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We investigate out-of-equilibrium dynamics in an excitonic insulator (EI) with a finite-momentum pairing
perturbed by a laser-pulse excitation and a sudden coupling to fermionic baths. The transient dynamics of
the excitonic order parameter is resolved using the full nonequilibrium Green’s function approach and the
generalized Kadanoff-Baym ansatz (GKBA) within the second-order Born approximation. The comparison
between the two approaches after a laser-pulse excitation shows a good agreement in the weak and the
intermediate photodoping regime. In contrast, the laser-pulse dynamics resolved by the GKBA does not show a
complete melting of the excitonic order after a strong excitation. Instead we observe persistent oscillations of the
excitonic order parameter with a predominant frequency given by the renormalized equilibrium band gap. This
anomalous behavior can be overcome within the GKBA formalism by coupling to an external bath, which leads
to a transition of the EI system toward the normal state. We analyze the long-time evolution of the system and
distinguish decay timescales related to dephasing and thermalization.
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I. INTRODUCTION

Quantum dynamics out of equilibrium can be used to
disentangle interesting mechanisms of materials’ properties,
such as origin of ordered states and their subsequent control.
Recent experimental progress in pump-probe-spectroscopical
approaches to excitonic insulator [1], charge-density wave
[2], and superconducting phases [3,4] has prompted extensive
research interest in both simulating [5–23] and measuring
[4,24–29] ultrafast quantum correlation effects far from equi-
librium.

Simulating these processes can be challenging since an
accurate but computationally feasible theoretical description
is required for simultaneously dealing with strong external
fields, many-particle interactions, and transient effects. The
nonequilibrium Green’s function (NEGF) approach can ad-
dress all these challenges [30–32]: It is not limited to weak
driving or linear response only, the many-particle correlations
can be systematically included by construction of self-energy
diagrams, and the real-time Green’s function gives access to
time-dependent observables such as densities, currents, to-
tal energies, and spectral functions. The drawback is in the
computational effort for solving the dynamical equations of
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motion for the Green’s function, which scale with the num-
ber of time steps cubed. A simplification to this issue was
proposed already over 30 years ago in Ref. [33] by reducing
the two-time propagation of the Green’s function to the time
propagation of a time-local density matrix via the generalized
Kadanoff-Baym ansatz (GKBA), thereby reducing the com-
putational scaling to the number of time steps squared. While
this approach was acknowledged and used already in the
1990s [34–38], its recent revival [39–56] has made it possible
to combine the NEGF approach with ab initio descriptions
of realistic atomic, molecular, and condensed matter sys-
tems [57–61]. Recent development has further allowed for an
equivalent but more efficient representation of the GKBA time
evolution with only a linear scaling in the number of time steps
[62–64].

In this work, we consider ultrafast many-particle correla-
tions in an excitonic-insulator system acting as a prototypical
ordered-phase material [1,7,10,65]. Out-of-equilibrium dy-
namics in such systems with a symmetry-broken ground state
has been shown to be extremely sensitive to all the intricacies
in the electronic and lattice structure [7,10,29,53,66]. We drive
the system out of equilibrium in two ways: (1) by an external
laser pulse, and (2) by coupling to fermionic baths. We com-
pare the resolved dynamics for the NEGF between the full
Kadanoff-Baym equations (KBEs) and the computationally
less expensive GKBA. We find that while the laser-pulse ex-
citation introduces rich transient dynamics with predominant
oscillations given by a renormalized band gap, the GKBA
description, in contrast to the KBE, does not damp to a sta-
tionary solution. This can be attributed to narrow spectral
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FIG. 1. Model system schematic. (a) One-dimensional chains
with nearest-neighbor hopping J , on-site energy ±Δ/2, and inter-
band Hubbard interaction U . (b) Noninteracting band structure of
the two separate chains with J = −1 and Δ = 2. Filling of the bands
is set by the chemical potential at zero (dashed line) describing a hole
pocket at the band edge for the lower band and an electron pocket at
the band center for the upper band (shaded areas).

features of the GKBA, the character of the approximation for
the propagators, and correlation-induced damping in the KBE
solution [67]. Coupling to fermionic baths instead opens up
a natural decay channel for the GKBA description as well,
and we observe clear damping and even a transition from
the excitonic to the normal state. We further characterize the
nature of this phase transition by identifying separate decay
timescales.

The paper is organized as follows. In Sec. II we introduce
the model system, and we outline the main equations of the
NEGF and GKBA approach. The out-of-equilibrium dynam-
ics due to external laser pulses and coupling to fermionic
baths are analyzed in Sec. III. In Sec. IV we summarize our
conclusions and discuss future prospects.

II. MODEL AND METHOD

A. Model for the excitonic insulator

We model the excitonic insulator (EI) by a two-band sys-
tem of spinless fermions [7,53]

Ĥ0 =
∑
kα

(εkα + Δα )d̂†
kα

d̂kα, (1)

where d̂ (†)
kα

are the annihilation (creation) operators for elec-
trons with momentum k in band α ∈ {0, 1} labeling the
two bands, and Δα is the associated crystal field leading
to the band gap Δ ≡ |Δ0 − Δ1|. In practice, we con-
sider a real-space structure of two one-dimensional chains
with periodic boundary conditions; see Fig. 1(a). Each of
these two real-space structures result in each of the two
bands as seen in Fig. 1(b). The creation and annihila-
tion operators in momentum and real space are related
by d̂ (†)

kα
= (1/

√
Nα )

∑
m exp[−

(+)ikm]ĉ(†)
mα , where mα labels the

real-space lattice site m of the chain α ∈ {0, 1}. For one-
dimensional chains with nearest-neighbor hopping Jα the
energy band dispersion is εkα = 2Jα cos k. In this picture,
the crystal field Δα can be readily identified as the local
on-site energy for the lattice points. In the real-space picture
the Hamiltonian in Eq. (1) then reads

Ĥ0 =
∑
mnα

h0
mα,nα ĉ†

mα ĉnα, (2)

where the matrix elements are chosen such that for nearest
neighbors in each chain h0

mα,nα = J and for on-site h0
mα,mα =

Δα with Δ0(1) = −
(+)Δ/2. For all calculations in the present

work, we set J = −1 and calculate energies in units of |J|
and times in units of |J|−1.

The electron-electron interaction is taken as an interband
Hubbard interaction [7,53]

Ĥint = U
∑

m

ĉ†
m0ĉ†

m0ĉm1ĉm1, (3)

introducing a local density-density interaction of strength U
for the electrons between the two bands. The electron-electron
interaction is the origin of excitonic pairing between an elec-
tron pocket at k = 0 and a hole pocket at k = π ; see Fig. 1(b).
The excitonic-insulator phase is determined by a finite order
parameter 〈d̂†

(k+π )0d̂k1〉 �= 0 which spontaneously breaks the
conservation of charge in each of the bands and the spatial
symmetry. We discuss the practical evaluation of the order
parameter in Sec. II D. The pairing introduces a finite hy-
bridization between the bands and opens a gap.

An external laser pulse driving the above system out of
equilibrium is modeled by a direct transition between the two
bands [7]

Ĥext(t ) = A(t )
∑

k

(d̂†
k1d̂k0 + H.c.), (4)

where we set the pulse shape as a Gaussian: A(t ) =
A sin[ω(t − tc)]e−4.6(t−tc )2/t2

c of amplitude A, frequency ω, and
centering tc = 2πnp/ω with np being the number of optical
cycles. Using the transformation introduced below Eq. (1) we
rewrite also Eq. (4) in real space. Since the laser-pulse term
couples the two bands at equal k points, using the property∑

k∈[−π,π ) eik(m−n) = δmn we obtain a straightforward replace-
ment

Ĥext(t ) = A(t )
∑

m

(ĉ†
m1ĉm0 + H.c.). (5)

The total Hamiltonian for the above setup combining the
kinetic, interaction, and external terms then reads

Ĥ = Ĥ0 + Ĥint + Ĥext. (6)

From now on, we use matrix representations of these
objects in terms of the one-particle states in the real-
space basis {|mα〉}: 〈mα|Ĥ0 + Ĥext(t )|nβ〉 = hmα,nβ (t ) and
〈mα|Ĥint|nβ〉 = vmα,nβ (t ). While the interaction term itself is
instantaneous, in Eq. (3), we allow the strength of it to be
time-dependent to describe adiabatic switching, which we will
discuss in Sec. III.

B. Time propagation of the nonequilibrium Green’s functions

We employ the nonequilibrium Green’s function (NEGF)
method where the Kadanoff-Baym equations are propagated
in time [30–32,68–81]. The key quantity in the formalism is
the one-particle Green’s function, which we write in the one-
particle basis of our model system,

Gmα,nβ (z, z′) = −i〈Tγ [ĉmα,H(z)ĉ†
nβ,H(z′)]〉, (7)

where z, z′ are time coordinates on the Keldysh contour γ with
the contour-time-ordering operator Tγ . The contour γ has
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a forward branch, z = t− ∈ [0,∞), and a backward branch,
z = t+ ∈ (∞, 0], on the real-time axis, and also a vertical
branch, z = −iτ ∈ [0,−iβ] on the imaginary axis; see, e.g.,
[31]. Here we set, without loss of generality, the contour start-
ing point at zero on the real-time axis, z ≡ t = 0. The creation
and annihilation operators are represented in the Heisenberg
picture, and the ensemble average, denoted by 〈· · · 〉, is taken
as a trace over the density matrix. The Green’s function matrix
G(z, z′) is the solution to the integro-differential equation of
motion (in matrix form)

[i∂z − h(z)]G(z, z′)

= δ(z, z′) +
∫

γ

dz̄ Σ[G](z, z̄)G(z̄, z′), (8)

where h(z) is the one-particle Hamiltonian for the system,
δ(z, z′) is a delta function on the Keldysh contour, and Σ[G]
is the self-energy kernel containing all the information about
many-particle and embedding effects. The integration is per-
formed over the Keldysh contour through the Langreth rules
[82,83]. Depending on the contour-time arguments, (z, z′), the
double-time functions appearing in Eq. (8) can be represented
in components: lesser (<), greater (>), retarded (R), advanced
(A), left (
), right (�), and Matsubara (M) [31]. The self-
energy kernel Σ[G] can be obtained from an underlying Φ

functional, Σ[G] = δΦ[G]/δG, to guarantee the satisfaction
of various macroscopic conservation laws [84], provided that
the equations of motion are solved self-consistently [85–88].

The Green’s function provides a direct access to sys-
tem observables such as densities and currents of the
out-of-equilibrium system. In particular, we are interested
in the time-dependent one-particle reduced density matrix
(TD1RDM) given by the time diagonal of the lesser Green’s
function, ρ(t ) ≡ −iG<(t, t ). At the equal-time limit on the
real-time axis, z = t−, z′ → t+, we obtain from Eq. (8) and its
adjoint [46,48,49,53]

d

dt
ρ(t ) + i[h(t ) + ΣHF(t ), ρ(t )] = −[I (t ) + H.c.], (9)

where we separated the self-energy, Σ (t, t ′) ≡
ΣHF(t )δ(t, t ′) + Σcorr(t, t ′), in time-local Hartree-Fock
(HF) and time-nonlocal correlation (corr) contributions, and
we also introduced the collision integral in terms of the
correlation part [46,48,49,53],

I (t ) =
∫ t

0
dt̄[Σ>

corr(t, t̄ )G<(t̄, t ) − Σ<
corr(t, t̄ )G>(t̄, t )]. (10)

We use the one-particle basis of our model system to write the
self-energy at the HF level [53,79]

(ΣHF)mα,nβ (t ) = δmnδαβ

∑
pζ

vmα,pζ (t )ρpζ ,pζ (t )

− vmα,nβ (t )ρnβ,mα (t ), (11)

and the correlation self-energy at the second-order Born (2B)
level [53,79]

(Σcorr )
≶
mα,nβ (t, t ′) =

∑
pζqη

vmα,pζ (t )vnβ,qη(t ′)G≷
qη,pζ (t ′, t )

× [
G≶

mα,nβ (t, t ′)G≶
pζ ,qη(t, t ′)

− G≶
mα,qη(t, t ′)G≶

pζ ,nβ (t, t ′)
]
. (12)

We note that since our model describes spinless fermions, the
spin-degeneracy factor [32,79], typically written for the direct
terms [first terms on the right-hand side of Eqs. (11) and (12)],
is here simply 1.

The combination of the equation of motion in Eq. (8)
and the expressions of the self-energies in Eqs. (11) and
(12) represents a closed set of equations for the full solution
based on KBEs. We solve these equations using the numerical
library NESSi [89]. In particular, we solve the problem in
momentum space and use a suitable MPI parallelization over
momentum points; see Ref. [7] for details. In the full KBE
solution, the collision integral in Eq. (10) also includes the
initial-correlation part on the imaginary branch of the Keldysh
contour ∼ ∫ β

0 dτΣ
�
corr(t, τ )G
(τ, t ) [89]. From now on, we

refer to this approach as 2B@KBE.
An alternative approach to close the equation of motion for

ρ in Eq. (9) is to employ the GKBA approximation [33,41]

G≶(t, t ′) ≈ ∓GR(t, t ′)ρ≶(t ′) ± ρ≶(t )GA(t, t ′), (13)

where we denoted ρ< ≡ ρ and ρ> ≡ 1 − ρ, and we represent
the retarded/advanced propagators at the HF level [41,44]

GR/A(t, t ′) = ∓iθ [±(t − t ′)]T e−i
∫ t

t ′ dt̄[h(t̄ )+ΣHF(t̄ )] (14)

with T being the chronological time-ordering operator. We
then use Eq. (13) in Eqs. (12) and (10), and then solve for
the TD1RDM in Eq. (9) by using a time-stepping algorithm
[53,88]. While the inclusion of initial correlations has been
shown to be possible also within GKBA [52,54,90,91], here
we adiabatically switch on the many-particle interactions and
only include the collision integral in the form of Eq. (10).
For efficient computation, we additionally use a recurrence
relation for constructing Eq. (14) due to its group property
[32,53], and we employ optimized matrix (tensor) operations
for the construction of the 2B self-energy [92]. From now on,
we refer to this approach as 2B@GKBA.

C. Inclusion of fermionic baths

So far we have considered isolated systems being exposed
to external drives locally within the system. Now we add a
contribution from a bath environment, e.g., a particle reservoir
or a biased electrode, described by [31,93,94]

Ĥbath(z) =
∑
kλ

εkλ(z)b̂†
kλ

b̂kλ, (15)

where kλ labels the kth basis function in the λth bath. The
bath energy dispersion depends on the Keldysh contour time
z [95,96]

εkλ(z) =
{
εkλ − μ, when z ≡ t < 0,

εkλ + Vλ(t ), when z ≡ t � 0,
(16)

where μ is the equilibrium chemical potential and Vλ(t ) is a
generic excitation, such as a bias voltage, taking place at z ≡
t = 0. The bath is coupled to the EI system by the coupling
Hamiltonian [31,93,94]

Ĥcoupling(z) =
∑
mαkλ

[Jmα,kλ(z)ĉ†
mα b̂kλ + H.c.], (17)

where Jmα,kλ are the coupling matrix elements between the
EI system and the bath, which in general also depend on
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the Keldysh contour time z. In this work, we consider the
“partitioned approach” [97,98] where the systems are brought
into contact at z ≡ t = 0. These contributions in Eqs. (15) and
(17) are then added to the total Hamiltonian in Eq. (6).

We consider electronic interactions only within the EI sys-
tem. Hence, for a noninteracting bath environment the relevant
Green’s functions are given by [31,93–95]

gR/A
kλ

(t, t ′) = ∓iθ [±(t − t ′)]e−i
∫ t

t ′ dt̄[εkλ+Vλ(t̄ )], (18)

g≶kλ
(t, t ′) = ±i f [±(εkλ − μ)]e−i

∫ t
t ′ dt̄[εkλ+Vλ(t̄ )], (19)

where f (x) = 1/(eβx + 1) is the Fermi function at inverse
temperature β, and we used f (−x) = 1 − f (x).

We may then readily write the retarded/advanced bath self-
energy, which is completely specified by the bath and coupling
Hamiltonians [31,93–95],

Σ
R/A
bath,λ

(t, t ′)

= e−iψλ(t,t ′ )
∫

dω

2π
eiω(t−t ′ )[Λλ(ω) ∓ iΓλ(ω)/2], (20)

where we introduced ψλ(t, t ′) ≡ ∫ t
t ′ dt̄Vλ(t̄ ) and [95]

(Λλ)mα,nβ (ω) =
∑

k

Jmα,kλP
(

1

ω − εkλ

)
Jkλ,nβ, (21)

(Γλ)mα,nβ (ω) = 2π
∑

k

Jmα,kλδ(ω − εkλ)Jkλ,nβ, (22)

and we used the Cauchy relation for the relative-time Fourier
transform of Eq. (18), 1/(ω − εkλ ± iη) = P (1/(ω − εkλ)) ∓
iπδ(ω − εkλ), with η being a positive infinitesimal and P
denoting the principal value [31]. It is important to notice
that the bath self-energy is represented in the basis of the
EI system because it describes the effect of “embedding”
the EI system into the bath environment. We now assume the
frequency content of the bath self-energy is much broader than
the energy scales in the EI system, known as the wide-band
approximation (WBA). This approximation is justified here
as we are concentrating on very low energy excitations within
the EI system at which the bath density of states is practically
featureless [99–102]. In the WBA, the level-width matrix be-
comes independent of frequency, Γλ(ω) ≈ Γλ, which means it
becomes time-local. Then, also the real part of the self-energy
in Eq. (21) vanishes due to Kramers-Kronig relations. Thus,
the retarded/advanced bath self-energy is obtained by further
summing over the bath index λ [31,93–95],

Σ
R/A
bath (t, t ′) =

∑
λ

Σ
R/A
bath,λ

(t, t ′) = ∓ i

2

∑
λ

Γλδ(t − t ′)

= ∓ i

2
Γ δ(t − t ′). (23)

Similarly, we obtain for the lesser/greater bath self-energy
[93,95,103]

Σ
≶
bath(t, t ′)

= ±i
∑

λ

Γλe−iψλ(t,t ′ )
∫

dω

2π
f [±(ω − μ)]e−iω(t−t ′ ). (24)

Due to the WBA, the frequency integral in Eq. (24) as such
is not convergent but we use a cutoff frequency, ωc, based on

the physical band edge of the bath given by the bath energy
dispersion: Γλ → Γλ(ω) = θ (ωc − |ω|)Γλ.

Since the retarded/advanced bath self-energy was obtained
as a time-local contribution in Eq. (23), it can directly be
included in the HF propagators in Eq. (14) [46,49]

GR/A(t, t ′) = ∓iθ [±(t − t ′)]T e−i
∫ t

t ′ dt̄[h(t̄ )+ΣHF(t̄ )∓iΓ/2]. (25)

The lesser/greater component of the bath self-energy in
Eq. (24), in contrast, appears in an additional collision integral
[46,49]

Ibath(t ) =
∫ t

0
dt̄[Σ>

bath(t, t̄ )G<(t̄, t ) − Σ<
bath(t, t̄ )G>(t̄, t )],

(26)

whose contribution is added to Eq. (10). Also, the GKBA
of Eq. (13) is used for the lesser/greater Green’s functions
in Eq. (26). Essentially, the role of the bath coupling could
be modeled by a simple damping factor in Eq. (25), but
for the sake of conservation laws it is important that these
quasiparticle contributions are consistently dealt with by also
considering the appropriate collision integral in Eq. (26)
[36,46].

D. Accessing physical observables

The TD1RDM, ρ(t ), as a solution to Eq. (9) naturally
contains the information about the single-particle density on
its diagonal, but also time-dependent expectation values of
any single-particle operator Ô may be extracted using it by
[104]

〈Ô〉(t ) = −i
∑
mn

Om,nρn,m(t ). (27)

In our model system, we consider excitonic pairing be-
tween an electron pocket of the upper band (around k =
0) and a hole pocket of the lower band (around k = ±π );
see Fig. 1(b). In practice, this means that in the EI phase
〈d̂†

(k+π )0d̂k1〉 �= 0. Therefore, we average this object over the

reduced Brillouin zone (RBZ),
∑

k∈[−π/2,π/2) ≡ ∑′
k , and de-

fine this as the excitonic order parameter [7,53]

φ(t ) ≡ 1

Nk

∑
k

′〈d̂†
(k+π )0d̂k1〉

= 2

N

N/2∑
m,n=1

(−1)m fmnρm,(n+N/2)(t ), (28)

where Nk is the number of k points in the RBZ, N is the total
number of real-space lattice points, and we introduced

fmn ≡ 1

Nk

∑
k

′eik(m−n) Nk→∞−→ sin
[

π
2 (m − n)

]
π
2 (m − n)

, (29)

where the limiting case applies for infinite lattice sites. In
practice, we evaluate the RBZ sum numerically, but in most
cases already N = 20 corresponds to the sinc function fairly
reasonably. On the second line of Eq. (28) we used the trans-
formation of the field operators between momentum and real
space, which also results in the alternating sign, (−1)m =
(eiπ )m. Momentum-averaged band populations could be ob-
tained similarly.
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FIG. 2. Energy- and momentum-resolved equilibrium spectral function for the (a) noninteracting system, and for the interacting systems
described at the (b) Hartree-Fock, (c) second Born level with the GKBA, and (d) second Born level with the full KBE. The EI system parameters
are Δ = 1.4, U = {0.0, 3.5}. The reduced Brillouin zone for the momentum axis is shown using backfolding. The noninteracting energy-band
structure is superimposed onto the noninteracting spectral function in panel (a) with solid lines.

The total energy in the system can be divided into
three contributions: (1) single-particle (or kinetic) energy
Esingle(t ) = Re Tr[h(t )ρ(t )], where h includes the single-
particle Hamiltonian and the external field; (2) HF en-
ergy EHF(t ) = 1

2 Re Tr[ΣHF(t )ρ(t )] corresponding to the
time-local part; and (3) correlation energy Ecorr(t ) =
− 1

2 Im Tr[I (t )] being the remaining part of the collision in-
tegral after removing the HF part [32]. While the effect of
exchanging energy between the EI system and the external
bath could be included in this description, we perform the
energy considerations only for the isolated system. The total
energy then reads

Etot(t ) = Esingle(t ) + EHF(t ) + Ecorr(t ). (30)

We can further calculate energy absorption during some time
interval by the difference

Eabs = Etot(tfinal) − Etot(tinitial ), (31)

where tfinal is, e.g., the total propagation time, and tinitial

the time when some external fields are being switched on.
Alternatively, this could also be evaluated from a Hellmann-
Feynman formula Eabs = ∫ tfinal

tinitial
dt ′∂t ′A(t ′)2Re

∑
k〈d̂†

k1d̂k0〉,
since the field depends explicitly on time but the expectation
value only implicitly.

The nonequilibrium spectral function is defined as [46]

A(t, t ′) ≡ i[GR(t, t ′) − GA(t, t ′)], (32)

which is a matrix in the one-particle states of our model sys-
tem. It is important to note that the GKBA in Eq. (13) satisfies
the exact condition GR − GA = G> − G<. We then calculate
a spatiotemporal Fourier transformation of the nonequilibrium
spectral function with respect to the real-space lattice coordi-
nates and the relative-time coordinate τ ≡ t − t ′ [104],

A(k, ω) = i

N

∑
mn

eik(m−n)
∫

dτeiωτ

×
[
G>

m,n

(
T + τ

2
, T − τ

2

)
−G<

m,n

(
T + τ

2
, T − τ

2

)]
,

(33)

where N is the total number of lattice points and T ≡ (t +
t ′)/2 is the center-of-time coordinate. In practice, we evaluate
it by setting T to half the total propagation time, when the
relative-time coordinate τ spans the maximal range diagonally
in the two-time plane. Equation (33) can be used to obtain
the full energy dispersion or the band structure. It is worth
mentioning that while the spectral features obtained this way
within the GKBA are limited by the choice of propagators
at the HF level [cf. Eq. (14)], the lesser and greater Green’s
functions still include effects at the 2B@GKBA level.

Using Eq. (33) we show the equilibrium spectral func-
tions of the EI system (with system parameters Δ = 1.4,
U = {0.0, 3.5}) in Fig. 2 using both the GKBA and the full
KBE approach. In the GKBA data we have used N = 24 as the
total number of lattice points; hence the energy bands consist
of discrete peaks, in contrast to the k-resolved KBE data in
Fig. 2(d). In the limit of infinite number of lattice sites, these
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t0

HF, no pulse

2B@GKBA, no pulse

HF + pulse

2B@GKBA + pulse

FIG. 3. Time evolution of the absolute value of the order parame-
ter |φ(t )| with and without the excitation for the HF and 2B@GKBA
propagation scheme. For the HF case the laser pulse is applied at
t = 0 while for the 2B@GKBA case the adiabatic preparation of the
correlated equilibrium state is performed first, and the laser pulse is
then applied at t = t0 ≡ 150|J|−1.
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would produce the continuum energy-band structure of the EI
system. In equilibrium we see the gap opening due to the ex-
citonic condensate; see Fig. 2(b). The energy axis is adjusted
with the equilibrium chemical potential to take the Hartree
shift into account. We also see that the 2B@GKBA equilib-
rium spectral function, obtained via the adiabatic switching
procedure to be discussed in the next section, is very similar
to the HF one: The density of states is modified slightly but the
overall structure remains. Importantly, the 2B@KBE spectral
features are more broadened compared to 2B@GKBA. We
have also checked by increasing the number of lattice points
that possible finite-size effects have qualitatively little effect in
the 2B@GKBA spectral function: For increased system size
the discrete peaks naturally fuse more together but the band
width and gap remain roughly similar. The qualitative differ-
ence between 2B@GKBA and 2B@KBE therefore depends
mostly on the retarded propagator: In 2B@KBE there is an
additional contribution coming from the frequency-dependent
retarded self-energy.

III. RESULTS

A. Driving with a laser pulse

For all calculations, we consider our system to be in the
EI phase by setting Δ = 1.4 and U = 3.5 [53]. In Fig. 3
we exemplify the generic procedure for the time-dependent
simulations. For the description of interactions at the HF
level, the initial equilibrium state can be obtained with a sep-
arate time-independent calculation [53], and consequently the
out-of-equilibrium behavior can readily be analyzed starting
from t = 0. Here, we are mainly interested in the descrip-
tion of interactions at the 2B@GKBA level, going beyond
the mean-field description. For this analysis, we first need to
prepare the correlated equilibrium state. This can be obtained
by an initial time evolution (t < t0) without external fields
but adiabatically switching on the many-particle interactions
in the 2B@GKBA self-energies [53]. After this, the out-of-
equilibrium behavior, due to a laser excitation for example,
can be studied (t � t0). We note in passing that the preparation
step may consume a considerable amount of computational
time [53], and it would be highly attractive to apply some
sort of restart protocol, e.g., of Refs. [52,54,90,91], for a
separate calculation starting at t = t0 including the initially
correlated state. However, we have found that numerous tests
(not shown) for this procedure result in nonstationary behav-
ior. We suspect the EI system considered here, possessing a
symmetry-broken ground state with nonzero coherences on
the off-diagonals of the density matrix [53], may not provide
an applicable equilibrium state, at least in the context of
Ref. [52].

Let us first look at a concrete example of the time evo-
lution at the HF or 2B@GKBA level. We fix the number of
optical cycles in the laser pulse for all simulations np = 2;
cf. Eq. (4). In Fig. 3, we see that for the HF evolution the
absolute value of the order parameter |φ(t )| remains constant
without the applied field and it is substantially reduced and
oscillating after the photoexcitation (A = 0.4, ω = 1.5). On
the level of 2B@GKBA, the adiabatic switching procedure
keeps the system in the EI phase, which is stationary without
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FIG. 4. Time evolution of the absolute value of the excitonic
order parameter |φ(t )| after applying a laser pulse with (a) fixed fre-
quency and varying amplitude, and (b) fixed amplitude and varying
frequency. (c) Fourier spectra of selected time-dependent data from
panels (a) and (b) for the 2B@GKBA propagation (full lines). The
Fourier spectrum for the HF solution is marked with the dashed
line, and HF2 represents the spectrum for the lattice model with
next-nearest-neighbor hopping; see text for details. The curves are
shifted vertically for clarity.

the applied field. This condition might change for different
values of U and Δ [53]. When we apply the laser excitation
the out-of-equilibrium dynamics is roughly similar in HF
and 2B@GKBA: In 2B@GKBA the oscillation frequency is
slightly increased compared to HF [see also Fig. 4(c) and the
consequent discussion later on]. Next, we will focus on the
2B@GKBA case and thoroughly analyze how the EI system’s
response depends on the laser excitation.

Stronger driving amplitude in the laser pulse expectedly
makes the initial transient response stronger. This can be
seen in Fig. 4(a) for t − t0 � 6 |J|−1 where the excitonic
order parameter decreases rapidly from its equilibrium value.
This, however, does not mean the excitonic condensate would
melt completely. Instead, the order parameter remains at
an oscillatory but nonzero steady-state value after the laser
pulse. The frequency of these steady-state oscillations is in-
dependent of the driving amplitude as can be seen from the
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FIG. 5. Comparison of the absolute value of the excitonic order
parameter |φ(t )| evolution within the 2B@GKBA (solid lines) and
the 2B@KBE (dashed lines) propagation schemes.

Fourier spectra in Fig. 4(c) and corresponds to the amplitude
mode excitations. The Fourier spectra are calculated using
Blackman-window filtering [105]. As we increase the exci-
tation strength, namely A � 1, the order parameter after the
photoexcitation is, somewhat counterintuitively, negligibly re-
duced. We will address this point more thoroughly later on.

The system expectedly responds more strongly to the reso-
nant driving. This is seen in Fig. 4(b) where we find the system
to be most in resonance with the driving frequency ω = 1.5.
However, while the 2B@GKBA solution properly describes
the resonance condition, it still retains its oscillatory character
because of the lack of damping in the HF propagators. The
oscillations of the excitonic order parameter after the laser ex-
citation are independent of the laser frequency as can be seen
from the Fourier spectra in Fig. 4(c). We also show the Fourier
spectra of the HF data (cf. Fig. 3). As we saw already in Fig. 3
the oscillation frequency in 2B@GKBA is slightly increased
compared to HF, from 2.8 to approximately 3. These values
can be attributed to the equilibrium system parameter for the
noninteracting band gap Δ = 1.4 as we see even harmonics
with frequencies 2nΔ (with n a positive integer) in the HF
spectrum. The oscillation can therefore be associated with the
crystal field; even though the band structure gets modified due

to the electron-electron interaction, cf. Fig. 2, the transient sig-
natures include the remnants of the crystal field. We can verify
this finding by breaking the symmetry of our lattice model by
introducing a next-nearest-neighbor hopping J ′ = J/2 [HF2
in Fig. 4(c)], in which case also the odd harmonics appear with
frequencies (2n + 1)Δ. In the 2B@GKBA data, the higher-
order harmonics are more suppressed while the basic resonant
frequency, related to a renormalized equilibrium band gap,
remains clearly visible in all cases independent of the laser
amplitude or frequency.

We compare the 2B@GKBA solution to that of the full
2B@KBE in Fig. 5. In the weak-excitation regime A � 1, the
excitonic order parameter is nonzero in the long-time limit
and its value roughly agrees between the 2B@GKBA and
2B@KBE results. However, the 2B@KBE solution shows a
considerably stronger damping than the one of 2B@GKBA.
This is due to the quasiparticle corrections beyond HF,
in contrast to the form in Eq. (14), and the consequent
correlation-induced damping [67]. For instance, if the driv-
ing frequency is slightly off-resonant, namely ω = 2.0, the
narrow spectral window of 2B@GKBA does not capture
as much of the weight as the more broadened 2B@KBE
which damps toward a slightly different steady-state value.
In the case of the resonant driving ω = 1.5, the reduction of
the order parameter is in an excellent agreement between the
2B@GKBA and 2B@KBE results. On the other hand, the dy-
namics is qualitatively different for strong excitation strengths
A � 1.0. While in the 2B@GKBA the order is negligibly
reduced, it is completely melted for the 2B@KBE propagation
scheme and the EI system undergoes a transition to the normal
state consistent with the GW level description reported in
Ref. [7].

The dependence on the driving amplitude presents the
main difference between the 2B@GKBA and the 2B@KBE
solution. Within the 2B@GKBA the steady-state value of
the order parameter may depend nontrivially on the driving
amplitude. For instance, for pulse frequency ω = 2 the order
parameter is maximally reduced around A = 0.6 in Fig. 4(a).
Higher-amplitude pulses seem not to break the electron-hole
pairs, keeping the excitonic order parameter roughly at its
equilibrium value. This means that how the laser pulse gets
absorbed into the EI system depends strongly on the width of
the spectral features, which are more narrow in 2B@GKBA
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FIG. 6. Energy-absorption spectrum (color map) in terms of the laser-pulse amplitude (horizontal axis) and frequency (vertical axis) for
(a) the 2B@GKBA and (b) the full 2B@KBE solutions. See text for the discussion of the dashed region.
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FIG. 7. Energy- and momentum-resolved equilibrium spectral function at the 2B@GKBA level with a constant dipolar transition term of
strength (a) A = 0.2, (b) A = 0.6, and (c) A = 2.0.

than in 2B@KBE; see Fig. 2. We analyze this behavior
more in detail in Fig. 6, where we show the energy absorp-
tion calculated using Eq. (31) as a function of the driving
amplitude and frequency for both the 2B@GKBA and the
full 2B@KBE solution. We have checked (not shown) that
possible finite-size effects in 2B@GKBA are negligible as
a larger number of lattice sites in the EI model leads to
qualitatively similar data. For both cases, we observe that for
smaller driving amplitudes (A � 1) the energy absorption is
expectedly maximal around the resonant frequency ω = 1.5
related to the renormalized equilibrium band gap; cf. Fig. 4.
However, for 2B@GKBA, if we follow a line at fixed fre-
quency, e.g., at ω = 1.5, we see that the energy absorption
oscillates with the driving amplitude. This is not the case for
the full 2B@KBE solution, where higher-amplitude pulses
straightforwardly lead to larger absorption. For the 2B@KBE
solution the moderately large electron-electron interaction
U = 3.5 gives already considerable broadening, resulting in
energy absorption and consequently melting of the excitonic
condensate at any amplitude A � 1.5 (cf. Fig. 4). On the other
hand, we may conclude that the 2B@GKBA description is
reasonable at weak fields close to resonance, but this picture
breaks down at stronger fields off-resonance due to nonlinear
absorption and higher-order scattering mechanisms.

An interesting observation in the analysis of the absorbed
energy is a softening of the absorption edge with an increased
excitation strength; see the dashed regions in Fig. 6. For A �
1.5 this onset of nonlinear absorption also seems consistent
between 2B@GKBA and 2B@KBE. We can understand this
phenomenon by analyzing a static problem with a constant
dipolar matrix element. Because the form of the excitation in
Eq. (4) introduces a direct dipolar transition matrix element,
〈d̂†

k1d̂k0〉, it pushes the lowest and highest bands away from
each other which, in turn, moves the backfolded bands in
the middle closer to each other; cf. Fig. 2(a). The electron-
electron interaction, on the other hand, introduces a further
coupling between the bands in the middle, 〈d̂†

(k+π )0d̂k1〉, lead-
ing to a competition between the excitonic order and the
dipolar matrix element. We can verify this behavior by look-
ing at the energy- and momentum-resolved spectral function

in Fig. 7. In this calculation, we consider the equilibrium
system supplemented with a constant dipolar transition A as
in Eq. (4), which then shows how the band structure would
be affected by this form of an excitation, in general. While
these equilibrium spectral functions do not exactly correspond
to the laser-pulse situation, they provide us with some in-
sight on the underlying mechanism. We see the gap closing
around A = 0.6, which is in this case the critical point where
the equilibrium system transforms from the excitonic to the
normal state. Higher transition amplitudes introduce simply
a rigid shift of the bands away from each other when the
electron-hole interaction is no longer binding them together. It
would also be feasible to calculate the nonequilibrium spectral
function due to the short laser-pulse excitation. However, due
to the competing mechanisms and in contrast to Fig. 7, it
would show a very rich and complex spectrum of multiple
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FIG. 8. Time evolution of the absolute value of the order param-
eter |φ(t )| with and without the application of the fermionic bath for
the HF and 2B@GKBA propagation scheme. For the HF case the
coupling to the bath is applied at t = 0 while for the 2B@GKBA
case the adiabatic preparation of the correlated equilibrium state is
performed first, and the bath coupling is applied at t = t0 ≡ 150|J|−1.
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FIG. 9. Time evolution of the excitonic order parameter after
the bath coupling with (a) fixed tunneling rate Γ = 0.1, fixed cou-
pling duration tbath = 10, and varying bias V ; (b) fixed tunneling
rate Γ = 0.1, fixed bias V = ±0.2U , and varying coupling duration
tbath; (c) fixed bias V = ±0, fixed coupling duration tbath = 50, and
varying tunneling rate Γ .

photon-assisted side bands, and as clear interpretation as in
Fig. 7 would be challenging.

B. Coupling to fermionic baths

We now consider each lattice site of the two chains in our
EI system to be coupled to two different baths with equal
coupling strength Jmα,kλ in Eq. (17). As the level width or
tunneling rate Γ in Eq. (22) depends not only on the coupling
strength but also on the bath energy dispersion, we investigate
the role of bath coupling by directly varying the strength of
Γ . The bath filling is modified by a bias Vλ(t ) in Eq. (16)
which we set to a constant value −

(+)V for the bath connected
to the α = 0 (α = 1) chain of the EI system. For the bath
environment we additionally fix β = 100 in Eq. (24). This
effectively resembles a zero-temperature limit at which the
adiabatic switching procedure is consistent.

The procedure for analyzing the dynamics induced by the
bath coupling is similar to the laser-pulse excitation in the
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FIG. 10. Exponential fits for the decay timescales of the exci-
tonic order parameter shown in Fig. 9(c). The short-dashed lines
are specified completely by ∼e−Γ t , while the long-dashed lines are
obtained by fitting to the flat part [except in panel (a)].

previous subsection. We first prepare the correlated equilib-
rium state by the adiabatic switching procedure [53] and then
suddenly bring the system into contact with the baths. The
excitonic order parameter responds to this external perturba-
tion as seen in Fig. 8. Also in this case, for a description
of the electronic correlations at the HF level only, the bath
coupling could be introduced without the preparation step,
and the corresponding dynamics shows only a straightforward
decay process depending on the coupling strength between
the EI system and the baths; see Fig. 8. This decay behavior
is drastically modified when the electronic correlations are
described at the 2B@GKBA level. Next, we will analyze this
in detail by looking at the dynamics after the bath coupling
at t0 = 150 when varying (1) the bias, (2) the bath-coupling
duration, and (3) the bath-coupling strength.

The bias changes the overall decay timescale of the ex-
citonic condensate. In Fig. 9(a) we fix the bath-coupling
strength Γ = 0.1 and the bath-coupling duration tbath = 10,
and we show the excitonic order parameter dynamics when
the bias is increased from V = ±0 to V = ±0.5U . The final
state can have nonzero excitonic order if the energy injected
by the bias is not large enough to break the electron-hole pairs
completely. However, even the bath coupling itself without
bias lowers the order parameter compared to the equilibrium
value. The initial transient at t − t0 < 2 |J|−1 is completely
specified by the bath-coupling strength, and the consequent
decay dynamics depends on the bias.

The bath-coupling duration does not change the overall de-
cay timescale of the excitonic condensate. In Fig. 9(b) we fix
the bath-coupling strength Γ = 0.1 and the bias V = ±0.2U ,
and we expose the EI system to the baths for varying dura-
tions. The initial transient on all the curves collapses onto one
decay process described by the bath-coupling strength and the
bias; see also Fig. 9(a). The final state can also in this case
have nonzero excitonic order if the bath exposure duration is
short enough, but a transition from the EI state to a normal
state is introduced for longer exposure durations.

Increasing the bath-coupling strength, while keeping the
bias and exposure duration fixed, makes the system un-
dergo a faster decay process toward the normal state; see
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FIG. 11. Decay timescale exponents (∼e−t/τ ) as a function of the
bias V and varying tunneling rate (a) Γ = 0.1, (b) Γ = 0.2, and
(c) Γ = 0.3. The statistical error bars are given by the numerical
fitting procedure; for all τde data points the error is smaller than the
marker size.

Fig. 9(c). This is understandable since stronger bath cou-
pling directly influences the exponential decay timescale in
Eq. (25). However, for weaker couplings the initial transient
shows competing mechanisms for breaking and recombining
electron-hole pairs. Interestingly, we also observe multiple
exponential decay timescales which we will analyze in detail
next.

We show the decay timescales of Fig. 9(c) separately in
Fig. 10 in logarithmic scale, and we see clearly that the
initial transient in all the cases is also here completely spec-
ified by the bath-coupling strength. We thereby refer to this
mechanism as dephasing [7,106,107]. A second exponential
decay process can be seen when the bath coupling is strong
enough to melt the excitonic condensate completely related to
thermalization [7,106,107]. In this case, the bias was fixed to
V = ±0, and the thermalization appears slower than dephas-
ing. However, as we have seen in Fig. 9(a) the bias will affect
the overall decay timescale, and increasing the bias can also
make the thermalization faster than dephasing. We will look
closer into this effect next.

In Fig. 11 we show the numerically extracted decay ex-
ponents from a wide selection of simulated decay processes
with varying bias and coupling. We see that the dephasing
timescale, τde, remains roughly constant (given directly by the

bath-coupling strength 1/τde ≈ Γ ) while the thermalization
timescale, τth, is affected by the bias. The trend here is consis-
tent with Fig. 9(a) where we observed that higher bias results
in faster decay. This is also similar to Ref. [7] where 1/τth

reportedly grows with the excitation strength.
We can gain some more insight into these decay timescales

by looking at the energy- and momentum-resolved nonequi-
librium spectral function in Fig. 12. Compared to the equilib-
rium spectral function in Fig. 2 the bath coupling expectedly
modifies the spectral features drastically. In Fig. 12(a) we see
that already with zero bias the coupled system’s gap starts
closing. For larger bias [Figs. 12(b) and 12(c)] the system
evidently transforms toward the normal state; cf. Fig. 2(a).
It is also interesting to note that compared to the excitation
in Fig. 7, the spectral properties in the case of bath coupling,
Fig. 12, behave more straightforwardly as there seem to be no
competing effects. This picture also translates into the clean
decay dynamics of the excitonic condensate seen in Fig. 9 and
the disentangled decay timescales seen in Figs. 10 and 11.

IV. CONCLUSION

We have considered the out-of-equilibrium dynamics in
a prototypical ordered-phase material, namely the excitonic
insulator. We have studied out-of-equilibrium conditions due
to a laser-pulse excitation and coupling the EI system to a
fermionic bath. The calculations based on the nonequilibrium
Green’s function and the generalized Kadanoff-Baym ansatz
showed that the excited EI system may undergo a transition
toward the normal state when coupled to a bath. However,
the isolated EI system perturbed by a laser pulse showed
persistent oscillations in the excitonic order parameter but the
excitonic order was found to not melt completely. The analysis
of the absorbed energy showed a good agreement between
the GKBA and KBE in the weak-photoexcitation regime.
However, for strong excitations the GKBA underestimates the
energy absorbed by the pulse.

The character of the dynamics of the EI system, whether
excited by a laser pulse or coupled to a bath, was attributed
to the narrow spectral features of the GKBA formalism where
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no proper thermalization channel was found to be present for
isolated systems, at least on the level of Hartree-Fock prop-
agators. The bath introduces a suitable decay channel, and
we identified separate decay timescales for the excitonic order
parameter related to dephasing and thermalization. While we
have concentrated on the EI system, we expect our findings to
also be general for other symmetry-broken or ordered-phase
systems, including, e.g., superconducting [9,11,12,108,109]
or charge-density-wave order [110–112].

The present implementation of the interacting system em-
bedded in a bath environment, and the subsequent solution
of the dynamical equations of motion of the NEGF at the
level of the GKBA, allows for addressing simultaneously long
timescales and large systems. For the EI system considered in
this work we have tested that increased system sizes up to
N = 64 remain computationally feasible (∼18 CPU hours for
each time evolution) compared to the N = 24 case (∼3 CPU
hours). For future work, we therefore highlight the possibility
of investigating time-resolved quantum transport in relatively

large junctions with electronic correlations [46,48,58]. In ad-
dition, addressing these effects could provide another route
for strong indications of exciton condensation since enhanced
tunneling currents in electron-hole double bilayer sheets of
graphene and transition-metal dichalcogenides have recently
been observed [113–115]. The GKBA approach for time-
resolved quantum transport could also prove pivotal in, e.g.,
addressing transiently emerging topological phenomena in
Majorana tunnel junctions [116] with long-lasting character-
istic current oscillations.
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