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Linear and quadratic magnetoresistance in the semimetal SiP2
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Multiple mechanisms for extremely large magnetoresistance (XMR) found in many topologically
nontrivial/trivial semimetals have been theoretically proposed, but experimentally it is unclear which mech-
anism is responsible in a particular sample. In this paper, by the combination of band structure calculations,
numerical simulations of magnetoresistance (MR), Hall resistivity, and de Haas-van Alphen (dHvA) oscillation
measurements, we studied the MR anisotropy of SiP2 which is verified to be a topologically trivial, incomplete
compensation semimetal. It was found that as magnetic field H is applied along the a axis, the MR exhibits
an unsaturated nearly linear H dependence, which was argued to arise from incomplete carriers compensation.
For the H ‖ [101] orientation, an unsaturated nearly quadratic H dependence of MR up to 5.88 × 104% (at
1.8 K, 31.2 T) and field-induced up-turn behavior in resistivity were observed, which was suggested due to the
existence of hole open orbits extending along the kx direction. Good agreement of the experimental results with
the simulations based on the calculated Fermi surface (FS) indicates that the topology of FS plays an important
role in its MR.

DOI: 10.1103/PhysRevB.102.115145

I. INTRODUCTION

Since magnetoresistance (MR) has a great potential in ap-
plications such as hard drives [1] and magnetic sensors [2], the
search for new materials with large MR has attracted much
attention in the past decades. Though the well-known giant
magnetoresistance (GMR) in magnetic multilayers [3,4] and
the colossal magnetoresistance (CMR) in perovskite mangan-
ites [5] have been widely exploited, recent discoveries of the
materials with extremely large magnetoresistance (XMR) up
to 106% rekindled the enthusiasm for MR research. XMR has
been observed in elements and compounds, such as Bi [6],
graphite [7], α-Ga [8], Dirac semimetal Na3Bi [9,10], and
Cd3As2 [11,12], Weyl semimetals of TaAs family [13–16],
WTe2 [17], and β-WP2 [18–20], transition metal dipnictides
such as TPn2 (T = Ta and Nb, Pn = P, As and Sb) [21–27],
α-WP2 [28], rock salt rare earth compound LaBi/Sb [29–31]
and others.

Several mechanisms have been proposed to explain the
XMR found in these semimetals including topologically non-
trivial or trivial materials. Nontrivial band topology inducing
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linear band dispersion is believed to be responsible for the
linear field dependent MR such as in Cd3As2 [11,12]. The
classical carrier compensation scenario can be used to ex-
plain the nonsaturating quadratic dependence of MR such as
in WTe2 [17]. An angle-resolved photoemission spectrom-
etry (ARPES) measurement on WTe2 [32] confirmed that
the temperature dependent band structure is consistent with
the MR measurements, thus giving evidence to support the
carrier compensation theory. However, although LaAs shows
nearly perfect carrier compensation, the magnitude of MR is
much smaller, which is believed to be caused by the electron
and hole mobility mismatch [33]. Recent ARPES results on
MoTe2, which has a crystal structure identical to that of WTe2,
illustrated that the net size of hole pockets is larger than the net
size of electron pockets, indicating the compensation mech-
anism is invalid for the nonsaturating XMR of MoTe2 [34].
YSb lacks topological protection and perfect electron-hole
compensation but also exhibits XMR behavior [35]. A small
difference between the concentrations of electrons and holes
will lead to saturation of MR at high magnetic field such as in
Bi [6] and graphite [7]. Zhang et al. [36] showed that MR has a
quadratic relation in weak magnetic field, but saturates in high
field if the FS is closed and the saturation value is determined
by the difference in charge carrier concentrations. The other
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mechanism attributes the XMR to open-orbit trajectories of
charge carriers driven by Lorentz force under magnetic field as
a result of nonclosed Fermi surface (FS) [37–39]. Experimen-
tally, it is difficult to identify which mechanism is responsible
for MR in a particular sample. It is necessary to make a clear
connection between experimental observations and theoretical
models.

SiP2 crystallizes in a cubic pyrite-type structure [40] with
space group Pa3̄ and was recently discovered to be a promis-
ing negative electrode material for Li- and Na-ion batteries
due to its outstanding capacity [41]. In contrast to the isostruc-
tural NiP2, PtP2, or pyrite itself (FeS2) being semiconductors,
SiP2 is characterized as a semimetal with nearly filled Bril-
louin zone [40]. To understand its semimetal character, the
electronic structure of SiP2 had been calculated [42–45]. It
was suggested by Bachhuber et al. [42] that a flat band seg-
ment occurs between the � and X point, resulting in no gap
formed.

In this paper, we have successfully grown high-quality
SiP2 crystals, measured their longitudinal resistivity with var-
ious magnetic field orientations, Hall resistivity, de Haas-van
Alphen (dHvA) oscillations occurring on isothermal magne-
tization, and calculated its band structure. The results show
SiP2 is a topologically trivial and incomplete compensation
semimetal. It was found that the MR exhibits remarkable
anisotropy. As H is applied in the a axis, a nonsaturating
linear field dependence of MR with relatively small value
(5.96 × 102% at 2 K, 9 T) occurs. While H is applied in
the [101] direction, MR (2.17 × 103% at 2 K, 9 T) exhibits
a nonsaturating quadratic H dependence. The mechanisms of
the two types of MR will be discussed.

II. EXPERIMENTAL METHODS AND CALCULATIONS

Single crystals of SiP2 were grown by a chemical vapor
transport method. High purity Si and P powder were mixed
in the mole ratio 1 : 2, then sealed in an evacuated silica tube
with PBr5 producing enough Br2 as a transport agent. The
quartz tube was placed in a tube furnace with a temperature
gradient of 1200 ◦C to 800 ◦C for one week. The black shiny
SiP2 crystals were obtained at the cool end of the silica tube.
A single crystal with dimensions of 1 × 1 × 0.15 mm3 and
crystalline cleavage surface (200) [see in Fig. 1(b)] was se-
lected for transport and magnetic measurements. The crystal
structure was determined by x-ray diffraction (XRD) mea-
surements using a PANalytical diffractometer. The powder
XRD pattern is shown in Fig. 1(c), which confirms that
SiP2 crystallizes in a pyrite-type structure. The fit to XRD
data yields the lattice parameters: a = b = c = 5.704(9) Å
(weight profile factor Rwp = 9.96% and the goodness-of-
fit χ2 = 0.9229). A standard four-probe method was used
for electrical resistivity measurements on a physical prop-
erty measurement system (Quantum Design, PPMS-9 T) and
a water-cooled magnet with the highest magnetic field of
31.2 T. The magnetization measurements were performed on
a magnetic property measurement system (Quantum Design,
MPMS-7 T).

Meanwhile, we performed numerical simulations based
on the Boltzmann transport theory and first-principles cal-
culations [36] that can be compared with the results of

FIG. 1. (a) Crystal structure of SiP2. (b) XRD pattern and the
photograph (inset) of a SiP2 crystal. (c) XRD pattern of powder
obtained by grinding SiP2 single crystals. Its Rietveld refinement is
shown by the red solid line. (d) Calculated band structure of SiP2

without spin-orbit coupling (SOC) (no large difference with SOC due
to its light elements, not shown). (e) and (f) 3D view of hole-type FSs
and (g) electron-type FSs. (h) Temperature dependence of resistivity
ρ(T ) of a SiP2 crystal measured at 0 T and 9 T. The inset is the
enlarged low temperature ρ(T ) data at 0 T, and the red line is WLE
fitting. (i) Schematic diagram of MR measurements, the current is
applied along the b axis and the field angle θ is given in the a-c
plane. (j) The angular polar plot of resistivity at 2 K measured under
various fields.

experimental measurements. The band structure is calculated
using the generalized gradient approximation [46] within the
VASP package [47,48]. The Fermi surface and transport calcu-
lation are performed with WANNIERTOOLS [49] package which
is based on the maximally localized Wannier function tight-
binding model [50–52] constructed by using the WANNIER90
[53] package.
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Within the relaxation time approximation, the band-wise
conductivity tensor σ is calculated by solving the Boltzmann
equation in the presence of an applied magnetic field as
[36,54,55],

σ
(n)
i j (B) = e2

4π3

∫
dkτnvn(k)v̄n(k)

(
−∂ f

∂ε

)
ε=εn (k)

, (1)

where e is the electron charge, n is the band index, τn is the
relaxation time of nth band that is assumed to be independent
on the wave vector k, f is the Fermi-Dirac distribution, vn(k)
is the velocity defined by the gradient of band energy,

vn(k) = 1

h̄
∇kεn(k), (2)

and v̄n(k) is the weighted average of velocity over the past
history of the charge carrier,

v̄n(k) =
∫ 0

−∞

dt

τn
e

t
τn vn(kn(t )). (3)

The orbital motion of charge carriers in applied magnetic field
causes the time evolution of kn(t), written as,

dkn(t )

dt
= − e

h̄
vn(kn(t )) × B (4)

with kn(0) = k. The total conductivity is the sum of band-
wise conductivities, i.e., σi j = ∑

n σ
(n)
i j , which is then inverted

to obtain the resistivity tensor ρ̂ = σ̂−1.

III. RESULTS AND DISCUSSIONS

In order to explore the role of the Fermi surface topology
in MR, we calculated the band structure and FS of SiP2,
as shown in Figs. 1(d)–1(g). The FS is composed of two
hole pockets near the � point of P-3p character and four
electron pockets located at the R point of Si-3s character,
exhibiting three-dimensional (3D) nature. The existence of
both hole and electron pockets of the FS is consistent with
SiP2 being a semimetal and the calculation results reported by
Bachhuber et al. [42]. In addition, it should be pointed out
that no crossing between the conduction and valence bands
emerges in the calculated band structure and all FS sheets have
zero Chern number, indicating that SiP2 is a topologically
trivial semimetal.

Figure 1(h) shows the temperature dependence of resis-
tivity ρ(T ) measured with current I along the b axis and at
both magnetic field μ0H = 0 T and 9 T applied along the
a axis, respectively. At μ0H = 0 T, the resistivity decreases
monotonously with decreasing temperature above 15 K, and
reaches a minimum at 15 K [see Fig. 1(h), inset], then
increases slightly at low temperature. We suggest that the
emergence of minimum at T = 15 K in ρ(T ) may result
from the well-known weak localization effect (WLE) [56–58],
which arises from the carriers backscattered coherently by
randomly distributed disorder existing in the crystals and had
been used to explain a similar behavior in some oxides, such
as SrRuO3 [59] and LaNiO3 [60] thin films. As discussed
by Herranz et al. [59,60], we fitted the ρ(T ) data at lower
temperatures by using the equation [59,60]:

ρ = 1

σ0 + aT 1/2
+ bT 2. (5)

The first term is related to quantum corrections to the
conductivity in 3D systems; the second term in T 2 is included
to extend analytical description to higher temperatures. As
shown in the inset of Fig. 1(h), Eq. (1) can well describe
the ρ(T ) data at low temperatures with the fitting parameters
σ0 = 6.1 × 105 
−1 cm−1, a = 7.26 × 104 
−1 cm−1 K−1/2,
and b = 4.37 × 10−10 
 cm K−2. We note that no peak in
MR at H = 0 T emerges in our SiP2 crystals, which appears
in some thin film samples with WLE [61–63]. The WLE
results in a relatively low residual resistivity ratio (RRR)
= ρ(300 K)/ρ(2 K) ≈ 45. At μ0H = 9 T, ρ(T ) exhibit a
metallic behavior in the whole temperature range (2–300 K),
and the resistivity is remarkably enhanced, even at 300 K,
implying that large MR occurs in this nonmagnetic semimetal.

Then, we measured the resistivity anisotropy at 2 K in
μ0H = 3, 5, 7, and 9 T with I along the b axis and by
rotating the magnetic field H in the a-c plane [see Fig. 1(i)].
Figure 1(j) shows the angular resistivity polar plot, which
exhibits a fourfold symmetry, i.e., ρ(θ ) = ρ(θ + π/2), the
resistivity grows quickly from a minimum at θ = 0◦ (H ‖ a
axis) to a maximum at θ = 45◦ [H ⊥ (101) plane], and then
decreases rapidly to another minimum at θ = 90◦ (H ‖ c
axis), which is consistent with the cubic structure of SiP2

crystal. As we know, the resistivity anisotropy reflects the
symmetry of the FS projected onto the plane perpendicular to
current. Compared with Cu crystal, a representative material
[36] also crystallizing in cubic structure, SiP2 has a simpler
FS and provides a clearer platform for studying MR mech-
anism based on FS topology. In order to reveal the physics
underlying the MR anisotropy, we measured both the field and
temperature dependencies of resistivity for the magnetic field
orientations corresponding to extrema points marked by A and
B in Fig. 1(j).

As H is applied along the a axis [θ = 0◦, the A point in
Fig. 1(j)] with a minimum resistivity relative to other ori-
entations, the ρ(T ) measured at various fields is shown in
Fig. 2(a). Although the resistivity is remarkably enhanced
by magnetic field at lower temperatures, the field-induced
up-turn was not observed, which is a typical behavior for
many trivial or nontrivial semimetals with XMR [28,64,65].
The normalized MR, with the conventional definition MR =
�ρ

ρ(0) = [ ρ(H )−ρ(0)
ρ(0) ] × 100%, has the same temperature depen-

dence at different magnetic fields [see Fig. 2(b)], excluding
the existence of a magnetic field-dependent gap. Figure 2(c)
shows the MR as a function of field at various temperatures.
The MR reaches 5.96 × 102% at 2 K and 9 T and does not
show any sign of saturation up to the highest field in PPMS.
The MR can be described by the Kohler scaling law [64,66]:

MR = �ρxx(T, H)

ρ0(T)
= α

[
μ0H

ρxx(0)

]m

. (6)

As shown in Fig. 2(d), all MR data from 2 to 100 K
collapse onto a single line plotted as MR ∼H/ρ(0) curve,
with α = 56.4 (μ
 cm/T)1.2 and m = 1.2 obtained by fitting,
indicating that MR has a nearly linear field dependence. To
understand this nearly linear magnetic field dependence, we
plot the representative orbits in Figs. 3(a)–3(d). The circular
orbits in Fig. 3(a) and the orbits in Figs. 3(b)–3(d) can be
attributed to closed electron (in green) and hole (in red) orbits.
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FIG. 2. (a) Temperature dependence of resistivity measured at
various magnetic fields applied along the a axis. (b) The normalized
MR vs temperature under various magnetic fields. The inset is MR as
a function of temperature. (c) MR of SiP2 measured under different
temperatures with the field along the a axis. (d) Kohler scaling anal-
ysis on the MR data measured on PPMS, the solid red line indicates
the fitting of Kohler’s rule with m = 1.2. (e) Field dependence of
MR of SiP2 measured near θ = 0◦ (±7◦, see the text)at different
temperatures up to 31.2 T. (f) Kohler scaling analysis on the MR
data measured on a water cooled magnet, the solid red line indicates
the fitting of Kohler’s rule with m = 1.5.

But the squarelike orbits [indicated by the green dashed line in
Fig. 3(a)] are more complex, since they originate from joining
the hole pocket fragments in the adjacent periodic replicas
of the Brillouin zone. However, these squarelike orbits are
electron orbits rather than hole orbits, since they enclose
filled states. Therefore, the perfect compensation between the
electron and hole charge carriers is altered upon applying
magnetic field oriented along the a axis (θ = 0◦). The incom-
plete compensation induces the departure of resistivity from
the ideal parabolic to nearly linear scaling.

On the other hand, for this particular magnetic field orien-
tation, incomplete compensation of the two kinds of charge
carriers was confirmed by the Hall resistivity measurements.
As shown in Fig. 4(a), the nonlinear field dependence of Hall
resistivity, ρxy(H ), measured at various temperatures with
H ‖ a axis, indicates its multibands behavior. We fitted the
Hall conductivity data [see Fig. 4(b)] by using the two-band
model given by [66]:

σxy = − ρxy

ρ2
xx + ρ2

xy

= eB

[
nhμ

2
h

1 + μ2
hB2

− neμ
2
e

1 + μ2
eB2

]
, (7)

FIG. 3. Typical cross-sections of the FS of SiP2 in kx-ky plane
corresponding to (a) kz = 0, (b) kz = 0.2π/a, (c) kz = 0.5π/a,
(d) kz = π/a. Red and green dashed lines highlight the closed hole
and electron orbits, respectively. The black dashed squares indicate
the first Brillouin zone.

where nh (ne) and μh (μe) are the hole (electron) carrier
concentrations and mobilities, respectively. The obtained nh

(ne) and μh (μe) as a function of temperature are plotted in
Fig. 4(c) and Fig. 4(d), respectively. It was found that nh

increases with decreasing temperature while ne varies less
with temperature. It is obvious that nh is larger than ne in
the whole temperature range, such as nh = 1.62 × 1020 cm−3

FIG. 4. (a) Field dependence of Hall resistivity ρxy measured at
various temperatures (H ‖ a axis). (b) Several σxy(H ) data at various
temperatures with the fitting lines by using the two-band model (see
text). (c) and (d) Temperature dependence of carrier concentrations
and mobilities, respectively.
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and ne = 3.22 × 1019 cm−3 at 2 K, implying the incom-
plete compensation of both carriers. Such nh (ne) values are
similar to that in most semimetals, but higher than that in
Dirac semimetals Cd3As2 [12], Na3Bi [10]. The μe increases
with decreasing temperature at first, reaches a maximum,
1.74 × 104 cm2 V−1 s−1, at 10 K, then drops, while the μh

changes with temperature, also having a maximum near 10 K.
It is important that μe is obviously larger than μh in the whole
temperature range, such as μe = 1.53 × 104 cm2 V−1 s−1,
μh = 0.28 × 104 cm2 V−1 s−1 at 2 K, shown in Fig. 4(d).
In our SiP2 crystals, the cooperative action of a substan-
tial difference between electron and hole mobility and a
moderate carrier compensation might contribute to the MR,
similar to the case reported by He et al. [35] for YSb, which
also lacks topological protection and perfect electron-hole
compensation.

According to the classical two-band model [38], which
does not consider the details of the topology of FSs and
predicts a parabolic field dependence of MR in a compen-
sated semimetal, a small difference of the electrons and holes
densities will cause the MR to eventually saturate at higher
magnetic field, such as Bi [6] and graphite [7]. In order to
check the behaviors of MR at higher magnetic fields, we mea-
sured again the MR using a water-cooled magnet up to 31.2 T.
Figure 2(e) presents the MR as a function of magnetic field up
to 31.2 T at 1.8, 4, 8, and 10 K; the MR reaches 1.90 × 104%
at 1.8 K and 31.2 T and does not show any sign of saturation
up to 31.2 T. The MR also follows the Kohler scaling law
described in Eq. (6) with a power exponent m = 1.5, as shown
in Fig. 2(f), rather than m = 1.2 in the lower field region
(μ0H < 9 T), which may result from the angular deviation
(±7◦) of magnetic field orientation, due to the rotation motor
limitation in our water-cooled magnet. As shown in Fig. 1(j)
and the following calculation (Fig. 7), the MR is very sensitive
to the magnetic field orientation as H is applied near the a
axis, i.e., a small angular deviation near θ = 0◦ [A point in
Fig. 1(j)] results in a large change in MR behavior. Another,
obvious Shubnikov-de Haas (SdH) oscillations, can be seen
at higher fields in the MR vs μ0H curves shown in Fig. 2(e).
Fast Fourier transform (FFT) analysis reveals five frequencies,
Fα (59.6 T), Fβ (78.4 T), Fγ (257.1 T), Fη (608.4 T), and
Fδ (928.3 T), as shown in Fig. S1 (see the Supplemental
Material [67]), which are consistent with those obtained from
the de Haas-van Alphen (dHvA) oscillations measurements as
discussed as follows, except for the new observed Fδ , which
confirms the existence of S3 closed pocket [see Fig. 3(a)]. The
details are discussed in the Supplemental Material [67].

As H is applied along the [101] direction [θ = 45◦, the
B point in Fig. 1(j)] with a maximum MR, the ρ(T ) mea-
sured at various fields is shown in Fig. 5(a). The resistivity
is remarkably enhanced by magnetic field at lower tempera-
tures, and the field-induced up-turn was observed, in contrast
with that observed for the H ‖ a axis, but similar to that
in most materials with XMR. The normalized MR also has
the same temperature dependence at various fields, as shown
in Fig. 5(b). Figure 5(c) displays the MR as a function of
magnetic field at various temperatures, which reaches 2.17 ×
103% at 2 K and 9 T, three times larger than that for the H ‖ a
axis, and does not show any sign of saturation too. The MR

FIG. 5. (a) Temperature dependence of resistivity measured with
H ‖ [101]. (b) Normalized MR versus temperature at various mag-
netic fields. The inset is MR as a function of temperature. (c) Field
dependence of MR of SiP2 measured at different temperatures. The
inset illustrates the direction of H and I . (d) Kohler scaling plots
for the MR data, the solid red line indicates the fitting of Kohler’s
rule with m = 1.8. The inset shows the field dependence of MR of
SiP2 measured near θ = 45◦ at different temperatures up to 31.2 T
with m = 1.9.

FIG. 6. Typical cross sections of the FS of SiP2 projected onto
the (101) plane. The horizontal axis corresponds to the kx direc-
tion while the vertical axis is parallel to [101̄]. The plane in panel
(a) passes through the � point, while the planes in panels (b), (c), and
(d) pass through points (0, 0.1π/a, 0.1π/a), (0, 0.5π/a, 0.5π/a),
and (0, 0.9π/a, 0.9π/a), respectively. The green dashed lines show
closed electron orbits while the red dashed lines indicate open orbits
along the kx direction. The black dashed squares indicate the first
Brillouin zone.
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FIG. 7. (a) Calculated anisotropy of resistivity ρxx for magnetic
field rotated in the a-c plane agrees well with experiment results in
Fig. 1(j). (b) Magnetoresistivity MR as a function of the magnitude
of magnetic field for the four directions indicated by θ . The resistivity
at θ = 45◦ is scaled by a factor of 0.25 in order to make this curve
visible.

can be described by the Kohler scaling law in Eq. (6) [see
Fig. 5(d)] with the fitting parameters α = 68.4 (μ
 cm/T)1.8

and m = 1.8. The nearly quadratic field dependence of MR
and the field-induced up-turn behavior are the common char-
acteristics for most topologically nontrivial/trivial semimetals
with XMR, such as WTe2 [64], α-WP2 [28], β-WP2 [18–20],
and α-Ga [8] et al., which is usually attributed to the perfect
electron-hole compensation. However, it is obvious that this
condition is not satisfied in our SiP2 crystals. We check the
topology of the FS projected onto the plane perpendicular to
[101], as plotted in Figs. 6(a)–6(d) for different planes. It is
clear that the hole open orbits extending along the kx direction
emerge. We believe that MR ∝ H1.8 for this magnetic field
orientation is due to the existence of these open orbits, as
discussed by Zhang et al. [36] for cubic Cu crystals. Also, con-
sidering the prediction of MR to saturate at higher magnetic
field in the classical two-band model, as discussed above, we
also measured the MR up to 31.2 T using a water-cooled
magnet, as H is applied along the [101] direction. As shown
in the inset in Fig. 5(d), it was found that the MR reaches
5.88 × 104% at 1.8 K and 31.2 T, does not show any sign of
saturation up to 31.2 T, too, and follows the Kohler scaling law
with m = 1.9, close to m = 1.8 obtained from the data mea-
sured on PPMS (< 9 T). It should be pointed out that the MR
is not sensitive to the magnetic field orientation as H is applied
near the [101] direction (θ = 45◦), as shown in Fig. 1(j) and
the following calculation, in contrast to the case when H along
near the a axis (θ = 0◦), although the angular deviation near
θ = 45◦ occurs also in the water-cooled magnet. Another, we
note that obvious SdH oscillations emerge also in the MR vs
μ0H curves at higher fields, as shown in the inset of Fig. 5(d).
We made the FFT analysis to these oscillations, the details
are discussed in the Supplemental Material [67]. From the
above results, we conclude that the linear MR for H ‖ a axis
is attributed to incomplete carriers compensation, while the
quadratic MR for H ‖ [101] results from the existence of hole
open orbits.

Figure 7 shows our numerical simulation results for the
resistivity anisotropy and the magnetic field dependence of
MR by combining the FS discussed above with the Boltz-
mann transport theory approach based on the semiclassical
model and the relaxation time approximation. It is clear that

FIG. 8. (a) The isothermal magnetization M(H ) data with dHvA
oscillations measured at various temperatures with H applied along
the a axis. (b) The FFT spectra of the oscillations at various tempera-
tures. (c) Temperature dependence of the FFT amplitude for the four
main oscillation frequencies and fitting by thermal damping relation.
(d) The fitting of dHvA oscillations at 2 K by the four-bands LK
formula. (e)The filtered waves of the four frequencies. (f) LL index
fan diagram for the four filtered frequencies, respectively.

the calculated anisotropy of resistivity for H rotated in the
a-c plane agrees well with the measuring results shown in
Fig. 1(j). The calculated magnetic field dependence of MR
also exhibits a linear behavior [see Fig. 7(b)], as H oriented
along the a axis (θ = 0◦), i.e., MR has H1.0 scaling. Moreover,
in case there is a misalignment of the H relative to the a axis,
our calculations for H tilting by a small angle, such as from
θ = 3◦ to θ = 6◦, show that the magnetic field dependence of
MR changes from H1.1 to H1.4, as shown in Fig. 7(b). All
these calculated MR results for SiP2 crystal, including the
MR ∝ H1.9 [see Fig. 7(b)] for H applied in [101] direction
(θ = 45◦), are well consistent with the experimental results
discussed above, which indicates that the topology of FS plays
the crucial role in its MR.

Finally, in order to obtain additional information on the
electronic structure, we measured the dHvA quantum oscil-
lations in the isothermal magnetization, M(H ), for a SiP2

crystal up to 7 T for H ‖ a axis orientation. As shown in
Fig. 8(a), clear dHvA oscillations starting from 2 T in M(H )
curves indicate low effective masses of charge carriers. After
subtracting a smooth background from the M(H ) data at each
temperature, the periodic oscillations are visible in 1/H up
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TABLE I. Oscillation parameters of SiP2.

Parameters Fα Fβ Fγ Fη

Frequency (T) 59.3 81.7 251.1 610.8
m∗/m0 0.175 0.216 0.309 0.268
TD (K) 9.88 2.42 2.97 6.74
τQ (ps) 0.123 0.5 0.407 0.179
μQ (cm2/Vs) 1230 4074 2321 1179
φB + 1/8 (LK) 0.032π 0.573π 1.072π 0.772π

φB − 1/8 (LK) −0.467π 0.073π 0.573π 0.272π

slope 59.22 81.84 249.85 608.58
intercept −0.123 0.183 0.123 0.151
φB + 1/8 (LL) 0.01π 0.617π 0.495π 0.552π

φB − 1/8 (LL) −0.495 π 0.117π −0.005 π 0.052π

to 18 K. As an example, Fig. 8(d) shows the �M at 2 K
as a function of 1/H . From the fast Fourier transformation
(FFT) analysis, we have derived four basic frequencies Fα

(59.3 T), Fβ (81.7 T), Fγ (251.1 T), and Fη (610.8 T), respec-
tively [see Fig. 8(b)]. According to the Onsager relation [68]:
F = (h̄/2πe)A, we estimated the cross section area A of the
FS with H ‖ a axis, Fα (0.00563Å−2), Fβ (0.00779Å−2), Fγ

(0.0239Å−2), and Fη (0.0582Å−2), respectively. The derived
cross section areas of Fγ and Fη are close to the theoretical val-
ues of the hole pockets S1 (0.0216 Å−2) and S2 (0.0519 Å−2)
shown in Fig. 3(a), while Fα and Fβ may originate from a very
small cross section area of some pockets created by a slight
deviation of H orientation from the a axis.

In general, as discussed by Hu et al. [69,70] for ZrSiX
(X = S, Se, Te), the oscillatory magnetization for the 3D met-
als can be described by the Lifshitz-Kosevich (LK) formula
[71] with the Berry phase [72]:

�M ∝ −B
1
2 RT RDRS sin

[
2π

(
F

B
− γ − δ

)]
, (8)

where RT = αT μ/B sinh(αT μ), RD = exp(−αTDμ/B), and
RS = cos(πgμ/2), μ is the ratio of effective cyclotron mass
m∗ to free electron mass m0, the spin g factor g = 2
for free electron. TD is the Dingle temperature and α =
(2π2kBm0)/(h̄e). The oscillation of �M is described by the
sine term with a phase factor −γ − δ, in which γ = 1

2 − φB

2π

and φB is the Berry phase, the phase shift δ = ±1/8 for the 3D
system. The effective cyclotron masses m∗ for each frequency
(see Table I) were obtained from the fit to the temperature
dependent FFT amplitudes by the thermal damping factor RT ,
as shown in Fig. 8(c). Then we used the obtained m∗ and F
values to fit the entire oscillation spectra [see Fig. 8(d)] and
obtained the TD and φB values (see Table I). For example, the
TD = 9.88 K for Fα , the corresponding quantum relaxation
time τQ = h̄/2πkBTD = 1.23 × 10−13 s, the quantum mobil-
ity μQ = eτQ/m∗ = 0.123 × 104 cm2 V−1 s−1. It is important
to distinguish the μQ from the transport mobility μt derived
from Hall measurements. μQ is sensitive to all angle scat-
tering processes while classical μt is only susceptible to the

large angle scattering, thus μt is usually larger than μQ. The
Berry phase is the key feature of Dirac fermions that can
be determined either directly from the multiband fit to the
LK formula or the LL fan diagram. For α band, the φB is
estimated as 0.032π for δ = +1/8 or −0.467π for δ = −1/8
from the multiband fit. Meanwhile, we filtered every single
frequency from the oscillations [see Fig. 8(e)] and extracted
the corresponding Berry phase from the LL index fan diagram.
Generally, the integer LL indices n should be assigned when
the Fermi level lies between two adjacent LLs, where the
density of state (DOS) near the Fermi level reaches a mini-
mum, and in dHvA oscillations, the minima of �M should be
assigned to n − 1/4 [73,74]. Thus we could establish an LL
fan diagram as shown in Fig. 8(f). Take α band as an example,
the extrapolation of linear fit in the LL fan diagram yields
an intercept n0 = −0.1225, which corresponding to a Berry
phase φB = 2π (−0.1225 ± 1/8), and the slope of the linear
fit is 59.22 corresponding to the frequency [69,70]. As shown
in Table I, all four bands have a similar property to the α band,
whose Berry phase is away from π , indicating the SiP2 is a
topologically trivial semimetal.

IV. CONCLUSION

In summary, it was found that, as magnetic field is ap-
plied along the a axis, the MR exhibits a nonsaturating linear
H dependence and no field-induced up-turn behavior in re-
sistivity emerges. The incomplete compensation of carriers
was considered to be the dominant mechanism of a nearly
linear H dependence of MR. For the H ‖ [101] orientation,
a nonsaturating quadratic H dependence of MR and field-
induced up-turn in resistivity were observed. We argue that
the existence of hole open orbits on the FS is the dominant
mechanism for MR along this direction. Good agreement of
the experimental results of MR with the simulations based on
the FS calculated in SiP2 indicates that the topology of FS
plays a crucial role in the magnetotransport properties.
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