrix ele-
ment to be unity, i.e., measure energy in units of the hopping
amplitude.

We now add electron-electron interactions, which we take
to be of the simplest Hubbard type

Hint = U
∑

i

ψ
†
i↑ψ

†
i↓ψi↓ψi↑ = −U

2

∑
i

(ψ†
i σzψi )

2 + · · · ,

(3)

where · · · denote a contribution that may be subsumed into the
chemical potential term. We take the Fermi energy to be zero,
which corresponds to an ideal stoichiometric Weyl semimetal.
Decoupling the interaction term by Hubbard-Stratonovich
transformation, we obtain the imaginary time action

S =
∫ β

0
dτ

{∑
k

ψ
†
k [∂τ + H0(k)]ψk

+
∑

i

(
�iψ

†
i σzψi + �2

i

2U

)}
. (4)

Here �i is a fluctuating space and time-dependent CDW order
parameter (in addition to CDW, �i also leads to a spin density
modulation, but we will call it CDW for brevity). We will take
it to be of the form

�i = � cos(2Q · ri + ϕi ), (5)

where � is the amplitude, which we take to be constant for
simplicity, Q = Qẑ, ri are the Bravais lattice vectors of the
simple cubic lattice, and ϕi is a fluctuating phase of the CDW
order parameter, which represents sliding motion of the CDW
relative to the lattice. In continuum, the phase fluctuations
would represent a soft Goldstone mode, arising from the
breaking of the continuous translational symmetry of empty
space. In the presence of an underlying lattice the broken
symmetry is no longer continuous and the phase fluctuation
mode is gapped, although it is nearly gapless away from the
values of Q, corresponding to highly commensurate short-
wavelength CDW. Note that a term of the type �iψ

†
i ψi could

also be present in Eq. (4). This could result from longer-range
density-density interactions and is allowed by symmetries, but
it does not open a gap, at least for small values of �, and we
will not include it for this reason.

Let us start from a mean-field theory of the CDW, which
corresponds to taking ϕi = ϕ to be a constant. The problem
then reduces to diagonalizing the following mean-field Hamil-
tonian:

H =
∑

k

ψ
†
kH0(k)ψk + �

2

∑
k

(ψ†
k+2Qσzψkeiϕ + H.c.). (6)

For 2Q equal to any rational fraction of 2π this Hamiltonian is
diagonalized by folding into the reduced Brillouin zone (BZ),
with kz restricted to the interval −Q � kz < Q. Let us first
explicitly solve the simplest case with 2Q = π , i.e., exactly
half the original BZ size, corresponding to the shortest-period
CDW with a doubled unit cell.
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In this case, Eq. (6) may be written as

H = 1

2

∑
k

[
ψ

†
k+2QH0(k + 2Q)ψk+2Q + ψ

†
kH0(k)ψk

+�(ψ†
k+2Qσzψkeiϕ + ψ

†
k−2Qσzψke−iϕ )

]
. (7)

When 2Q = π , we have k − 2Q = k + 2Q mod 2π , which
gives

H =
∑

k

[
ψ

†
k+2QH0(k + 2Q)ψk+2Q + ψ

†
kH0(k)ψk

+� cos(ϕ)(ψ†
k+2Qσzψk + H.c.)

]
, (8)

where k is now restricted to the reduced BZ with −Q � kz <

Q. Introducing a four-component spinor ψ̃k = (ψk+2Q, ψk ),
the Hamiltonian may be rewritten as

H =
∑

k

ψ̃
†
k

{
sin(kx )σx + sin(ky)σy

− m̃[2 − cos(kx ) − cos(ky)]σz + τzσz cos(kz )

+� cos(ϕ)τxσz
}
ψ̃k, (9)

where the Pauli matrices τz act on the two extra components
of the four-spinor ψ̃k. Diagonalizing one obtains the band
dispersion

εrs(k) = s
√

sin2(kx ) + sin2(ky) + m2
r (k), (10)

where r, s = ± and

mr (k) = −m̃[2 − cos(kx ) − cos(ky)]

+ r
√

cos2(kz ) + �2 cos2(ϕ). (11)

Thus, even though Eq. (9) has the appearance of a 3D Dirac
Hamiltonian, it is in fact not, as obvious from Eqs. (10) and
(11): all bands are nondegenerate due to broken time-reversal
(TR) symmetry. The band dispersion is fully gapped for all
ϕ �= ±π/2 and the gap is maximal when ϕ = 0, π . Thus it
is clear that ϕ = 0, π are the energetically preferred values of
the phase of the CDW order parameter. The CDW ground state
is twofold degenerate, with the two states related to each other
by a half-translation with respect to the doubled primitive
translation vector.

It is straightforward to generalize this result to Weyl node
separation 2Q which is an arbitrary rational fraction of the
reciprocal lattice vector 2π . In this case there always exists an
integer N , such that k + 2NQ = k mod 2π , and the mean-
field Hamiltonian may be written as

H =
∑

k

N−1∑
n=0

[
ψ

†
k+2nQH0(k + 2nQ)ψk+2nQ

+ �

2
(ψ†

k+2nQ+2Qσzψk+2nQeiϕ + H.c.)

]
, (12)

where −Q � kz < Q. Importantly since k + 2NQ =
k mod 2π , we have k + 2(N − 1)Q + 2Q = k mod 2π .
It follows that momentum k is coupled not only to k + 2Q,
but also to k + 2(N − 1)Q and the momentum-space
Hamiltonian takes the following matrix form:

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

H0(k) �
2 e−iϕσz 0 . . . �

2 eiϕσz
�
2 eiϕσz H0(k + 2Q) �

2 e−iϕσz . . . 0

0 �
2 eiϕσz H0(k + 4Q) . . . 0

...
...

...
. . .

...
�
2 e−iϕσz . . . . . . �

2 eiϕσz H0[k + 2(N − 1)Q]

⎞
⎟⎟⎟⎟⎟⎠. (13)

In this case one finds that the band gap is a function
of �N cos(Nϕ) and is maximized when ϕ = 2πn/N , n =
0, . . . , N − 1. As N increases, the low-energy electronic
structure near the Weyl nodes is better and better ap-
proximated by the upper 2 × 2 block of the Hamiltonian,
which reduces to the standard low-energy model of left- and
right-handed Weyl fermions, coupled by a complex mass
term �σz[cos(ϕ)τx + sin(ϕ)τy]. Note the important difference
from the N = 2 case, where the mass term is real.

III. CHIRAL ANOMALY AND ZERO-ENERGY
BOUND STATES

Now let us go back to the 2Q = π case and consider a
domain wall between the two degenerate CDW states, cor-
responding to ϕ = 0, π . To find an analytical solution for
the domain wall bound state it is convenient to start from
the following unitary transformation of the momentum-space

Hamiltonian in Eq. (9):

τx → τx, τy → −τz, τz → τy, (14)

followed by

τx,y → σzτx,y, σx,y → τzσx,y. (15)

This brings the Hamiltonian to the form

H (k) = sin(kx )τzσx + sin(ky)τzσy + cos(kz )τy

+� cos(ϕ)τx − m̃[2 − cos(kx ) − cos(ky)]σz. (16)

This looks like a 3D Dirac Hamiltonian with an extra TR-
symmetry breaking term (the last one).

Now consider a domain wall, such that ϕ(z → −∞) = π

and ϕ(z → ∞) = 0. Expanding H (k) to linear order around
the Dirac point at kz = π/2, replacing kz = −i∂/∂z, one ob-
tains the zero-energy Jackiw-Rebbi soliton [42] solution

�(z) = e−�
∫ z

0 dz′ cos[ϕ(z′ )]|τz = −1〉. (17)
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It follows that, at a general kx,y, the domain wall bound state
is described by the following massless 2D Dirac Hamiltonian:

H2D(k) = − sin(kx )σx − sin(ky)σy

− m̃[2 − cos(kx ) − cos(ky)]σz. (18)

The sign of the first two terms flips if the phase changes in the
opposite direction, i.e., from 0 to π . Note that this does not
change the Hall conductivity, associated with this 2D interface
state, which is given by σxy = sgn(m̃)/4π .

The appearance of this 2D Dirac domain wall bound state
may also be understood from the viewpoint of the anomalies.
In the case of a noninteracting magnetic Weyl semimetal with
a pair of nodes separated by a vector 2Q, chiral anomaly
implies the following topological, thermal equilibrium con-
tribution to the electromagnetic response [43]:

Ltop = − i

4π2
εμνλρQμAν∂λAρ, (19)

where Ltop is the imaginary time Lagrangian density. When
translational symmetry is spontaneously broken and a CDW
gap is opened, it is usually assumed that this changes to [35]

Ltop = − i

8π2
εμνλρ (2Qμ + ∂μϕ)Aν∂λAρ, (20)

where ϕ is the phase of the CDW order parameter, introduced
above. This result is most easily obtained from a low-energy
model of a Weyl semimetal with a pair of nodes

S =
∫ β

0
dτ

∫
d3r

[
ψ

†
R(∂τ − i∇ · σ )ψR

+ψ
†
L (∂τ + i∇ · σ )ψL + �

2
(ψ†

RψLeiϕ + H.c.)

]
. (21)

After a gauge transformation ψR → ψReiϕ/2 and ψL →
ψLe−iϕ/2, this becomes

S =
∫ β

0
dτ

∫
d3r

[
ψ

†
R

(
∂τ + i

2
∂τϕ − i∇ · σ + 1

2
∇ϕ · σ

)
ψR

+ψ
†
L

(
∂τ − i

2
∂τϕ + i∇ · σ + 1

2
∇ϕ · σ

)
ψL

+ �

2
(ψ†

RψL + ψ
†
LψR)

]
, (22)

from which Eq. (20) follows since the first two terms in (22)
describe a Weyl semimetal with a pair of nodes, separated by
the vector ∇ϕ in momentum space.

This logic is correct, except when 2Q = π . In this case the
mass term, coupling the left- and right-handed Weyl fermions,
is real, unlike in Eq. (21). Its phase

θ = π

2
{1 − sgn[cos(ϕ)]} (23)

can thus only take two values, 0 and π . Its contribution to the
Lagrangian then takes the form, which appears identical to a
3D TR-invariant TI,

Ltop = − iθ

8π2
εμνλρ∂μAν∂λAρ. (24)

This follows from the fact that the Dirac Hamiltonian Eq. (16),
when expanded to linear order around the gapped Dirac
point at kx = ky = 0, kz = π/2, is identical to the low-energy

Hamiltonian of a 3D TI. Equation (24) may then be obtained
by standard arguments, for example using the Fujikawa’s
method [44], while applying a sequence of infinitesimal chiral
transformations to the linearized Dirac Hamiltonian to change
the sign of the mass term [43,45], thus transforming between
an ordinary insulator and a 3D TI. This similarity to the 3D
TI makes it tempting to identify a gapped Weyl semimetal
at 2Q = π and θ = π with an axion insulator [35,46,47], in
which TR is broken but there is a quantized magnetoelectric
response due to the still well-defined and quantized θ . How-
ever, such an identification would not really be correct. In the
case of a true axion insulator, θ = π and θ = 0 correspond to
two topologically distinct states, i.e., an axion insulator and
an ordinary TR-broken insulator. They are distinguished by
a quantized magnetoelectric response [46,48], as well as the
presence or absence of chiral hinge states [49]. In contrast,
the θ = 0, π states of a magnetic Weyl semimetal, gapped
by a period-two CDW, are related to each other by a crystal
symmetry operation, i.e., a half-CDW-period translation, and
already for this reason cannot be topologically distinct. This
observation is in agreement with Ref. [34], which has also
recently explored manifestations of the lattice-scale physics
in the CDW states in Weyl semimetals.

What about the massless 2D Dirac bound state that one
obtains at a domain wall between the θ = 0 and θ = π CDW
insulators? Recall that a 2D lattice-regularized Dirac fermion
of Eq. (18) corresponds to a critical point between 2D in-
sulators with σxy = 0 and σxy = 1/2π and thus produces a
half-quantized Hall conductivity σxy = sgn(m̃)/4π = 1/4π

[50]. Such a half-quantized Hall conductivity per atomic plane
is identical to the Hall conductivity of a Weyl semimetal
with 2Q = π , σxy = 2Q/4π2 = 1/4π , which is preserved
when the CDW gap is opened. This implies that a Weyl
semimetal with 2Q = π may be viewed as a stack of 2D
atomic layers with σxy = 1/4π , coupled in such a way that the
Hall conductivity per layer is preserved. Indeed, as discussed
above, Weyl semimetal Hamiltonian Eq. (1) has the form
of a 2D Dirac Hamiltonian with a kz-dependent mass. Even
though the mass is nonzero everywhere except at the locations
of the Weyl points, the contribution of low-energy states near
the kx = ky = 0 axis to the total 3D Hall conductivity is
zero, since the contribution of the interval −Q � kz < Q is
exactly canceled by the interval |kz| > Q. This means that
only high-energy states contribute to the Hall conductivity,
giving σxy = sgn(m̃)/4π = 1/4π per each value of kz. Since
the CDW states corresponding to θ = 0, π are related by a
half-period translation, a domain wall between them leaves
one “unpaired” atomic plane, carrying σxy = 1/4π and thus a
massless 2D Dirac fermion.

The existence of this massless Dirac fermion state also
follows from Eq. (24), which, when evaluated in a sample with
a domain wall between the two CDW states, corresponding to
θ = 0, π , gives

Ltop = − i

8π
εzμνλAμ∂νAλ, (25)

which is precisely the response of a massless 2D Dirac
fermion, corresponding to σxy = 1/4π . Note that the sign of
σxy is undefined in this formulation due to the 2π ambiguity
of the definition of θ .
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It is instructive to contrast these states with the superficially
similar surface states of a 3D TR-invariant TI. In this case the
momentum-space Hamiltonian Eq. (16) is replaced by

H (k) = sin(kx )τzσx + sin(ky)τzσy − kzτy + m(k)τx, (26)

where

m(k) = � − m̃[2 − cos(kx ) − cos(ky)]. (27)

Taking the gap parameter � to be a function of z, such
that �(z → −∞) < 0 and �(z → ∞) > 0, one obtains, at
kx,y = 0 a zero-energy bound state solution that is identical to
Eq. (17):

�(z) = e− ∫ z
0 dz′m(0,0,z′ )|τz = −1〉. (28)

Unlike Eq. (17), however, this solution continues to exist only
as long as the Dirac mass m(kx, ky, z) actually changes sign as
a function of z, which only happens at small enough kx,y. The
surface state then exists only in the vicinity of kx = ky = 0 and
is not associated with a nonzero Hall conductivity, as long as
it is gapless.

IV. GAPPED STRONGLY CORRELATED WEYL
SEMIMETAL FROM DISORDERED CDW

CDW states, described above, provide an interesting com-
plementary prospective on the question of opening a gap in
a Weyl semimetal without explicitly breaking the protecting
symmetries. We explored this question before using the “vor-
tex condensation” method [22,23], where one starts from a
gapped superconducting state, induced in a Weyl semimetal,
and asks if it is possible to destroy the superconducting co-
herence while keeping the gap. If successful, this procedure
produces an insulator, which nevertheless preserves topologi-
cal response of the underlying Weyl semimetal.

Similar approach may be applied to the gapped CDW
states. In this case one imagines keeping the CDW gap �

intact, while disordering the phase ϕ and thus restoring the
broken translational symmetry. As in the case of the phase-
disordered superconductor, topological defects play a crucial
role here. In particular, as discussed in Sec. III, when 2Q �= π ,
the NLSM, which describes phase fluctuations of the CDW
order parameter,

L = 1

2g
(∂μϕ)2 + Ltop, (29)

where 1/g ∼ �2 ln(�/�) and � 
 � is of the order of the
total bandwidth, contains a topological term

Ltop = − i

8π2
εμνλρ∂μϕAν∂λAρ. (30)

As first shown by Callan and Harvey [37], this term neces-
sarily leads to the appearance of 1D chiral modes in the core
of the vortex loops of the phase ϕ. The chirality and number
of the 1D modes reflects the vorticity and the modes cross
zero energy at the values of momenta, corresponding to the
locations of the Weyl nodes [22,35,36], as may be seen by an
explicit solution of the corresponding Dirac equation in the
presence of a vortex. These 1D chiral modes in the vortex
cores necessarily lead to a gapless state once the translational

symmetry is restored. This is because the only way to elim-
inate the gapless chiral modes is to hybridize them in pairs
of opposite chirality, which is impossible without breaking
translational symmetry since they exist at different momenta
(±Qẑ). Note that the phase anisotropy, that arises due to lattice
commensuration effects, as discussed in Sec. II, does not
change this picture.

This is correct at all values of the Weyl node separation,
except when 2Q = π . As discussed above, in this case the
mass term, induced by the CDW order parameter, is purely
real and, as a consequence, topological defects are 2D do-
main walls instead of 1D vortex loops. The corresponding
topological term is given by Eq. (24), which is very different
from Eq. (30). In the language of the anomalies, Eq. (30)
expresses the perturbative [in the sense that |∂μϕ| may be
arbitrarily small and thus Eq. (30) may be obtained from a
perturbative gradient expansion of the imaginary time action]
chiral anomaly of gapless Weyl fermions. The anomaly of
Eq. (24) is instead nonperturbative, or global, and is closely
related to the 2D parity anomaly [Eq. (25), which follows
from Eq. (24), is in fact a direct manifestation of the 2D parity
anomaly] [6]. Since each domain wall binds a 2D massless
Dirac fermion, the question of gapping the Weyl semimetal
without breaking translational symmetry reduces in this case
to the question of gapping a 2D Dirac fermion, while pre-
serving its half-integer Hall conductivity σxy = 1/4π . While a
closely related question of gapping the 2D Dirac surface states
of the 3D TR-invariant TI has been discussed before [51–58],
we will nevertheless go through the procedure in detail. The
procedure we use here has not been described in the literature
explicitly, although it is implicit in, for example, the approach
of Ref. [52]. This will also facilitate the connection to our own
earlier work [22,23].

Let us start from the 2D Dirac Hamiltonian of Eq. (18),
which describes the gapless bound state on a CDW domain
wall at 2Q = π . In real space this becomes

H =
∑

r

[
i

2
ψ†

r (σi − im̃σz )ψr+ie
iAri + H.c.

− 2m̃ψ†
r σzψr + iAr0ψ

†
r ψr

]
, (31)

where we have coupled the fermions to an external
probe electromagnetic field Aμ. We then use parton
decomposition [59]

ψr = eiθr fr, (32)

where eiθr annihilates a spinless boson (chargon), carrying the
charge of the electron, while fr is a neutral spinon, carrying
the spin. The phase θr is conjugate to the chargon number nr,
which satisfies the constraint f †

r fr = nr. The imaginary-time
Lagrangian density (the action is S = ∫

dτ
∑

r L) then takes
the following form [60–63]:

L f = f †
r (∂τ − iar0) fr − 2m̃ f †

r σz fr

+ iχ

2
f †
r (σi − im̃σz ) fr+ie

−iari + H.c. (33)
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and

Lb = inr(∂τ θr + Ar0 + ar0) − χ cos(�iθr + Ari + ari ).
(34)

Here the total Lagrangian L = L f + Lb and arμ is a statistical
gauge field, which couples chargons and spinons. Equations
(33) and (34) are obtained by a Hubbard-Stratonovich de-
coupling of the chargons and spinons in the original electron
imaginary time action with arμ emerging as the phase of the
Hubbard-Stratonovich field, while an approximately constant
χ is its magnitude.

Transforming the cosine by the Villain transformation, we
obtain

Lb = iJrμ(�μθr + Arμ + arμ) + 1

2χ
J2

rμ, (35)

where μ = 0, x, y, Jr0 ≡ nr and we have included a term
n2

r/2χ , arising from the electron-electron interactions, which
have been implicit up to this point. The coefficient of the
interaction term was taken to be 1/2χ for brevity, its specific
value does not matter. The new variables Jrμ are integers,
defined on the links (rμ) of the lattice and represent chargon
space-time currents. Integrating out the phases θr, one obtains
the conservation law for the chargon currents

�μJrμ = 0, (36)

which may be solved as

Jμ = 1

2π
εμνλ�νbλ, (37)

where we will drop the r indices henceforth and bμ are 2πZ
valued variables, defined on the links of the dual lattice. It
is convenient to soften the 2πZ constraint by introducing a
vortex kinetic energy term, which brings the Lagrangian to
the form

Lb = i

2π
(Aμ + aμ)εμνλ�νbλ + 1

8π2χ
(εμνλbλ)2

− t cos(�μφ + bμ), (38)

where eiφ is an annihilation operator for a vortex carrying flux
2π (i.e., hc/e in ordinary units).

Let us now shift our attention to the spinons. We assume
that the spinons are paired by the usual BCS singlet s-wave
pairing term, which opens a gap. Ignoring the statistical
gauge field for a moment, this is described by the following
momentum-space Hamiltonian:

H = −
∑

k

f †
k [χσx sin(kx ) + χσy sin(ky) + σzm(k)] fk

−�
∑

k

( f †
k↑ f †

−k↓ + f−k↓ fk↑), (39)

where m(k) = m̃[2 − cos(kx ) − cos(ky)]. Introducing a
Nambu spinor f̃k = ( fk↑, fk↓, f †

−k↓, f †
−k↑), the Hamiltonian

reduces to a block-diagonal from

H = −1

2

∑
k

f̃ †
k {χσx sin(kx ) + χσy sin(ky)

+ [m(k) ± �]σz} f̃k. (40)

This describes a topological p + ip superconductor with a chi-
ral Majorana edge mode and a zero-energy Majorana bound
state in the hc/2e = π -flux vortex core. Coupling the paired
spinons to the statistical gauge field aμ produces a Meissner
term for aμ, which has the form − cos(2aμ) since a spinon pair
carries charge 2 of the statistical gauge field. This makes aμ a
Z2 gauge field. Its nontrivial excitations (visons) carry flux π ,
which implies that a single vison always induces a Majorana
zero-energy bound state.

Now let us return to the dualized chargon Lagrangian
Eq. (38), and analyze possible gapped insulator phases of
our system, which may be obtained within this formalism.
The simplest one is obtained when we condense flux 2π

vortices, annihilated by eiφ . This produces a Higgs mass term
for the gauge field bμ, which gaps all charged excitations.
The spinons are also gapped by pairing, but the visons may
in principle be either gapped or condensed. If it was pos-
sible to condense visons, this would result in an ordinary
band insulator, since the fluctuating π flux would bind the
spinons and chargons into electrons. Vison condensation is
impossible, however, since a π -flux vortex has a zero-energy
Majorana bound state in its core, as discussed above. This is a
manifestation of the nontrivial topology of the massless Dirac
fermion (parity anomaly), which survives in the strongly cor-
related state as parity anomaly of the spinon band structure.
The state with a gapped vison has Z2 topological order, and is
a Kitaev spin liquid [64]. It has a half-quantized thermal Hall
conductivity

κxy = LT

4π
, (41)

where L = π2k2
B/3 is the Lorenz number, but zero electrical

Hall conductivity.
To obtain an insulator with the same topological re-

sponse as a massless Dirac fermion, we need a state with a
half-quantized thermal and electrical Hall conductivity. This
cannot be obtained by putting chargons in the ν = 1/2 FQH
liquid (the resulting state is the Moore-Read Pfaffian [65])
since the thermal Hall conductivity of this state is κxy =
3LT/4π , the extra quantum coming from the chiral boson
edge mode of the ν = 1/2 Laughlin liquid. The correct state
is obtained instead by assuming double, i.e., flux 4π , vor-
tices, form the ν = 1/2 liquid. As can be seen by a direct
inspection of the equations below, putting flux 2π vortices
in any quantum Hall state may only produce a state with an
integer Hall conductivity. In Ref. [52] the incompatibility of
the flux 2π vortices with the half-quantized electrical Hall
conductivity was instead related to the fact that such vortices
have semionic exchange statistics when the Hall conductivity
is a half-integer. The two viewpoints are of course equivalent.

To describe the state with 4π vortices forming the ν = 1/2
Laughlin liquid we first replace the single-vortex kinetic en-
ergy term by a double-vortex one −t cos(2�μφ + 2bμ) and
then apply the Villain transform

Lb = i

2π
(Aμ + aμ)εμνλ�νbλ + 1

8π2χ
(εμνλbλ)2

+ 2iJ̃μ(�μφ + bμ) + 1

2t
J̃2
μ, (42)
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where J̃μ are integer-valued vortex currents. Integrating out φ,
we obtain the vorticity conservation law

�μJ̃μ = 0, (43)

which may be solved as

J̃μ = 1

2π
εμνλ�ν b̃λ, (44)

where b̃μ is a 2πZ-valued gauge field. Note that 2π flux of b̃μ

corresponds to a 4π vortex. Then we place the double vortices
in the ν = 1/2 Laughlin state. Taking the continuum limit, this
leads to the following Lagrangian:

Lb = i

2π
(Aμ + aμ + 2b̃μ)εμνλ∂νbλ − 2i

4π
εμνλb̃μ∂ν b̃λ, (45)

where we have ignored Maxwell terms for bμ and b̃μ, which
are not essential here.

To understand the physics of the state we have obtained,
let us ignore the coupling to spinons for a moment and make
a variable change bμ → (bμ + b̃μ)/2. Then we obtain

Lb = i

4π
εμνλ(bμ∂ν b̃λ + b̃μ∂νbλ) + i

4π
Aμεμνλ∂ν (bλ + b̃λ).

(46)

This describes an integer quantum Hall state of two-
component charge-1/2 bosons [66,67]. Making another vari-
able change

bμ = cμ + c̃μ, b̃μ = cμ − c̃μ, (47)

we obtain

Lb = 2i

4π
εμνλ(cμ∂νcλ − c̃μ∂ν c̃λ) + i

2π
Aμεμνλ∂νcλ. (48)

By a standard argument [68], this leads to a pair of opposite-
chirality edge modes: one charged, which upon integrating out
the gauge field cμ gives the half-quantized Hall conductivity
σxy = 1/4π , and one neutral, which cancels the contribution
of the charged mode to thermal Hall conductivity. This state
thus has a half-quantized electrical and zero thermal Hall
conductivity.

Now let us go back to Eq. (45) and add the spinon contri-
bution. The total Lagrangian is given by

L = L f (−aμ) + i

2π
(Aμ + aμ + 2b̃μ)εμνλ∂νbλ

− 2i

4π
εμνλb̃μ∂ν b̃λ. (49)

Integrating out bμ one obtains at low energies

b̃μ = −Aμ + aμ

2
. (50)

Since aμ is made a Z2 gauge field by spinon pairing, Eq. (50)
tells us that b̃μ is a Z4 gauge field, which corresponds to
fractionalization of the electron as

ψ = b1b2 f , (51)

where b1,2 are the charge-1/2 bosons of Eq. (46) and f is
the neutral spinon. Plugging this back into the Lagrangian,

FIG. 1. Weyl semimetal with 2Q = π obtained by coupling
massless 2D Dirac domain wall states.

we obtain

L = L f (−aμ) − i

8π
εμνλAμ∂νAλ − i

4π
εμνλAμ∂νaλ

− i

8π
εμνλaμ∂νaλ. (52)

This tells us that a vison, in addition to carrying a Majorana
zero mode, has charge 1/4. A 2π vortex, which is also a
gapped excitation, carries a charge 1/2 and is a semion. The
state we have obtained is thus a non-Abelian FQH state,
which has σxy = 1/4π and κxy = LT/4π , i.e., an identical
topological response (parity anomaly) to a massless free Dirac
fermion.

Stacking domain wall 2D Dirac fermion states of Eq. (18),
and allowing electron tunneling between them, clearly results
in a gapless Weyl semimetal state, described by Eq. (16) with
� = 0, see Fig. 1. This expresses the fact that it is impossible
to disorder the 2Q = π CDW by proliferating domain walls
and obtain a gapped unfractionalized insulator as a result. This
may be viewed as a consequence of the anomaly, expressed by
Eq. (24). However, it is possible to obtain a gapped insulator
with topological order, by stacking gapped 2D Dirac states
with the Z4 topological order, described above. As a result,
one obtains a 3D topologically ordered state, which may be
viewed as a 3D FQH liquid, and which was described in detail
in Refs. [22,23]. The Chern-Simons theory, described above,
is generalized to 3D by promoting the gauge field bμ to a
two-form antisymmetric gauge field bμν . This expresses the
physical fact that vortex excitations, which couple to bμ and
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which are particles in 2D, become vortex loops in 3D. For
further details we refer the reader to Refs. [22,23].

V. CONCLUSIONS

In this paper we have discussed some aspects of the physics
of CDW states in magnetic Weyl semimetals, focusing on the
quantum anomalies. Our main result is the qualitative differ-
ence that exists between the period-two CDW, which arises
when Weyl nodes, separated by half the primitive reciprocal
lattice vector, are gapped, and all other CDW states. Due
to the CDW order parameter being purely real in this case,
topological defects are domain walls, separating states with
opposite sign of the order parameter. In contrast, at all other
values of the Weyl node separation, the CDW order parameter
is complex and topological defects are vortex loops (“ax-
ion strings”). This distinction has important implications for
strong correlation phenomena in Weyl semimetals, in particu-
lar the question of gapping out Weyl nodes without explicitly
breaking translational symmetry. We demonstrated before,
using the “vortex condensation” approach, that it is indeed
possible to gap out Weyl nodes, separated by half the primitive
reciprocal lattice vector, without breaking the translational
symmetry, protecting the gapless nodes [22,23]. The resulting
state turns out to be a 3D generalization of the FQHE. Here
we have shown how to describe the same state from a different
viewpoint, that of a disordered CDW. Domain walls of the
period-two CDW carry massless Dirac fermion bound states,
which may be gapped without altering their half-quantized
Hall conductivity. The state one obtains is a non-Abelian
even-denominator FQH liquid, namely the TR-broken version
of the Pfaffian-antisemion state, discussed before in the con-
text of gapped surface states of 3D TI [51–58]. Stacking such
2D Pfaffian-antisemion liquids corresponds to a mean-field
description of the 3D FQH liquid state of Refs. [22,23].

In contrast, at all other values of the Weyl node sepa-
ration, the topological defects of the CDW order parameter
are vortices, which carry 1D chiral modes in their core. The
chirality of the mode is determined by the sign of the vorticity
and the modes cross zero energy at the momentum of the

corresponding (right- or left-handed) Weyl node. Such chi-
ral modes cannot be gapped, except by hybridizing modes
of opposite chirality, which necessarily breaks translational
symmetry since modes of opposite chirality exist at different
momenta. Thus Weyl semimetals at a general value of the
Weyl node separation, not equal to half the primitive recip-
rocal lattice vector, may not be gapped without explicitly
breaking the crystal translational symmetry.

It is interesting to note that the special nature of the
2Q = π Weyl semimetal is somewhat analogous to that of the
half-filled interacting electron liquid in 1D. In this case the
presence of Umklapp terms at half-filling leads, with strong
enough interactions, to an instability of the gapless Luttinger
liquid and the formation of a commensurate period-two CDW.
This analogy is not surprising, given that a Weyl semimetal
with 2Q = π , placed in an external magnetic field, maps
via the formation of the lowest Landau level, connecting the
nodes, precisely onto a 1D metal at half-filling [69].

The description of the 3D FQH liquid in terms of a disor-
dered CDW, proposed in this paper, makes it appear somewhat
less exotic and more accessible, compared to the description
based on a phase-incoherent superconductor. While this is
of course mostly an illusion, since the two descriptions are
equivalent, the recent experimental evidence for Weyl CDW
in (TaSe4)2I [27] gives one some hope that the 3D FQHE
may be realized experimentally in the future. A key advance
needed here is a magnetic Weyl semimetal material with a
pair of Weyl nodes, in which the node separation is tunable by
changing the magnetization.
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