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We present a framework to systematically address topological phases when finer partitionings of bands are
taken into account, rather than only considering the two subspaces spanned by valence and conduction bands.
Focusing on C2T -symmetric systems that have gained recent attention, for example, in the context of layered
van-der-Waals graphene heterostructures, we relate these insights to homotopy groups of Grassmannians and
flag varieties, which in turn correspond to cohomology classes and Wilson-flow approaches. We furthermore
make use of a geometric construction, the so-called Plücker embedding, to induce windings in the band
structure necessary to facilitate nontrivial topology. Specifically, this directly relates to the parametrization
of the Grassmannian, which describes partitioning of an arbitrary band structure and is embedded in a better
manageable exterior product space. From a physical perspective, our construction encapsulates and elucidates
the concepts of fragile topological phases beyond symmetry indicators as well as non-Abelian reciprocal braiding
of band nodes that arises when the multiple gaps are taken into account. The adopted geometric viewpoint most
importantly culminates in a direct and easily implementable method to construct model Hamiltonians to study
such phases, constituting a versatile theoretical tool.
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I. INTRODUCTION

Whereas the conceptional discovery of topological insula-
tors [1,2] is nearing a fifteen-year anniversary, the research
into their properties and material realizations remains increas-
ingly active. The consideration of spatial symmetries and
of gapless systems has by now resulted in a rich variety
of topological phases and characterizations [3–34]. Recently,
consistency equations for representations in momentum space
were used to describe the possible topological band con-
figurations [21,23], which has provided several schemes to
compare these configurations against those that have an
atomic limit [25,26,31]. More specifically, band represen-
tations that cannot be written as an integer sum of band
structures corresponding to atomic orbitals are diagnosed as
topological.

There is a possibility that a nontrivial band representation
amounts to a difference of two trivial (i.e., atomic) configu-
rations, inducing the so-called fragile topology [35]. As with
strong topological phases, e.g., Chern or Kane-Mele insula-
tors, fragile topology is characterized by the obstruction to
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an atomic limit, while being fragile upon the coupling with
an atomic insulator [35], a feature that can be directly re-
vealed through the winding of Wilson loop [36]. Following
this discovery, there has been an intense activity in the char-
acterization of fragile topology when it is indicated by the
irreducible representations of crystalline symmetries [36–42].
Further advances in unveiling the physical properties of such
symmetry-eigenvalue-indicated fragile topology have been
achieved with the prediction and observation of twisted bulk-
boundary correspondence [43,44].

Conventionally, both the stable and the fragile topology
of band structures are characterized under the condition of
a single spectral gap. This can be thought of as partitioning
the bands into two subspaces, i.e., an “occupied” subspace
spanned by states with energies below the energy gap, and
the complementary “unoccupied” subspace spanned by states
with energies above the energy gap. However, this is in fact
the coarsest partitioning of bands that can enable nontrivial
topology.

In this work, we consider a finer characterization of band
topology, which is obtained by assuming multiple spectral
gaps. Such a refined partitioning of energy bands has been re-
cently applied to certain C2T -symmetric and PT -symmetric
systems (C2 is π rotation, T is time reversal, and P is space
inversion) when symmetry indicators are not necessarily
available. Indeed, information from the irreducible represen-
tations [21,23,25] and elementary band representations [26],
may not be sufficient to diagnose the fragile criterion, rather
similar to how they cannot detect Chern number, or the
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Kane-Mele Z2 invariant [45] and the Z2 nested Berry phases
[46–48], in certain scenarios. In this context, the considera-
tion of multiple spectral gaps recently provided new insights
into the fragile band topology characterized by Wilson loop
winding (Euler class) [36,46,49] and has led to the prediction
of a new kind of reciprocal braiding of band nodes inside the
momentum space [46,50–52].

Remarkably, the topological insights obtained from such
refined multi-gap partitioning of bands and their interplay
with C2T -symmetry touch upon several experimentally viable
systems, as they constitute the key elements in the modeling
of twisted layer graphene systems [53,54] and of non-Abelian
braiding of Dirac points therein [46,55] and of Weyl points
in ZrTe [52]. Very recently Euler class has also been reported
to produce robust signatures in quenched optical lattices [56].
Fragile topology has furthermore been shown to play a role
in the new field of higher-order topology and axion insulators
[47,57] where we foresee a prospective utilization of our geo-
metric approach.

The main achievement of the present study is a systematic
geometric construction of fragile topological phases beyond
symmetry indicators in C2T -symmetric systems. Specifically,
we consider the so-called Plücker embedding which enables
us to parametrize real oriented Grassmannians that classify
the Bloch Hamiltonians and band structures in question. As
a next step, we can then address the topology by considering
the homotopy classes of these objects. Such homotopy eval-
uations allow us to construct representative Hamiltonians for
each topological phase [58], while also intimately relating to
Wilson flow arguments that provide in many circumstances a
readily implementable viewpoint to discern band topologies
[5,10,17,18,23,31,36,59–62].

The manuscript is organized as follows. We begin in Sec. II
by specifying the symmetry settings and the assumptions on
tight-binding models of band structures. In this context we
also introduce the notion of a total Bloch bundle. In Sec. III,
we define several notions related to vector bundles and frame
bundles, including the appropriate classifying spaces (the
Grassmannians) which provide the natural language to com-
pletely characterize the studied band topology. In Sec. IV, we
discern the notions of orientedness versus orinetability, which
later translate to a difference between based and free homo-
topy classes. We also comment on several related but distinct
mathematical notions, attempting to resolve possible sources
of misconception. We continue in Sec. V by discussing the
homotopy groups of the classifying spaces of vector sub-
bundles, and we relate the identified topological invariants
to the Euler and the Stiefel-Whitney characteristic classes.
In Sec. VI, we generalize the mathematical description to
the presence of multiple band gaps (cf. Fig. 1) and relate
the obtained topological invariants again to the characteristic
classes. This generalized “multi-gapped” context allows us to
define fragile topology via repartitioning of energy bands. We
argue that an observable signature of both the Euler and the
second Stiefel-Whitney class of a band subspace is given by
a minimum number of stable nodal points formed within the
band subspace.

After introducing this set of key mathematical notions,
we use the developed machinery to generate physical models
corresponding to various fragile topological phases. First, in

FIG. 1. Band partitioning with multiple gap conditions. Each
block of energy bands (colored strips) is separated from all other
bands by energy gaps (white regions) both from above and from
below. The stable topology of the ith subspace with a number pi

of bands is classified by cohomology classes which we show corre-
spond to elements of the second homotopy group of a Grassmannian,
π2[Grpi,N ]. When the bands are orientable, i.e., when the subspace
does not carry π -Berry phase (see text), one-band subspaces are
trivial, two-band subspaces are classified by the Euler class in Z
(reduced to N after dropping the orientation), and three(or more)-
band subspaces are classified by the second Stiefel-Whitney class in
Z2, see Sec. V.

Sec. VII, we discuss our strategy in a general abstract setting.
We show that a representative of any topological class can
be obtained as a pullback of the tautological total gapped
bundle on the classifying space, where explicit Hamiltonians
are parametrized through the Plücker embedding. We then
turn our attention to specific few-band examples. Specifi-
cally, in Sec. VIII we focus on the case of three bands that
are partitioned into a two-band and single-band subspace.
We similarly perform this analysis for the four-band case in
Sec. IX, where the extra band gives rise to various different
partitionings in terms of single-band and two-band blocks.
In both instances, we use our general insights to address
the classification aspects as well as their topological stabil-
ity, respectively fragility, that are of direct physical interest.
In Sec. X, we set the basis of the study of systems with
more bands and gaps, as well as of higher-dimensional fragile
topological phases, hence underpinning the generality of the
framework. Finally, in Sec. XI, we turn to the conclusions and
discussions, where we outline several directions of extension.

We exported the tight-binding models produced by the de-
scribed mathematical machinery as MATHEMATICA notebooks,
which we made publicly available online [58]. These models
were also used to produce the numerical results presented in
Secs. VIII and IX, as well as to study the signatures of the
fragile topology in quenched optical lattices by Ref. [56].

II. REAL BAND STRUCTURES

We model crystalline systems through a Hermitian Bloch
Hamiltonian H = ∑

μν,k∈B |φμ, k〉Hμν (k)〈φν, k|, where the
Bloch state |φμ, k〉 = ∑

R eik·(R+rμ )|wμ, R + rμ〉 is the Fourier
transform of the Wannier state |wμ, R + rμ〉 that represents
the physical orbital μ at site R + rμ (possibly with a spin),
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where R is a Bravais lattice vector, and rμ is the (sublattice)
position within the R-th unit cell. The Bloch wave vector k is
a point of the Brillouin zone B, that is a 2-torus (B = T 2) for
two-dimensional crystals.1 In this work, we assume that the
Bloch states |φμ, k〉 are fully trivial, i.e., they carry no Berry
phase and their Wannier representations 〈r|wμ, R + rμ〉 =
wμ(R + rμ − r) are exponentially localized. This implies that
the real-space hopping amplitudes Hμν (R − R′) have an ex-
ponential decay in |R − R′|, such that the Fourier transform
Hμν (k) is smooth in k. In practice the hopping amplitudes
in the tight-binding models of materials are cut off beyond
a finite support. We remark that in this convention the states
|φμ, k〉 and the Bloch Hamiltonian H (k) are not necessarily
periodic in reciprocal lattice vectors.

It is known that C2T -symmetry with (C2T )2 = +1 implies
the existence of a basis in which H (k) is real [52], irrespective
of the spinfulness. In the subsequent text we assume this
choice of basis, i.e., H (k) is an N × N real and symmetric
matrix where N � 2 is the number of degrees of freedom per
unit cell. This property implies that all eigenstates of H (k)
can be gauged to be real vectors [49], allowing us to drop
the difference between bra-states and ket-states, 〈un(k)|� =
|un(k)〉 ≡ un(k).

From the eigenvalue problem H (k)un(k) = En(k)un(k), we
get the spectral decomposition H (k) = R(k)D(k)R(k)T , with
eigenvalues D(k) = diag[E1(k), . . . , EN (k)], and the diago-
nalizing matrix R = (u1 · · · uN ) formed by the real column
eigenvectors, i.e., un ∈ RN . The eigenvectors define a rank-N
orthonormal frame, R∈O(N ), and serve as a basis of the
real vector space Vk = Span{u1, . . . , uN }k

∼= RN at each point
k∈B. The collection of fibers Vk at each point k of the base
space B allows us to construct a real vector bundle [63].

More precisely, we define the Bloch bundle [64] as the
union of the fibers, EN,N = ⋃

k∈B Vk, with the continuous
projection onto the base space, i.e., π : EN,N → B, and so
that it is locally homeomorphic to a direct product space,
i.e., φ : π−1(U ) → U × RN for any contractible open subset
U ⊂B. By virtue of the later property we say that EN,N is
locally trivializable. In the following, we fix the ordering
of the eigenvalues, E1� . . .�EN , and we assume the same
ordering for the eigenvectors in R.

III. GAP CONDITION AND CLASSIFYING SPACES

A. Vector subbundles and total gapped bundle

In this work, we assume that the “total” Bloch bundle
EN,N as defined in Sec. II is trivial, which corresponds to
situations in which the Bloch Hamiltonian can be brought
to real-symmetric form periodic in reciprocal lattice vectors.2

Nontrivial topology may then arise by considering subbundles

1In later sections, we sometimes replace the base space B by a 2-
sphere S2.

2Some reasons and a simple example of when the assumption on
the triviliaty of the total Bloch bundle fails are discussed in Sec. IV B
below.

defined through a spectral gap condition [65]. Under the con-
dition of a single energy gap

E1 � . . . � Ep < Ep+1 � · · · � EN

with 1 � p < N, (1)

i.e., with a finite gap δ(k) = Ep+1(k) − Ep(k) > 0 for all k ∈
B, the total frame R = (RIRII ) splits into subframes RI =
(u1 · · · up) and RII = (up+1 · · · uN ). The collection of all p-
component subframes of RN is called the Stiefel manifold,
labeled Pp(RN ) [66]. We now define the rank-p “occupied”
vector subbundle

BI (p) =
⋃
k∈B

VI,k with VI,k = Span{u1(k) . . . up(k)}, (2)

and the rank-(N − p) “unoccupied” subbundle BII (N − p)
similarly via VII,k = Span{up+1(k) . . . uN (k)}. We will occa-
sionally consider a restriction of the vector subbundle BI (p) to
a loop l ⊂ B in the Brillouin zone, i.e. {VI,k | k ∈ l} ≡ BI (p)|l .
Furthermore, we sometimes call rank-1 subbundles as line
bundles.

While it is customary to consider only one vector sub-
bundle at a time, a band structure with an energy gap really
consists of the ordered collection of two subbundles BI (p) and
BII (N − p), which we write as Ep,N = BI (p) ∪ BII (N − p).
We call this the total gapped bundle. Importantly, Ep,N �=
BI (p) ⊕ BII (N − p) ∼= EN,N . Indeed, the direct sum allows us
to take arbitrary intra- and intersubspace linear combinations
of eigenvectors, i.e. mixing the vectors of BI (p) with those of
BII (N − p), see Sec. IV B, while only intra-subspace linear
combinations of eigenvectors are allowed in Ep,N . In other
words, the direct sum EN,N “forgets” about the gap condition.

We finally consider the isomorphism (i.e., equivalence)
classes of the introduced bundles under continuous defor-
mations that preserve the gap condition. Assuming a fixed
choice of base space B, we write [BI (p)] for the isomorphism
classes of rank-p vector bundles that are subbundles of EN,N .
We further write [Ep,N ] for the isomorphism classes of total
gapped bundles that split into the vector subbundles BI (p) and
BII (N − p). Labeling the isomorphism classes with integers,
we indicate the trivial class by 0. We point out that by assump-
tion the total Bloch bundle is a trivial rank-N bundle, thus
[EN,N ] = 0. It is important to note that for us, and contrary
to what is usually done in the classification schemes based
on K theory (e.g., Ref. [67]), we keep N , i.e., the rank of the
underlying band structure, finite and fixed.

B. Unoriented and oriented Grassmannians

By flattening the spectrum, i.e., diag[E1, . . . , Ep] → −1
and diag[Ep+1, . . . , EN ] → 1, we get the flattened Hamil-
tonian Q = R · [−1p ⊕ 1N−p] · RT . The constructed Q is
invariant under any orthogonal gauge transformation R �→ R ·
[GI ⊕ GII ] with GI ∈ O(p) and GII ∈ O(N − p). The classi-
fying space of the flattened Hamiltonian is then obtained as
the space of R “divided” by the group of gauge symmetries,
resulting in the quotient space

Grp,N = O(N )/[O(p) × O(N − p)], (3)
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called the real Grassmannian, having the property Grp,N =
GrN−p,N (the reason why it is called the classifying space will
become clear in Secs. V and VII).

We note that any matrix R ∈ O(N ) can be taken in
SO(N ) by a gauge transformation. It follows that the
Grassmannian can be conveniently rewritten for R ∈ SO(N )
as Grp,N = SO(N )/S[O(p) × O(N − p)] by restricting the
group of gauge transformations R �→ R · G to the subgroup
with det G = +1. More specifically, the point of the Grass-
mannian corresponding to the matrix R ∈ SO(N ) is defined
as the left coset

[R] = {R · [GI ⊕ GII ], such that

GI ∈ O(p) and GII ∈ O(N − p), and

det(GI ⊕ GII ) = +1}. (4)

From now on we always assume that R ∈ SO(N ).3

To any orthogonal matrix G ∈ O(N ) we can associate an
orientation through det G = ±1, and to any subframe RI we
can associate an oriented exterior product ωp = u1 ∧ · · · ∧ up

that is invariant under SO(p) gauge transformations of the
eigenvectors, respectively ωN−p = up+1 ∧ · · · ∧ uN for RII .
(These forms will be particularly useful when discussing
the Plücker embedding in Sec. VII D). By definition the
coset [R] = [(RI RII )] ∈ Grp,N is invariant under the orienta-
tion reversal of the subframes RI and RII , i.e. (ωp, ωN−p) →
−(ωp, ωN−p), hence Grp,N is called the real unoriented
Grassmannian.

One can similarly consider the oriented Grassmannian

Gr+
p,N = SO(N )/[SO(p) × SO(N − p)], (5)

where the gauge symmetries do not include orientation re-
versal of the subframes. More specifically, the point of the
oriented Grassmannian corresponding to R ∈ SO(N ) is de-
fined as the left coset

[R]+ = {R · [GI ⊕ GII ], such that

GI ∈ SO(p) and GII ∈ SO(N − p)}. (6)

Considerations within the oriented Grassmannian allow us to
define the subframe-orientation reversal operator

sr : R �→ Rsr = R · Gsr, (7)

e.g., with Gsr = [(−1 ⊕ 1p−1) ⊕ (−1 ⊕ 1N−p−1)] or any other
transformation that reverses the orientation of the two sub-
frames RI and RII at the same time. One should note that
[R]+ �= [Rsr]+. We further observe that by forgetting orien-
tation every pair of points of opposite orientation in Gr+

p,N
is mapped to a single point in Grp,N , i.e., there is a natural
2-to-1 injection q̄ : {[R]+, [Rsr]+} �→ [R] from the oriented
Grassmannian to the unoriented Grassmannian. This hints to
the fact that Gr+

p,N is the orientable double cover of Grp,N ,
with q̄ called the covering map, see Appendix A where we
review in more detail the geometric and topological properties
of Grassmannians.

3Since πi[O(N )] = πi[SO(N )] for all i � 1, there is no topological
obstruction for injecting the frames R from O(N ) to SO(N ) (assum-
ing that the base space B is connected).

In the following, we often consider loops and spheres
inside the Grassmannian as obtained through continuous
maps respectively from the unit interval I = [0, 1], and
the unit square I2 = [0, 1] × [0, 1]. More precisely, we
have the loop image � : I → Grp,N : s �→ �(s) with a base
point [R(k0)] = �(0) = �(1), and the sphere image f : I2 →
Grp,N : (s1, s2) �→ f (s1, s2) with a base point [R(k0)] =
f (∂I2) (∂I2 is the boundary of the unit square), and similarly
for the oriented Grassmannian Gr+

p,N . The homotopy equiv-
alence classes of loops [�], and of spheres [ f ], inside the
Grassmannian constitute the elements of the first homotopy
group π1[Gr(+)

p,N ], respectively, of the second homotopy group

π2[Gr(+)
p,N ] (see Fig. 7 of Appendix B).

C. The projective plane

It is very instructive for the understanding of Grassmanni-
ans in general to look at the special case of the projective plane
Gr2,3 = RP2 as it can be grasped pictorially. RP2 is obtained
from the sphere by identifying antipodal pairs of points, i.e..
RP2 = S2/ ∼ with x ∼ −x. We show in Fig. 2 the orientable
double cover S2 → RP2 obtained by twisting the sphere in a
way that its equator is folded in half onto itself.

More concretely, we first form the shape “8” with the equa-
tor and then fold its two halves (black and yellow in Fig. 2)
onto each other. Identifying every antipodal pair of points, we
obtain the surface (known as “cross-cap”) displayed in the
right panel of Fig. 2. Comparing the middle panel with the
right panel, we see that every open subset U of RP2 is covered
by two disjoint open subsets of S2 (the sheets of the covering
over U ). It is remarkable that locally there are two disjoint
sheets over any region U , while globally the covering sheets
belong to a single connected sphere. Furthermore, any sheet of
the covering can be mapped to the other sheet under the action
of inversion on the sphere (x → −x). We then readily find
that every path within the sphere that connects two antipodal
points is mapped to a noncontractible loop, say �, of RP2 (e.g.,
the black or yellow loop in RP2). If we then compose the black
and the yellow loops in RP2, i.e., � · �, it can be lifted to a
loop on the sphere (namely the entire equator) which in turn
can be contracted to a point (as any other loop on the sphere).
By continuity of the covering map we then find that � · � can
also be contracted to a point in RP2. We thus conclude that
π1[RP2] = Z2 with [�] as the generator.

We finally address the second homotopy group of RP2. Let
us define an orientation at each point of the sphere through
a normal vector pointing outwards. Focusing on the points of
the black-yellow equator in the middle panel of Fig. 2, we
readily see that the normal vectors of the two sheets (before
to be identified by the double covering) point in the same
direction. Therefore the twofold oriented wrapping of RP2 by
the sphere is additive (i.e. the normal vectors pointing in the
same direction) and it is not contractible. Let us count this
wrapping as “2.” We can instead design the double covering
by twisting or folding the equator in the opposite direction, in
which case we count the wrapping as “−2.” By doubling the
wrapping of Fig. 2, we obtained a fourfold wrapping of RP2

which we count as “4,” and so on. We have thus intuitively
found the second homotopy group of the projective plane to be
π2[RP2] = 2Z (note the group isomorphism q̄∗ : π2[S2] →
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FIG. 2. Orientable double cover S2 → RP2 obtained through the folding of the sphere onto itself. It is dictated by the twisted folding of
the equator, i.e., we form the shape “8” and fold the black loop onto the yellow loop. This results in identifying every antipodal pair of points
of the sphere to a single point of the projective plane RP2.

π2[RP2] : β+ �→ β = 2β+, defined in terms of the covering
map through q̄∗β+ = q̄∗[ f +] = [q̄( f +)] = [ f ] = β).

IV. ORIENTABILITY OF BANDS AND BUNDLES

A. Orientable versus oriented bundles

We associate to the vector subbundle BI (p) certain
orthonormal frame bundle. Using O[RI (k)] ⊂ Pp(RN ) to
indicate the orbit of subframe RI (k) under the right tran-
sitive action of GI ∈ O(p), we define the associated frame
subbundle

FI (p) =
⋃
k∈B

O[RI (k)]. (8)

Each fiber of FI (p) is isomorphic to the structure group O(p),
thus making FI (p) a principal O(p) bundle [63,66]. An analo-
gous construction can be carried for the unoccupied sector,
defining the associated frame subbundle FII (N − p). Each
fiber of FI (p) can moreover be equipped with the SO(p)-
invariant exterior product ωp = u1 ∧ · · · ∧ up, respectively
ωN−p = up+1 ∧ · · · ∧ uN for FII (N − p).

The associated frame subbundle allows us to introduce
the notion of orientability. Given a local trivialization φ :
π−1(U ) → U × (Rp ⊕ RN−p) of a total gapped bundle Ep,N ,
the pushforwards φ∗ωp = oI |U e1 ∧ · · · ∧ ep and φ∗ωN−p =
oII |U ep+1 ∧ · · · ∧ eN , where (e1, . . . , eN ) are orthogonal co-
ordinate vectors on RN , allow us to define oI,II |U = ±1
called the local orientations of the vector/frame subbundles.
Considering a good open cover {Ui → B} of the base space
with local trivializations φi, every nonempty pairwise overlap
Ui ∩ Uj �= ∅ is characterized by Z2-valued functions t i j

I and
t i j
II . More precisely, starting with an arbitrary subframe Ri j

I (k),
one defines transition functions t i j

I = (oI |Ui )(oI |Uj ) = ±1, and
similarly for the unocccupied bands.

Change of a local trivialization φi or frames Ri j
I (II ) may lead

to a reversal of t i j
I (II ). We say that a vector subbundle BI (II )

is unorientable if for all trivializations φi (and for all choices
of Ri j

I (II )) there are some transition functions t i j
I (II ) �= +1. We

call the total gapped bundle Ep,N unorientable if either the oc-
cupied or unoccupied vector subbundle is unorientable. The
classifying spaces of the corresponding gapped band structure
is the unoriented Grassmannian Grp,N . In contrast, when local

trivializations can be found such that simultanously all transi-
tion functions are equal to +1 the vector subbundle is called
orientable. The total gapped bundle is called orientable if both
the occupied and the unoccupied vector (frame) subbundles
are orientable. In the case of a trivial total bundle EN,N , as it is
assumed in this work, the subbundles BI (p) and BII (N − p)
are either both orientable or both unorientable.

Fixing the orientation of the subframe over the whole
base space in a consistent manner, we obtain an oriented
vector subbundle, written B+

I (p) (B+
II (N − p)). Taking the

two oriented subbundles together, we form the oriented total
gapped bundle E+

p,N = B+
I (p) ∪ B+

II (N − p) that has the ori-
ented Grassmannian Gr+

p,N as its classifying space.
Importantly, the classifying space of an orientable gapped

bundle is the unoriented Grassmannian and not the oriented
one. Indeed, the choice of an orientation for both subframes
is a gauge freedom of gapped Hamiltonians, while it is not a
gauge symmetry for the elements of the oriented Grassman-
nian (Sec. III B). Nevertheless [63] a total gapped bundle Ep,N

is orientable iff its classifying map4 f : B → Grp,N can be
lifted to a classifying map f + : B → Gr+

p,N , i.e., the map that
assigns to each k the subframe-orientation-preserving coset
[R(k)]+ ∈ Gr+

p,N .5

The lift induces the choice of an orientation of both sub-
frames over the whole base space, and this can be made
continuously (i.e., consistently over the whole base space)
by virtue of the assumed orientability of the total gapped
bundle. More specifically, there is a gauge freedom in the
choice of an orientation for the subframes at an initial point,
say k0, where, for a given matrix R(k0), we can lift the
image f (k0) = [R(k0)] in Grp,N either to f +

a (k0) = [R(k0)]+
or to f +

b (k0) = [R(k0)sr]+ in Gr+
p,N . Once this initial choice

is made, the orientation over the rest of the base space is
enforced by continuity, thus unfolding the whole lifted map
f + (see in Appendix D the explicit example of a hedgehog
structure emerging for the case of RP2). We note that the

4This is the map that assigns to a point k ∈ B with Hamiltonian
H (k) the coset [R(k)] ∈ Grp,N , see Sec. VII for more detail on such
maps.

5We note that all bundles on B = S2 are orientable and thus can be
lifted.
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fixing of an orientation is equivalent to the fixing of gauge
as discussed in Ref. [52].

We thus conclude that an orientable occupied (unoccupied)
vector subbundle BI (II ), characterized by a classifying map
f : B → Grp,N , can be equipped with a subframe orientation
through the lifted map f + : B → Gr+

p,N , which in turn charac-
terizes an oriented vector subbundle B+

I (II ) and, taken together,
an oriented total gapped bundle E+

p,N . It is important to keep in
mind though the arbitrariness when assigning a subframe ori-
entation to an orientable vector subbundle. We indeed show in
Sec. V that the orientation must be dropped for the topological
classification of band structures, as there exists in some cases
adiabatic transformations between distinct oriented homotopy
classes.

Our strategy to unfold the topological classification of
band structures and to derive their representative tight-binding
models, which is the content of the following sections, is
to first represent the topological phases as oriented gapped
bundles classified by Gr+

p,N . Then we address the effect of
forgetting the orientation, i.e., projecting the classifying space
from Gr+

p,N to Grp,N , which is that two distinct oriented bun-
dles can be continuously deformed into a single orientable
bundle. This culminates with the explicit derivation of three-
band and four-band tight-binding models in Secs. VIII and IX
from which all homotopy classes can be represented. From
now on we simplify the terminology, whereas a band sector
characterized by an orientable (oriented) vector subbundle
would be called orientable (oriented) bands.

B. Conceptual clarifications

We importantly remark that total Bloch bundle EN,N as de-
fined in Sec. II is not necessarily trivial. A simple example of
such a nontrivial case is provided by the two-band 2D Mielke
model discussed in Ref. [68] which exhibits total π -Berry
phases in both directions of the Brillouin zone torus [46],
making its two-band total Bloch bundle nonorientable (see the
definition of the first Stiefel-Whitney class in Sec. V). This
can be understood as an effect of the body-centered lattice
structure of the model (this will be elaborated elsewhere).
Nevertheless, a theorem in vector bundle theory asserts that
any vector subbundle BI (p) can be trivialized through the
direct sum with an appropriate vector subbundle BI (N ′ − p),
i.e., BI (p) ⊕ BI (N ′ − p) ∼= B × RN ′

. This especially also ap-
plies to a nontrivial total Bloch bundle EN,N , for which there
exists a vector bundle E (N ′ − N ) such that EN,N ⊕ E (N ′ −
N ) ≡ E ′

N ′,N ′ ∼= B × RN ′
. Then E ′

N ′,N ′ can be interpreted as a
total trivial Bloch bundle, of which the original EN,N and the
trivializing E (N ′ − N ) are two complementary subbundles.
For instance, for the two-band Mielke model [68], the triv-
iality of the total bundle is achieved for a four-band model
obtained through the direct sum of two Mielke models.

We now comment on the relevance of the concept of vector
bundle for band structures. We defined FI (p) in Eq. (8) by
gluing together the orbits O[RI (k)] of the p-frame spanned by
the occupied eigenvectors under the action of the gauge group
O(p). One could instead consider the finer notion of an eigen-
bundle [69], which corresponds to gluing together the ordered
collection of eigenvectors, rather than their orbit. While local

trivializability belongs to the axioms of fiber bundles, the
eigenbundle may not have this property. This notably happens
when the eigenvalues form a topologically stable crossing,
i.e., the nodal points discussed in Sec. VI D, in which case
the eigenvectors cannot be expressed in a locally continuous
gauge [52]. The discontinuities of the gauge for eigenstates
is often modelled by introducing Dirac strings that terminate
at the nodes [46]. One thus finds that the eigenbundle is not
locally trivializable at the band nodes, i.e., it does not meet
the axioms of a fiber bundle when the base space B contains a
band node.

In contrast, the frame subbundle FI (p) remains trivializ-
able even at band nodes. More concretely a smooth section
of FI (p) can be formed at a band node by forming lin-
ear combinations of the p eigenvectors, i.e., [vn′ (k)]l =∑

n=1,...,p[un(k)]l gnn′ (k), with gnn′ (k) = [GI ]nn′ (k) and GI ∈
SO(p) (here [un]l is the lth component of the vector un).
Clearly, the vectors vn′ (k) need not be eigenvectors in general.
Since a section of a p-frame bundle is essentially an ordered
collection of p pointwise orthonormal vector bundles, the
vector subbundle BI (p) is also locally trivializable. Therefore,
in contrast to eigenbundles, the higher flexibility of the vector
and frame subbundles permits the local trivialization, as has
been scrupulously analyzed, e.g., in Supplementary Material
of Ref. [52].

It also follows that the occupied subbundle of a topological
semimetal does not form a vector bundle over the whole
Brillouin zone, while it does so over any closed manifold that
avoids the semimetallic nodes.6

V. HOMOTOPY CLASSIFICATION AND HOMOTOPY
INVARIANTS

A. General description

The topological classification of gapped band structures is
given by the set of all allowed isomorphism classes [Ep,N ] of
total gapped bundles. The later is isomorphic to the set of free
homotopy classes of continuous maps from the base space
(the Brillouin zone B = T 2) to the classifying space of gapped
band structures. We denote the set of such homotopy classes
as [T 2, Grp,N ]. These can be expressed [4,70–72] as

[T 2, Grp,N ] =
⋃
αx,αy

[I2, Grp,N ](αx,αy ). (9)

Here, the weak invariants αx(y) ∈ π1[Grp,N ] characterize the
total gapped bundle Ep,N = BI (p) ∪ BII (N − p) along the two
noncontractible loops lx (respectively ly) of T 2, as discussed
in Sec. V B. Further, [I2, ·](αx,αy ) is the set of free homotopy
classes of maps from a square I2 (the inside of the BZ) to
the space “·” which are compatible with the weak invariants
(αx, αy) on the BZ boundary ∂I2. These homotopy classes are
studied in detail in Sec. V C. The decomposition in Eq. (9)

6These considerations are reflected in the fact that while the eigen-
state of a band with nodes is never orientable (see Sec. V B), the
eigenbundle of a band subspace with nodes that is disconnected from
the other bands (by a band gap) is orientable whenever it corresponds
to an orientable vector subbundle (see Sec. V C).
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mimics the CW-complex decomposition of T 2, namely, the
wedge sum of the two noncontractible loops lx ∨ ly together
with a two-dimensional sheet I2 with its boundary glued along
the loops [73].

When the total number of bands N is large enough, the
homotopy groups of the classifying space do not depend on
N . This is called the stable limit. In contrast, the homotopy
groups for few-band models may depend on N , in which case
we speak of unstable topology. Note that in our definition of
stability of topological invariants, and contrary to works based
on K theory, we keep the number p of occupied bands fixed.
In this section, we discuss the stable results, while an in-depth
analysis of the unstable topology of three-band and four-band
systems is presented in Secs. VIII and IX.

B. Topology in one dimension

The stable limit for the first homotopy group is reached
for N � 3, when π1[Grp,N ] = Z2. The element αl in the first
homotopy group for a noncontractible base loop l ∈ B coin-
cides with the first Stiefel-Whitney (SW) class w1[BI (p)|l ] ∈
H1(S1,Z2) [49] (i.e., the characteristic class of the bundle that
is captured by the first cohomology group of l � S1 with Z2

coefficients), which is known to capture the orientability of the
vector subbundle BI (p) restricted to l [63,66]. An example of
a nonorientable bundle is a line bundle (i.e., rank-1 eigenbun-
dle) over a loop encircling a nodal point [36,49]. Considering
now the occupied vector subbundle BI (p) inside the full Bril-
louin zone, one can independently study the first SW class
on the two noncontractible paths of the torus, which define
an element (αx, αy) ≡ w1[BI (p)] ∈ H1(T 2,Z2) = Z2 ⊕ Z2.
Accordingly, the vector subbundle BI (p) and the band sub-
space it represents are orientable iff αx = αy = 0. The first
SW class can be computed through the Berry phase factor
αl = eiγI [l] = det WI [l] ∈ {+1,−1} along a loop l , where the
O(p) Wilson loop WI is obtained from the p eigenvectors
spanning BI .

The first SW class respectively the Berry phase can also
be computed for the unoccupied vector subbundle. From the
assumed triviality of EN,N and from the Whitney sum for-
mula for the cup product of cohomology classes, the first SW
class satisfies the sum rule 0 = w1[BI (p) ⊕ BII (N − p)] =
(w1[BI (p)] + w1[BII (N − p)]) mod 2 [49], so that

w1[BI (p)] = w1[BII (N − p)], (10)

and similarly for the Berry phase, i.e., (γI [l] = γII [l]) mod 2π

for both noncontractible loops of the Brillouin zone torus.
This relation clarifies our statement below Eq. (9) that αx(y)

characterize the topology of the total gapped bundle (rather
than of just the occupied or unoccupied vector subbundle)—at
least along the nonconctractible loops lx(y). A similar relation
is found in Sec. V D also for the topological classification over
the two-dimensional Brillouin zone square.

C. Topology in two dimensions

Ascending now one dimension higher, Eq. (9) suggests that
the classification of vector subbundles BI (p), and BII (N −
p) depends on the weak indices (αx, αy). In the nonori-
entable case, the free homotopy set on the Brillouin zone

square is

[I2, Grp,N ](1,0) = [I2, Grp,N ](0,1) = [I2, Grp,N ](1,1) = Z2,

(11)

where the Z2 invariant corresponds to the second SW class
[46], w2[BI (p)] ∈ H2(T 2,Z2) = Z2, which we discuss in
more detail in Sec. V D.

In the following, we focus on the more interesting ori-
entable case, i.e., when αx = αy = 0, such that the Berry
phases are zero along both noncontractible loops of the Bril-
louin zone. Then the topological classification is given by the
free homotopy set [I2, Grp,N ](0,0). The triviality of the weak
invariants implies that the mapping to the classifying space
can be deformed into a constant on the boundary ∂I2 of the
Brillouin zone square. This allows us to identify the boundary
as a single point, resulting in I2/∂I2 � S2, i.e., a sphere.
Therefore

[I2, ·](0,0) = [S2, ·] (12)

which differs from the second homotopy group π2[.] only by
the absence of a base point.

It is worth reminding that the base point of the homotopy
group π2[Grp,N ] is meant to be constant over all homotopy
classes. This together with an implicit orientation of the
sphere image f (I2) for [ f ] ∈ π2[·] (see Appendix B) equips
the composition of homotopies with a group structure. How-
ever, by removing the constraint on the base point, the free
homotopy set may loose the group structure. More precisely,
the unoriented Grassmannian Grp,N contains noncontractible
loops � (i.e., with [�] the generator of π1[Grp,N�3] = Z2), and
evolving the base point along this loop induces an automor-
phism �� : π2[Grp,N ] → π2[Grp,N ] on the based homotopy
group [72,74]. The latter is called the action of the element
[�] ∈ π1[Grp,N ] on an element β = [ f ] ∈ π2[Grp,N ] and is
induced by a homotopy of the map f that traces out � when
restricted to the base point of f , see Appendix B for a pre-
cise definition. The automorphism acts as �� : β �→ β−1 on
elements β ∈ π2[Grp,N ]. Since β = β−1 for p �= 2 though, it
acts nontrivially only for rank-2 bundles.

Knowing that second (and higher) homotopy groups are
Abelian, one can always represent them as a direct sum of
several Z and Zn’s, and indicate the composition with “+”,
i.e., as addition, such that β−1 = −β. The automorphism ��

then reduces the second homotopy group into orbits {β,−β},
and relaxing the condition on the base point (i.e., the reduction
from based to free homotopy classes) corresponds to replacing
π2[Grp,N ] by the set of orbits. This allows us to express the
free homotopy classes concisely as

[I2, Grp,N ](0,0) = [S2, Grp,N ] = π2[Grp,N ]/{+1,−1}. (13)

However, the last equation reduces simply to
[I2, Grp,N ](0,0) = π2[Grp,N ] for p �= 2.

It is worth noting that the noncontractible loop � ⊂ Grp,N

that appears in the construction is not homotopy equivalent to
the image of any of the noncontractible loops of the Brillouin
zone torus. Rather, the motion of the base point along � can
be understood as an adiabatic deformation of the Hamiltonian
H (k) (i.e., an element of the free homotopy set), while it
causes a change of homotopy classes of the associated based
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map fH : (I2, ∂I2) → (Grp=2,N , [R0]) : k �→ H (k) �→ [R(k)]
with a fixed base point [R0] = [R(k0)] = fH (∂I2) (i.e., [ fH ] is
an element of the based homotopy group π2[Gr2,N ]).7

Crucially, we note that π2[Gr+
p,N ] = π2[Grp,N ] because the

sphere is simply connected and because Gr+
p,N → Grp,N is a

double cover, see Appendix A. We then show in Appendix B
that the action of [�] on an element [ f +] ∈ π2[Gr+

p,N ] must in-
volve the subframe-orientation reversal, cf. Eq. (7). Therefore
orientable vector subbundles can be classified in terms of ori-
ented subbundles modulo the forgetting of orientation and the
discarding of the base point, which, in the case p = 2, leads to
the two-to-one redundancy β ∼ −β for all β ∈ π2[Gr+

p=2,N ].
Since maps to the oriented Grassmannians are easier to ana-
lyze, in the later sections of the manuscript dedicated to the
systematic construction of tight-binding models from homo-
topy, we start with the construction of the oriented bundles
and then address the effect of forgetting orientation on the
homotopy classification of band structures.

More precisely, whenever we are given a concrete col-
lection of eigenvectors of a band subspace (rather than just
the unoriented vector space they span), the bundle has been
equippied with a specific choice of orientation, and as such
it can be classified by a unique element β ∈ π2[Gr+p,N ]. Then,
by dropping the (arbitrary) choice of the eigenvector gauge,
the bundle becomes indistinguishable from a bundle with
the opposite orientation. This implies that the element β

becomes indistinguishable from the element −β and the sys-
tem is classified by a unique element |β| ∈ [S2, Grp,N ]. In
other words, there exists an adiabatic deformation of the
Hamiltonian (nontrivial for p = 2) which connects the ele-
ments β and −β. We give this transformation explicitly in
Appendices E and F respectively for the three-band and four-
band tight-binding models that are presented in Secs. VIII
and IX.

Below, whenever we say that we deal with an explicit
model, we mean an oriented bundle defined by a single val-
ued function R(k) ∈ SO(N) for all k. In contrast, when we
discuss the (free) homotopy class representative, we mean an
orientable bundle, that is an equivalence class of two explicit
models with opposite orientations.

D. Euler class and second Stiefel-Whitney class

The relevant second homotopy groups for oriented classi-
fying spaces are listed in Table I [27]. The stable limit of the
second homotopy group is given by N − p � 3, for which we
have

π2[Gr+
1,N�4] = 0,

π2[Gr+
2,N�5] = Z,

and π2[Gr+
p�3,N�p+3] = Z2. (14)

Notably, the second homotopy invariant characterizing an
oriented two-band vector subbundle B+(p = 2) in the stable

7This is most naturally shown in terms of the map lifted to the
oriented Grassmannian, i.e., f +

H : (I2, ∂I2) → (Gr+
p=2,N , [R0]+), see

Appendixes A and B.

TABLE I. Classification of oriented band structures, i.e., over
the simply-connected base space B = S2 representing the Brillouin
zone torus in the absence of Berry phases. Table indicates the second
homotopy groups, π2, of oriented Grassmannian and flag varieties as
discussed in the text. The factor 2 in 2Z is a convention in order to
match with the computed value of the Euler class, see Sec. VIII. By
π2[Grp,N ] = π2[Gr+

p,N ] and Eq. (13), the topologically inequivalent
orientable phases are classified by the reduction, up to a sign, of the
second homotopy group.

N = p1 + p2 + . . . Fl+p1,p2,... π2

2 Fl+1,1 = Gr+
1,2 = S1 0

3 Fl+2,1 = Gr+
2,3 = S2 2Z

Fl+1,1,1 0
4 Fl+3,1 = Gr+

3,4 = S3 0
Fl+2,2 = Gr+

2,4 = S2 × S2 Z ⊕ Z
Fl+2,1,1 2Z

Fl+1,1,1,1 0
(m � 3)
1 + m Fl+1,m = Gr+

1,1+m = Sm 0
2 + m Fl+2,m = Gr+

2,2+m Z
3 + m Fl+3,m = Gr+

3,3+m Z2

limit corresponds to the Euler class [63], χ [B+
I (p = 2)] ∈

H2(T 2,Z) = Z. The Euler class is computed as the integral
of the Pfaffian of the two-band Berry-Wilczek-Zee curvature
[52,75,76] over the Brilouin zone. It can also be conveniently
computed as a two-band Wilson loop winding [36,49]. The
reversal of subframe orientation [Eq. (7)] exchanges the sign
of Euler class (see Methods of Ref. [52]), in other words, the
chosen orientation of an oriented two-band subbundle is faith-
fully indicated by the Euler class. [This plays an important
role in the derivation of Eq. (13) in Appendix B].

In contrast, when the oriented vector subundle under
consideration consists of three or more bands, the second
homotopy invariant in the stable limit corresponds to the
second SW class w2[B+

I (p � 3)] ∈ H2(T 2,Z2) = Z2. The
second SW class can be conveniently computed as the par-
ity of the number of π crossings in the Wilson loop flow
[46]. Contrary to the Euler class of two-band subbundles, the
second SW class is insensitive to the reversal of subframe
orientation. Finally, one-band subspaces, i.e., associated to a
real orientable line subbundle, are always stably trivial. (We
discuss in Sec. VIII D one example of unstable nontrivial line
bundle).

Because of the assumed triviality of EN,N , the second SW
class satisfies the sum rule 0 = w2[B+

I (p) ⊕ B+
II (N − p)] =

(w2[B+
I (p)] + w2[B+

II (N − p)]) mod 2, where we have used
the fact that the first SW class is zero for oriented vector
bundles. Therefore

w2[B+
I (p)] = w2[B+

II (N − p)], (15)

implying that the same element of H2(T 2,Z) characterizes
both the occupied and the unoccupied vector subbundle, i.e.,
it entirely characterizes the total oriented gapped bundle E+

p,N .
For a rank-2 oriented vector subbundle, the second SW class
is given as the parity of the Euler class [49],

w2[B+
I (2)] = χ [B+

I (2)] mod 2, (16)
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which implies that the Euler class must also satisfy the sum
rule in Eq. (15) mod 2, i.e.,

χ [B+
I (2)] mod 2 = w2[B+

II (N − 2)] . (17)

Since the Euler class contains more information than the
mod 2 reduction, Eq. (17) implies that it entirely characterizes
the oriented total gapped bundle E+

2,N .
We finally consider the reduction, up to a sign, when

dropping the explicit choice of orientation. We find that the
topology of orientable gapped band structures is classified by
the following stable free homotopy sets

[S2, Gr1,N�4] = 0,

[S2, Gr2,N�5] = N,

[S2, Grp�3,N�p+3] = Z2,

(18)

where for orientable two-band subspaces we define the re-
duced Euler class χ , obtained through the reduction modulo
sign of the Euler class of the associated oriented subbundle,
i.e.,

χ [B(2)] = |χ [B+(2)]| . (19)

The orientable subspaces with more bands are characterized
by the second SW class which, contrary to the Euler class,
does not require a definite orientation,

w2[B(p � 3)] = w2[B+(p � 3)] ∈ Z2 . (20)

E. Wilson loop and atomic limit obstruction

We conclude this section by adding a few comments on
the relation between our present homotopy approach and the
characterization of topology in terms of Wilson loop and
atomic limit obstruction [31,35,36,77], which has appeared
previously in the literature. When the first SW class van-
ishes, the Euler class is well defined and matches with the
homotopy invariant. References [27,36] pointed out the equiv-
alence between the two-dimensional homotopy classification
of Grassmannians and the one-dimensional classification of
winding of Wilson loop (i.e., π1[SO(2)] = Z). Therefore a
nonzero Euler class implies a finite winding of Wilson loop,
see the numerical examples in Figs. 4 and 6 (this equivalence
has also been shown in Ref. [49] based on Čech cohomology,
i.e., referring to the smoothness of transfer functions). As the
Wilson loop eigenvalues correspond to the expectation values
of the position operator in the band-projected Wannier func-
tions [17,78], we then conclude that a finite winding of Wilson
loop indicates an obstruction against the representation of the
band-subspace in terms of localized Wannier functions. A
more direct and rigorous proof of the later poses an interesting
avenue to explore, but falls beyond the scope of the present
work.

In that regard, it is important to distinguish fragile topology
from stable topology that admits an atomic limit [77]. It is
well known that the π -Berry phase in one-dimension is the
quantum number for the Wyckoff position at which the local-
ized Wannier function is centered, as is relevant for, e.g., the
Su-Schrieffer-Heeger model or for the kx and ky directions of
the Mielke model. Interestingly, the second Stiefel Whitney
class of a band-subspace with a minimum of three bands

FIG. 3. Composition map ηq = f1 ◦ tq through which the pull-
back bundle E+

p,N = η∗
qT +

p,N is built. We define the map tq such that
the Brillouin zone center is mapped to the “blue pole” of the sphere,
and the Brillouin boundary to the “red pole.” The points with the
same distance from the Brillouin zone center, max{|kx||ky|}, are
mapped to the same polar angle θ on the sphere. The map f1 is then
constructed such that its image f1(S2) induces the generator(s) of
π2[Gr+

p,N ]. As a result, windings producing nontrivial Euler class can
be imposed. In the text we also refer to the center of the Brillouin
zone, (kx, ky ) = (0, 0), as the � point, and the corner of the Brillouin
zone, (kx, ky ) = (π, π ), as the M point.

gives a two-dimensional example of a nontrivial topology in
momentum space which also admits an atomic limit. This is
readily indicated by the fact that the Wilson loop spectrum of
a rank-p � 3 subspace is generically gapped [76], i.e., it does
not wind.

VI. REFINED BAND PARTITIONING

A. Multiple gap conditions

The single gap condition is naturally generalized to multi-
ple gap conditions when several blocks of bands are separated
from each other by energy gaps both from above and from
below everywhere in the Brillouin zone B, cf. Fig. 1. We use N
to indicate the total number of band subspaces, and we write
the subbundle of the ith band subspace (i = I, II, III, . . . ,N)
as Bi(pi ) with pi its number of bands, and N = ∑N

i=I pi

the total number of bands. The total gapped bundle can be
expressed as

EpI ,...,pN;N = BI (pI ) ∪ . . . ∪ BI (pN) (21)

where the ordering of the subspaces follows the increasing
band energy. Similar to Sec. V, in the present section we as-
sume the stable limit, i.e., N − pmin � 3 with pmin = mini pi.

Formally, the classifying space of a Hamiltonian with mul-
tiple gap conditions generalizes the Grasmannian to a flag
variety

FlpI ,pII ,...,pN = O(N )/[O(pI ) × O(pII ) × · · · O(pN)] (22)

where the quotient corresponds to the gauge structure ob-
tained by flattening every block of bands separately. The
work of Ref. [50] revealed non-Abelian band topology of
nodal lines in PT -symmetric systems by considering the
complete flag variety O(N )/O(1)×N = Fl1,1,...,1, while ideas
interpretable in terms of a partial flag Flp−1,2,N−p−1 were
employed by the work of Ref. [52] to analyze the topological
properties of principal band nodes in C2T -symmetric mod-
els. One can also construct an oriented flag variety Fl+ by
replacing O �→ SO in Eq. (22) for both the total space and
the quotients.
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FIG. 4. Band structure and tangent vector field realization of fragile topology of Gr+
2,3, together with the Wilson loop winding of occupied

two-band subspace indicating the Euler class. (a) shows Eq=1,+
2,3 with Euler class |χ | = 2q = 2. The mapping tq=1 of Fig. 3 from the Brillouin

zone covers the sphere once. We show one vector field directly given by the eigenvectors of lowest energy of the two-band subspace Bq=1,+
I (2).

As a global section of the tangent bundle of the sphere, it is characterized through the Poincaré-Hopf theorem with the Euler characteristic
|χ | = 2, see Eq. (39). Similarly, panel (b) shows Eq=2,+

2,3 with Euler class |χ | = 2q = 4. The mapping tq=2 of Fig. 3 from the Brillouin zone
covers the sphere two times. We show one vector field given by the eigenvectors of lowest energy, over the halves −π � kx � 0 (black), and
0 � kx � π (red), of the Brillouin zone. In both cases, the sphere is shown on the side of the image of �, i.e., tq(0, 0), that is the blue pole in
Fig. 3. We thus see in both cases that the vortex structures of the tangent vector fields directly reflects the nodal points of the eigenvalues band
structure, with #NP = 2|χ | globally. Although these nodes come in two pairs that are pairwise close in momentum space, making them hard to
distinguish visually, inspecting the nodes in more detail, as shown in Fig. 5 for the panel (a), confirms their presence in the anticipated number.
The tight-binding models have been generated with the MATHEMATICA code available at Ref. [58].

B. Homotopy classes of flag varieties

The first homotopy group of the flag variety in Eq. (22)
is easily shown8 to be π1[FlpI ,...,pN ] = ZN−1

2 . This result is

8In contrast, computing the homotopy classes [T d , FlpI ,pII ,...,pN ] is
a nontrivial problem. Nevertheless, by restricting to two-dimensional
and orientable systems, the topologies of any band structure can be

interpretable in terms of the quantized Berry phases of each
subbundle (i.e., by their first SW classes) on a closed path l ,
subject to the contraint

∑N

i=I γi[l] = 0 (mod 2π ) that follows
from the Whitney sum formula and from the triviality of the

inferred from the second homotopy groups of Grassmannians that are
discussed in Sec. V.
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FIG. 5. Detailed image of the band node structure of Fig. 4, confirming that � (the center of the Brillouin zone) and M (the corner of the
Brillouin zone) indeed host a pair of nodes. As a result, we confirm the presence of the anticipated #NP = 2|χ | = 4 number of nodes.

total Bloch bundle. In analogy with the single gap case dis-
cussed in Sec. V C, the generators of the first homotopy group
are associated with certain paths {�i}N−1

i=I in FlpI ,...,pN , such
that adiabatically evolving the Hamiltonian along �i reverses
the local orientation of subbundles Bi(pi ) and Bi+1(pi+1)
[52,72].

We further consider the topological classification of to-
tal multigapped bundles in two dimensions. We explicitly
consider only the case when all Bi(pi ) are orientable. For sim-
plicity, we first assume that each subbundle is equipped with
an explicit orientation, becoming B+

i (pi ), and we implement
the effect of dropping the orientations in a second step. Under
these assumptions, the discussion in Sec. V B implies that the
first homotopy groups play no role (as π1[Gr+

pi,N
] = 0), and

according to Sec. V C the homotopy classification of each
oriented subbundle is captured by the stable second homo-
topy group π2[Gr+pi,N�pmin+3], which depends on pi. It follows
that (i) one-band oriented subspaces (pi = 1) have a trivial
topology, (ii) two-band oriented subspaces (pi = 2) have a
Z topology indicated by the Euler class which sign reflects
orientation, and (iii) multiband subspaces (pi � 3) have a Z2

topology indicated by the second SW class which is blind to
orientation. We can indicate a generic homotopy equivalence
class of total gapped bundles with a prescribed partitioning
of bands as (βI , βII , . . . , βN) where the indicators βi is a 0,
Z respectively Z2 number depending on the value of pi. It
follows from the Whitney sum formula for orientable subbun-
dles, from the triviality of the total Bloch bundle, and from the
discussion in Sec. V D that

∑N

i=I βi = 0 mod 2.
Similar to Sec. V C, dropping the orientations of the sub-

bundles reduces the second homotopy groups into orbits
under automorphism induced by the first homotopy group
of the classifying space. Since adiabatic evolution of the
Hamiltonian along �i reverses the orientation of subbun-
dles B+

i (pi ) and B+
i+1(pi+1), the corresponding automorphism

reverses ��i : (βi, βi+1) �→ (−βi,−βi+1) while keeping the
other indicators intact. Similar to the single gap case, ��i

acts nontrivially only when pi = 2 or pi+1 = 2. By form-
ing arbitrary compositions of automorphisms {��I }N−1

i=1 , we
can flip the sign of any even number of the indicators βi.
In other words, the orbits (i.e., the elements of the free
homotopy set [T 2, FlpI ,...,pN ](�0,�0) where (�0, �0) indicates the
vanishing Berry phases of each subbundle along the two
noncontractible cycles of the Brillouin zone) consists of col-
lections (±βI ,±βII , . . . ,±βN) that differ from each other

by an even number of sign reversals. Whenever any of the
indicators is 0 or Z2 valued, but also when it is Z valued
but takes the zero value, its sign reversal does not correspond
to any change of topology, meaning that the orbits under
automorphisms {��i}N−1

i=1 also admit arbitrary (including odd)
number of sign reversals.

C. Repartitioning of bands and fragile topology

With the obtained understanding of the topology of the
generalized flag manifold, let us consider the effect of repar-
titioning the bands

Bi(2) ∪ Bi+1(1) → B′
i (3) = Bi(2) ⊕ Bi+1(1), (23)

caused by the closing (or discarding) of the energy gap be-
tween band subspaces Bi and Bi+1. The repartitioning induces
the following reduction of topological charge

r :
N → Z2

χ [Bi(2)] �→ w2[B′
i (3)] = χ[Bi(2)] mod 2 .

(24)

We thus conclude that whenever a two-band subspace has
an even (odd) Euler class, the effect of adding an extra
trivial band trivializes (respectively reduces) the topology
of the combined three-band subspace. For this reason, Eu-
ler class is described as a fragile topology [35,36]. Fragile
topology is thus weaker than the stable topology known from
Chern insulators where the nontrivial topology is robust un-
der the addition of trivial bands. However, fragile topology
must be sharply contrasted from the unstable topology of
Hopf insulators that only exists in strictly two-level systems
(π3[Gr1(C2)] = Z) [79–82]. Indeed, in Hopf insulators the
embedding of the two-level Hamiltonian into three-(or more)-
band Hamiltonian destroys the whole topology, while the
nontrivial fragile topology of a few-band subspace is con-
served as long as the energy gaps separating it from the other
bands are maintained.

D. Nodal points

The principal observable linked to the reduced Euler class
of an orientable two-band subbundle Bi(2) is the number
of stable nodal points formed between the two bands, i.e.,
there is a minimal number of nodal points #NP = 2χ[Bi(2)] =
2|χ [B+

i (2)]| that cannot be annihilated as long as the gaps
with the adjacent bands, Bi−1 and Bi+1, remain open [46,52].
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FIG. 6. Band structures (left column) associated to the real oriented vector bundles E (q+,q− ),+
2,4 based on the Grassmannian Gr+

2,4. Wilson
loop flow (middle column) of the lower two-band subspaces (blue) and, when different, of the higher two-band subspaces (dashed red). The
Wilson loop winding gives the reduced Euler class |χI,II |. The correspondence between the geometric construction and the topology follows
the bijection (χI , χII ) = (q+ − q−, q+ + q−). Location of the #NP = 2χi nodal points of the ith two-band subspace, i = I in (a)–(d)] and i = II
in (e) (right column, dark for nodes and orange for large band separation within the subspace). The tight-binding models have been generated
with the MATHEMATICA code downloadable from Ref. [58].
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We emphasize that this result is only valid in the orientable
case [46], otherwise the Euler class cannot be defined [68].

We emphasize that stable nodal points here indicates those
that cannot be removed within a two-band subspace as long
as the adjacent gaps remain open. Band structures may host
additional pairs of nodal points within a two-band subspace
that can be annihilated when the nodes are collapsed onto
each other. This may however require a large deformation
of the band structure (similarly to generic Weyl points), i.e.,
unstable nodal points in this context are topologically robust
relatively to small local perturbations of the band structure.
In that sense, the “stability” of unstable nodal points can be
measured, crudely, by the shortest distance that separates them
in the Brillouin zone.9

By allowing band inversions of the two principal bands
with a third band, additional nodal points can be generated
or annihilated in pairs within the two adjacent (below and
above) energy gaps [46,52]. This facilitates the braiding of
principal and adjacent band nodes which is accompanied by
non-Abelian phase factors [50]. The Z2 second SW class of
the three-band subspace then indicates the stable parity of the
minimal number of pairs of nodal points, i.e., w2[Bi(pi )] = 1
indicates that at least one pair of nodal points cannot be
annihilated within the pi-band subspace.

VII. GEOMETRIC CONSTRUCTION

A. Strategy

We now embark on employing the notions developed in the
previous sections to construct a general geometrical frame-
work. Before we turn to the topic, we emphasize that out
strategy is again to first develop explicit models equipped with
a specific orientation of each subbundle. We subsequently
drop the orientation and arrive at homotopy class represen-
tatives of orientable bands.

Accordingly, we note that all real vector bundles over a
sphere are orientable since all base loops can be contracted
to a point, i.e., eiγ [l] = +1 for all l ⊂ B = S2. Inversely, all
orientable topological phases can be effectively modeled over
the sphere since [T 2, Grp,N ](0,0) = [S2, Grp,N ]. This moti-
vates the strategy [27] to generate representative tight-binding
models for all the homotopy classes.

The general framework is then presented as follows. After
setting up some definitions and identifying the appropriate
universal bundle structure, we then describe how this structure
can be pulled back to the torus to obtain specific coordinates
to facilitate the desired maps. To achieved this we make use
of the so-called Plücker embedding into more manageable
exterior product spaces that allows us to paramaterize the map
into the Grassmannians in a tractable manner. After having
discussed this embedding, we close with the homotopy as-
pects of our construction.

9A more detailed analysis would be needed to obtain the measure of
stability in terms of the deformation of the tight-binding parameters,
which will be studied in an upcoming work.

B. The tautological bundle

The tautological bundle of the oriented Grassman-
nian, F+

p,N → Gr+
p,N , is defined as the vector bundle ob-

tained by taking the oriented p-dimensional hyperplane
VI = Span{u1, . . . , up} at every point [R]+ of the oriented
Grassmannian, where R = (RI RII ) = (u1 · · · upup+1 · · · uN ) ∈
SO(N )10. As mentioned in Sec. IV, and as more carefully
elaborated in Sec. VII D below, the oriented p-plane can also
be expressed in an SO(p)-invariant fashion as the wedge
product u1 ∧ · · · ∧ up. The tautological bundle is canonical,
in the sense that its structure follows directly (without extra
assumptions) from the construction of the Grassmannian.

We note that by fixing an oriented p-dimensional hy-
perplane in RN , we implicitly but uniquely also define
the complementary oriented (N − p)-dimensional hyperplane
VII = Span{up+1, . . . , uN } such that RN = VI ⊕ VII . This can
be also seen as the Hodge dual of u1 ∧ · · · ∧ up. However,
in general for the equivalence classes we have [F+

p,N ] �=
[F+

N−p,N ] since they do not need to have equal ranks, while
Gr+

p,N = Gr+
N−p,N . For this reason we introduce the notion of

oriented tautological total gapped bundle, in analogy with our
definition of E+

p,N in Sec. IV, as T +
p,N = F+

p,N ∪ F+
N−p,N .

We now define a reference total gapped bundle from which
all the phases can be generated. This is achieved through a
map f1 : S2 → Gr+

p,N such that f1(S2) belongs to the homo-
topy class that generates π2[Gr+

p,N ] (by abuse of language, we
will say that f1(S2) is the generator of the second homotopy
group). The reference bundle is then defined as the pullback
R+

p,N = f ∗
1 T +

p,N , i.e., the restriction of the tautological total
gapped bundle T +

p,N induced by f1. Now, in analogy with the
way every oriented vector (sub)bundle can be obtained as
a pullback of the tautological bundle, i.e., B+(p) = f ∗

BF+
p,N

with a suitable fB, an explicitly constructed f1 allows us to
express an arbitrary oriented total gapped bundle E+

p,N as a
pullback of T +

p,N .

C. Pullback to the Brillouin zone torus

In order to connect with tight-binding models, we define
a continuous function tq : T 2 → S2 that maps the Brillouin
zone torus onto the sphere with deg tq = q ∈ Z, i.e., tq wraps
|q| times over the sphere with the orientation sgn q = ±1.
Parametrizing the sphere S2 with the usual spherical coordi-
nates, a simple choice of tq is obtained by taking inside the
first Brillouin zone I2 � |kx,y| � π the mapping

tq : k �→ (θq(k), φq(k)), (25a)

with

θq(k) = max(|kx|, |ky|),
φq(k) = q arg (kx + iky),

(25b)

10Alternatively, the tautological vector bundle can be defined in
the following way. First, the band vector subspaces can be defined
as the range (i.e., image) Vi = ranPi with the projectors Pi = RiRT

i ,
for i = I, II . Then, VII = ranPII = ranQI with Qi = 1N − Pi. Thus,
F+

p,N = ⋃
[R]∈Gr+p,N

ranPI and F+
N−p,N = ⋃

[R]∈Gr+p,N
ran (1N − PI ).
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where we set φq(0, 0) = 0. Note that φq has a branch
cut on {kx � 0, ky = 0} and that it is discontinuous at
k = (0, 0). However, these discontinuities disappear in
the Cartesian coordinates of a point of the sphere er =
(cos φq sin θq, sin φq sin θq, cos θq). Furthermore, although θq

is not differentiable at |kx| = |ky|, the map is continuous. (The
differentiability of the resulting Bloch Hamiltonians repre-
sentatives of each topological phase will be easily restored
in Secs. VIII and VIII). The composition map ηq = f1 ◦ tq
thus sends each point k ∈ T 2 of the Brillouin zone to a point
ηq(k) = f1(θq(k), φq(k)) of a sphere inside the Grassmannian,
cf. Fig. 3.

A generic oriented total gapped bundle over the Brillouin
zone torus is obtained as a pullback by the composition
map ηq,

Eq+
p,N = t∗

qR+
p,N = t∗

q ( f ∗
1 F+

p,N ) ≡ η∗
qF+

p,N , (26)

and according to the diagram

(27)

where h, and h′, are bundle maps obtained as the inverse of
the pullbacks f ∗

1 , and t∗
q , respectively, and the mapping ι on

the bottom-right is the Plücker embedding of the Grassman-
nian explained in Sec. VII D. It follows from the described
construction, that the integer q determines the isomorphism
class of the oriented total gapped bundle, such that [Eq+

p,N ] =
βq ∈ π2[Gr+

p,N ]. This defines the homomorphism of groups

β :
Z → π2[Gr+

p,N ]

q �→ βq

(28)

with β−1
q = β−q, βq′+q = β ′

q + βq, and β0 = 0.

Finally, writing the oriented total gapped bundle as Eq+
p,N =

Bq+
I (p) ∪ Bq+

II (N − p), the corresponding diagram for the
vector subbundle Bq+

I (p) is

(29)

[and similarly for Bq+
II (N − p)], where B+

p,N is the vector
subbundle of the bundle R+

p,N = f ∗
1 T +

p,N defined over S2. We

emphasize that since the associated total gapped bundle Eq+
p,N

is generated from the pullback by a map to the oriented
Grassmannian (ηq : T 2 → Gr+

p,N ) it has no nontrivial weak
invariants. In other words, the Berry phases over either the
occupied and the unoccupied band subspaces are all trivial,
even though the base space (T 2) contains noncontractible
loops.

D. Plücker embedding

We now motivate how to represent the image f1(S2) ⊂
Gr+

p,N via a general procedure that would be discussed more

explicitly for three-band and four-band models in Secs. VIII
and IX. To achieve this, we employ the Plücker embedding
ι : Gr+

p,N ↪−→ ∧p(RN ) which represents the oriented Grass-
mannian as a p(N − p)-dimensional submanifold of the pth
exterior power of RN [i.e., the (N

p)-dimensional Euclidean vec-
tor space spanned by N-component and fully antisymmetric p
vectors]. As a result, the image of the Plücker embedding can
be generally represented by [83]

ι(Gr+
p,N ) = Kp ∩ S

(
N
p )−1

. (30)

Here, Kp is the cone of simple (or decomposable) p vectors,
i.e., those of the form

∧p
i=1 vi for some collection of vec-

tors {vi}p
i=1 in RN (not necessarily pairwise orthogonal), and

S
(
N
p )−1

is the unit sphere in
∧p(RN ) with respect to the linear

inner product defined on simple p vectors as11〈
p∧

i=1

vi,

p∧
i=1

v′
i

〉
=
∑
σ∈Sp

(−1)sign σ

p∏
i=1

〈
vi, v

′
σ (i)

〉
, (31)

where Sp is the permutation group of p elements.
The Plücker embedding is defined explicitly as follows.

For a given point [R]+ ∈ Gr+
p,N we take a representative R =

(RI RII ), and we construct ι([R]+) as the wedge product of the
columns of subframe RI , that is

ι([R]+) = u1 ∧ · · · ∧ up ≡ ωp. (32)

Crucially, the p vector in Eq. (32) is invariant under the
SO(p) × SO(N − p) gauge transformations of the frame R,
meaning that all choices of the representative of [R]+ result
in the same image ι([R]+). Furthermore, note that ωp is by
definition a simple p-vector, and it is easy to check that it has

a unit norm, implying ι(Gr+
p,N ) ⊆ Kp ∩ S

(
N
p

)−1

. The validity
of the equality in Eq. (30) is less obvious,12 but can be proved
[83].

Note that one can similarly define ι(Gr+
N−p,N ) as the exte-

rior product ωN−p of the N − p eigenvectors of subframe RII .
Although in general ωp �= ωN−p (in a similar way as generi-
cally F+

p,N �= F+
N−p,N ), the two objects are canonically related

as Hodge duals, namely ∗(ωp) = ωN−p. The invariance of
ωp and of ωN−p under gauge transformations R �→ R[GI ⊕
GII ] = (RI GI RII GII ) with GI ∈ SO(p) and GII ∈ SO(N −
p), and the fact that the images of the two subframes are
uniquely related as Hodge duals, together imply that Eq. (32)
is a faithful representation of the oriented Grassmannian.

In the following sections, we obtain an explicit
parametrization of Gr+

p,N for N = 3 and 4 through the
Plücker embedding.

Starting from the general parametrization of an ele-
ment R ∈ SO(N ), the task is to find the restriction to the

11Equivalently, the right-hand side of Eq. (31) is the determinant of
a matrix A with elements Ai j = 〈vi, v

′
j〉.

12The inverse map, i.e., the one that assigns to any simple p vector
with unit norm a unique oriented p plane, can be obtained by consid-
ering the QR decomposition of the matrix (v1, . . . , vp) representing
the p vector.
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parametrization of an element ωp of the image (ι ◦ f1)(S2)
(corresponding to the generator of the second homotopy group
of the Grassmannian), as this provides the parametrization of
the subframes RI and RII , which directly encode the Hamil-
tonian H (k). By explicitly solving this problem for SO(3)
and SO(4), we derive explicit three-band and four-band tight-
binding models for all the homotopy classes.

E. Homotopy classes of total gapped bundles

We argued in Sec. V D that two-band subspaces are
characterized by the Euler class χ [Bq+(2)], while p-band sub-
spaces with p � 3 are characterized by the second SW class,
w2[Bq+(p)]. We will see in Secs. VIII and IX for several con-
crete examples that the element of the second homotopy group
for the oriented total gapped bundle determines the Euler and
the second SW classes of both vector subbundles Bq+

I (p)
and Bq+

II (N − p), depending on q for the map tq : T 2 → S2

(Fig. 3).
When the classifying space is a product space, i.e., C =∏
j∈A Xj (A being some indexing set), the second homotopy

group splits as a direct sum π2[C] = ⊕
j π2[Xj]. Thus the

map f1 splits accordingly into the components { f1, j (S2)} j∈A′

where the indexing set A′ contains the components Xj with a
nontrivial π2[Xj]. This scenario notably occurs for Gr+

2,4 that is
discussed in Sec. IX. Under these circumstances, one needs to
replace the base space of the reference total gapped bundle in
Eq. (29) by a product S |A′| = ×|A′|

j=1S
2
j , i.e., one copy of S2 for

each generator of π2[C], and the maps relate f1, j : S2
j → Xj .

The map from T 2 to SA′ is characterized by a vector of
integers q = (q1, . . . , qA′ ), with each element encoding the
map in Eq. (25) to the respective S2

j . The composition map
ηq = f1 ◦ tq then determines the homotopy class (and there-
fore also the Euler respectively the second SW class of both
band subspaces) of the mapping ηq : T 2 → Gr+

p,N .

VIII. THREE-BAND MODELS

We now turn the attention to the specific case of N = 3
bands, and we deploy the machinery developed in the previous
sections in a concrete context. From a physical perspective, we
point out that the N = 3 topology has appeared in numerous
physical settings. In particular, for nematic systems the asso-
ciated topology has been extensively studied [84–88], as well
as non-Hermitian band topology has been related to it [72].

A. The three-band classifying space

Nontrivial topology can be achieved in a three-band system
when a band gap separates a two-band (occupied) subspace
and a single-band (unoccupied) subspace (see Table I). The
classifying space of the orientable phases is RP2 leading to the
homotopy classification of all the topologically nonequivalent
phases [S2,RP2] = 2N (see Sec. V). The factor “2” here is
a convention made such that the value of the topological in-
variant agrees with the computed Euler class, as we elaborate
below.

As explained in Sec. V C, the associated bundle of the
Hamiltonian of an orientable phase can be given an orien-
tation. Therefore, in the following we work with oriented

bundles as a mean to build explicit tight-binding models.
The classifying space of the oriented phases is Gr+

2,3 =
SO(3)/[SO(2) × {1}] ∼= S2 (cf. Sec. III C and Fig. 2), lead-
ing to the homotopy classification π2[Gr+

2,3] = 2Z with the
topological invariant given by an even integer Euler class
χ . The homotopy classes of the orientable phases are then
obtained by dropping the orientation, resulting in the 2N topo-
logical classification with the reduced Euler class χ = |χ | as
the topological invariant. We give an explicit example of such
a reduction [72] in Appendix D.

We start from an arbitrary element

R = (u1u2u3) ∈ SO(3) (33)

that is parametrized by three continuous angles (e.g. the Euler
angles). Choosing a Cartesian frame (e1e2e3) of R3 to de-
compose the eigenvectors, i.e., ui = u1

i e1 + u2
i e2 + u3

i e3 for
i = 1, 2, 3, the Plücker embedding ι(Gr+

2,3) of the two-band
subspace is given through the bivectors

u1 ∧ u2 = (
u2

1u3
2 − u3

1u2
2

)
e2 ∧ e3

+(u3
1u1

2 − u1
1u3

2

)
e3 ∧ e1

+(u1
1u2

2 − u2
1u1

2

)
e1 ∧ e2. (34)

Note that the expressions in the parentheses correspond to
components of u3, by virtue of the property in Eq. (33).
By formally identifying the basis of the three-dimensional
Euclidean vector space

∧2 R3 with the Cartesian frame of
R3 via the Hodge dual, i.e., ∗(e2 ∧ e3, e3 ∧ e1, e1 ∧ e2) =
(e1, e2, e3), we get ∗(u1 ∧ u2) = u3 ∈ S2, which is a specific
instance of the duality discussed in Sec. VII D.

We thus infer that spherical coordinates for three-
dimensional orthonormal frames defined on S2 provide the
desired mapping f1 onto the nontrivial sphere inside the
Grassmannian, i.e., we use

f1(θ, φ) = [(u1 u2 u3)]+, (35)

with

u3 = er = (cos φ sin θ, sin φ sin θ, cos θ ),

u1 = eθ = ∂θer

|∂θer | = (cos φ cos θ, sin φ cos θ,− sin θ ),

u2 = eφ = ∂φer

|∂φer | = (− sin φ, cos φ, 0),

(36)

which correspond respectively to the directions “up,” “south,”
and “east” at every point (θ, φ) of the sphere. Indeed, u1 ∧
u2 = eθ ∧ eφ , which is invariant under any GI ∈ SO(2) gauge
transformation RI → RI GI , represents the oriented plane per-
pendicular to u3 = er and, by definition, an element of Gr+

2,3.

B. Three-band reference total gapped bundle

Note that (eθ , eφ ) is an oriented orthonormal frame of
T(θ,φ)S2, i.e., of the tangent space at the point (θ, φ) of the
sphere, and er is the basis of the normal space to the point of
the sphere. Therefore these vectors span the tangent bundle
TS2, and the normal bundle NS2, respectively. Furthermore,
since Gr+

2,3
∼= S2, the total gapped tautological bundle T +

2,3 →
Gr+

2,3 is topologically equivalent to the couple TS2 ∪ NS2, so

115135-15



BOUHON, BZDUŠEK, AND SLAGER PHYSICAL REVIEW B 102, 115135 (2020)

we write

T +
2,3 ∼ TS2 ∪ NS2. (37)

Then, since f1(S2) ∼= S2, the same is true for the pullback
bundle

R+
2,3 = f ∗

1 T +
2,3 = B+(2) ∪ B+(1) (38)

with B+(2) ∼ TS2 and B+(1) ∼ NS2.
It is well known through the hairy ball theorem that the

tangent bundle of the 2-sphere is nontrivial, namely any global
section, (i.e., any smooth tangent vector field) must have zeros
associated with a vortex structure. We illustrate this known
fact on an example in Fig. 4(c), which displays the eigenvec-
tors of a tight-binding model presented in the next section.
The hairy ball theorem is formalized by the Poincaré-Hopf
theorem, which states∑

j

indexx j (v) = χ [S2] = 2, (39)

where x j is the location of a zero of the vector field v,
indexx j (v) is the winding number of v/|v| around the zero
x j , and χ [S2] = 2 is the Euler characteristic of the sphere
[89]. Thus any tangent vector field must have two sources of
vorticity 1. In the more general context of our classification
scheme, the Euler characteristic of the sphere is substituted by
the Euler class of the rank-2 subspace of our reference bundle,
which however is still χ [B+

2,3(2)] = 2 by virtue of Eq. (38)
[cf. also to the diagram in Eq. (29)]. We show below that the
vortices of the tangent vector field correspond to nodal points
within the two-band subspace.

In this context, we emphasize the stable triviality of the
tangent bundle of the sphere, i.e., that it becomes trivial upon
the direct sum with a trivial bundle. The normal bundle of
the sphere is trivial, and the direct sum gives TS2 ⊕ NS2 ∼=
S2 × R3. In other words, the nontrivial tangent bundle (with
the nonzero characteristic Euler class χ [TS2] = 2) is trivi-
alized by the trivial normal bundle [63,73] (resulting in the
vanishing characteristic second SW class w2[S2 × R3] = 0).
The trivialization (or reduction) of the fragile topology of
two-band subspaces upon closing the adjacent energy gap as
discussed in Sec. VI C can thus be perceived as a fingerprint
of the stable triviality of the tangent bundle of the sphere.

C. Simple model generation

Importantly, we make use of the presented machinery to
generate explicit models of fragile topological phases over
the Brillouin zone torus for an arbitrary homotopy class
[Eq+

2,3 ] = βq = 2q ∈ 2Z (corresponding respectively to Euler

class χ [Bq+
I (2)] = 2q). As elaborated previously, we first

construct explicit models with a specific orientation that are
classified by 2Z, and then we drop the orientation resulting in
a 2N topological classification. The continuous deformations
that relate oriented tight-binding Hamiltonians with Euler
class ±q are explicitly presented in Appendix D.

For q = 1 the mapping tq=1 (cf. Fig. 3) wraps the Brillouin
zone torus around the sphere once, and we have Eq=1,+

2,3
∼=

R+
2,3

∼= TS2 ∪ NS2. The Hamiltonian representative is then

readily given by [27]

H (k) = R(k)[(−12) ⊕ 1]R(k)T , (40)

where 12 is a 2 × 2 identity matrix, 1 is the identity in
the single-band unoccupied subspace, and the frame R(k) =
t∗
q=1 f1(θ, φ) = (eθ , eφ, er ) with

ea(tq=1(k)) = ea(θq=1(k), φq=1(k)) (41)

for a = θ, φ, r, with f1(θ, φ) defined in Eq. (36) and tq(k)
from Eqs. (25). Sampling H (k) over a grid and performing
an inverse discrete Fourier transform, we obtain the hopping
parameters of a tight-binding model, which we truncate to a
few neighbors (see Appendix C and Ref. [58] for more details)
without affecting the topological features. Accordingly, we
note that while the bands of the Hamiltonian H (k) constructed
above are flat and the two occupied bands are fully degenerate,
these features are lost in our tight-binding models after per-
forming the truncation. Indeed, imposing the perfect flatness
and degeneracy results after performing the inverse Fourier
transform in an infinite-range hopping amplitudes.

We show in Fig. 4(a) the band structure of the obtained
tight-binding model (truncated at two nearest neighbors in
both directions of the square lattice, see Appendix C and
Ref. [58]) that is a representative Hamiltonian for Eq=1,+

2,3

with Euler class χ [Bq=1,+
I (2)] = 2. In agreement with the rule

#NP = 2|χ |, we find 4 nodal points between the two lower
bands of Fig. 4(a), two around � = (0, 0) and two around
M = (π, π ). Since the pairs of nodes appear very close to
each other, we zoom in the neighborhood of the points � and
M in Fig. 5 to properly resolve them.

We now demonstrate explicitly the equivalence of vector
bundles Bq=1,+

I (2) ∼ TS2 and Bq=1,+
II (1) ∼ NS2 mentioned

below Eq. (38). To achieve this, we transfer the eigenvec-
tors {u1, u2, u3} of the band structure in Fig. 4(a) defined
over the Brillouin zone torus to two tangent vectors and
one normal vector over each point of the sphere. This is
done through the mapping tq=1 as a “pushforward” of vec-
tor fields, i.e., t1∗ui(k) �→ ui(t1(k)) = ui(θ1(k), φ1(k)) for i =
1, 2, 3. We thus plot on the right Fig. 4(a) the tangent vector
field given by the eigenvectors of the lower energy band of
the two-band subspace of the band structure shown on the
left of Fig. 4(a). As a global section of the tangent bundle
TS2, it can be characterized by invoking the Poincaré-Hopf
theorem from Eq. (39). This indicates the equivalence be-
tween the Euler characteristic χ [S2] = 2 and the Euler class
χ [Bq=1,+

I (2)] = 2. We also observe that the nodal points of
the band structure with fragile topology [left upper panel of
Fig. 4(a)] correspond to vortices of the section of TS2 [right
Fig. 4(a)].

We can repeat the exercise for arbitrary q ∈ Z. We show
an example of band structure for Eq=2,+

2,3 in Fig. 4(b) with
the Euler class χ = 2q = 4. We find #NP = 2|χ | = 2 · 4 = 8
nodal points in the two occupied bands, namely 4 on the
Brillouin zone boundary and 4 around the � point. Owing to
the pullback construction, we can force a geometric picture
of Eq>1,+

2,3 as the tangent and normal bundles of a generalized
surface (not a manifold). Since tq : T 2 → S2 wraps the sphere
q-times, we can divide the Brillouin zone into q cells that are
each mapped onto S2, i.e., we get a tangent vector field over
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the sphere for each of the q cells. Taken together we can think
of it as a tangent field over a surface that wraps on itself with q
sheets and with the two q-fold ramification points tq(0, 0) and
tq(k)|k∈∂BZ, where the former is the image of � (blue point
in Fig. 3), and the latter is the image of the boundary of the
first Brillouin zone ∂BZ = {k| max(|kx|, |ky|) = π} (red point
in Fig. 3).

D. Comment on the “triviality” of NS2

We address here a possible source of confusion concerning
the triviality of vector bundles, taking the normal bundle of
the sphere, and all the line bundles that are pulled back from
it, as an example. Further examples in other dimensions are
discussed in Sec. X B.

The homotopy classification of the total gapped bundle
characterizes the (stable or unstable) homotopy classes of all
the bands at the same time. In the case of the sphere we
have seen that the total bundle TS2 ∪ NS2 is characterized
by the second homotopy invariant β = 2 ∈ 2Z. The homo-
topy method is in contrast with the cohomology invariants
that characterize the stable topology of a single subbundle at
a time, i.e., χ [TS2] = 2 and w1[NS2] = w2[NS2] = 0. The
trivial cohomology class of the normal bundle of the sphere
reflects the fact that the vector field generated by er over the
sphere defines a smooth global section, i.e., NS2 is a trivial
vector bundle.

However, the same vector field defines a hedgehog struc-
ture over the sphere, and as such it cannot be continuously
deformed into a constant section, e.g., v(θ, φ) = er (0, 0) =
const. for all (θ, φ). This is precisely captured by the ho-
motopy invariant of the total gapped bundle which can be
obtained as the skyrmion number of the normal vector field
(see Appendix D and Ref. [72]). From this perspective, one
concludes that the normal bundle of the sphere is nontrivial
as it belongs to a different homotopy class than the constant
vector field.

We emphasize, crucially, that the statement about the non-
triviality of NS2 is only true as long as we keep the underlying
dimension of Euclidean space R3 (or equivalently the rank of
the total bundle N = 3) fixed. The trivial cohomology indi-
cates that if we embed the 2-sphere in a higher-dimensional
Euclidean space the normal bundle can be fully trivialized,
i.e., the extra dimensions allow a continuous deformation of
the hedgehog structure into the constant vector field. The
nontrivial homotopy invariant of the normal bundle must thus
be interpreted as a unstable homotopy which refines the coho-
mology classification. The same conclusion applies to all line
bundles Bq+(1) pulled back from NS2.

IX. FOUR-BAND MODELS

In this section, we study the Gr2,4 case, i.e., the classifying
space of an orientable band structure with four bands and with
a single gap condition that separates an “occupied” two-band
subspace from an “unoccupied” two-band subspace. As in
the previous section we start from the classification of the
oriented phases and then we address the effect of dropping
the orientation. We first discuss the parametrization of the
classifying space obtained from the Plücker embedding from

which representative tight-binding models of all the homotopy
classes can be derived. We then study in detail several explicit
tight-binding models and we establish the complete list of
all topologically nonequivalent phases for 0 � |χ | � 3. We
finally briefly address the stability of the topological invariants
under the repartitioning of the bands.

A. Parametrization

The diagonalizing matrix, R = (u1 u2 u3 u4), underly-
ing the Hamiltonian belongs to SO(4) and thus can be
parametrized by six continuous angles. The exterior product
of the occupied states ω = u1 ∧ u2 is now a point of the
image of the Plücker embedding ι(Gr+

2,4), i.e., a simple unit
bivector. Notably, since the number of unoccupied bands is
the same, the Hodge dual ∗ω = u3 ∧ u4 also is a unit bivector
in the same space ι(Gr+

2,4). We show in Appendix E that
their linear combinations v± = 1√

2
(u1 ∧ u2 ± u3 ∧ u4) ∈ V±,

where V± are two complementary three-dimensional vec-
tor spaces of bivectors which partition the second exterior
power of R4 [a space of dimension

(4
2

) = 6] into two halves,

i.e.,
∧2 R4 = V+ ⊕ V−. Furthermore |v+| = |v−| = 1, thus

v+ (v−) belongs to a unit sphere in V+ (V−). Therefore the
image of the Plücker embedding is the four-dimensional sub-
manifold S2

+ × S2
− with points ω = v+ + v−. The inverse

embedding induces a diffeomorphism Gr+
2,4

∼= S2 × S2, im-
plying π2[Gr+

2,4] = Z ⊕ Z. We observe that f1 splits into two

generators { f ( j)
1 (S2) = S2

j } j=+,− of π2[Gr+
2,4] parametrized by

{(θ j, φ j )} j=+,−.
Let us now consider the image M = ι(Gr+

2,4) = S2
+ × S2

−
whose points are bivectors parametrized by a pair of angles
(θ+, φ+, θ−, φ−) (see Appendix E for more details). The in-
verse embedding induces a parametrization P of the four-band
diagonalizing matrices

P : M → Gr+
2,4 ↪→ SO(4) (42a)

through the assignment

P : ω(θ+, φ+, θ−, φ−) �→ [R]+ �→ R(α1, α2, α3, α4), (42b)

i.e., there is a reduction from six continuous angles for a
generic element R ∈ SO(4) to four angles for the represen-
tatives [R]+ ∈ Gr+2,4. It is worth noting that P is nothing but a
section of the tautological total gapped bundle T +

2,4 → Gr+
2,4.

The explicit parametrization P depends on the chosen encod-
ing of elements R ∈ SO(4). This is done in Appendix E in
terms of the Lie algebra of real and anti-symmetric matrices.

B. Generating the models

Once the parametrization in Eqs. (42) is found, we can
readily apply our machinery to generate a tight-binding model
corresponding to any homotopy class of π2[Gr+

2,4] = Z ⊕ Z.
Adapting the discussion from Sec. VII E to the present situa-
tion, we replace the base space of the reference total gapped
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bundle by S2
1 × S2

2, modifying the scheme in Eq. (27) into

(43)

where the pair of integers q = (q+, q−) dictates how many
times ηq : T 2 → S2

+ × S2
− wraps around each of the two tar-

get spheres as we cover the Brillouin zone torus. The map
f1 splits into ( f1,+, f1,−) such that ι ◦ f1,+ wraps S2

1 around
S2

+ (and ι ◦ f1,− wraps S2
2 around S2

−) exactly once. Then we
generate all the topological phases through the pullback of
the tautological total gapped bundle, Eq+

2,4 = (ηq)∗T +
2,4, where

ηq = f1 ◦ tq. The pair (q+, q−) ∈ Z ⊕ Z then determines the
homotopy invariant (β1(q+, q−), β2(q+, q−)) ∈ π2[Gr+

2,4] =
Z ⊕ Z, and we simply take (β1, β2) = (q+, q−).

We show in the left column of Fig. 6 band structures of
truncated tight-binding models (for details see Appendix C
and Ref. [58]) associated to E (q+,q− )

2,4 for different combinations
of (q+, q−), which were generated in a similar way as the
three-band models discussed in Sec. VIII. By construction,
each band structure is composed of two two-band subspaces,
B+

I (2) and B+
II (2). The topology of each oriented subspace

is characterized by the Euler class, i.e., χI = χ [B+
I (2)] ∈

Z and χII = χ [B+
II (2)] ∈ Z, which we compute here as

a two-band Wilson loop winding [36] (middle column of
Fig. 6).13

Both Euler classes are directly determined by the num-
bers (q+, q−). While (q+, q−) takes value in a free group,
the pair of Euler classes (χI , χII ) must satisfy the sum rule
(χI + χII ) mod 2 = 0 [27,46].14 From the data presented in
Fig. 6, we conclude that there is the following homomorphism
of groups from the homotopy invariants to the cohomology
invariants,

m : (q+, q−) →
{

χI = q+ − q−
χII = q+ + q−

. (44)

We explain in Appendix E how the homomorphism m follows
from the chosen parametrization of SO(4). We emphasize that
while the parity of the Euler classes (χI , χII ) must be equal
(by virtue of the Whitney sum formula), their sum does not
need to vanish.

As anticipated, we again observe that the number of sta-
ble nodal points within each two-band subspace follows
#NP[B+

i (2)] = 2|χi|, i = I, II , see the right column of Fig. 6
showing the location of nodal points (black points) of one
to the two-band subspaces. This does not prevent accidental
pairs of nodal points as is found in Fig. 6(e) which exhibits
eight nodal points in the unoccupied two-band subspace while
the minimum of only six stable nodal points is expected.

13The Wilson loop winding gives the reduced Euler class |χ |. The
integer invariant can be obtained from the winding of the Pfaffian of
the Wilsonnian Hamiltonian Ref. [52].

14This follows from the sum rule for the second Stiefel-Whitney
class of the total bundle, namely, w2[BI (2) ⊕ BII (2)] = (w2[BI

(2)] + w2[BII (2)]) mod 2 = (χ [BI (2)] + χ [BII (2)]) mod 2 = 0.

Beyond the phases that are represented in Fig. 6, all the
other topologically nontrivial phases within 0 � |χI |, |χII | �
3 can readily be obtained through the transformations

(i) (q′
+, q′

−) = (q+,−q−) for (χ ′
I , χ

′
II ) = (χII , χI ),

(ii) (q′
+, q′

−) = −(q+, q−) for (χ ′
I , χ

′
II ) = −(χI , χII ),

(ii) (q′
+, q′

−) = (q−, q+) for (χ ′
I , χ

′
II ) = (−χI , χII ). (45)

(The topologically trivial case with χI,II = 0 is easily obtained
as a constant Hamiltonian, and therefore not listed in Fig. 6).

C. Dropping of orientation

The topology of orientable band structures is classified by
the free homotopy classes (see Sec. V C) for which there is
no canonical definition of an orientation. Therefore the orien-
tation assumed so far must be dropped. This has the effect of
the following reduction of the homotopy classification of band
structures (see Sec. VI B)

Z ⊕ Z → [Z ⊕ Z]/��, (46)

where the quotient set is defined through the equivalence
relation given by the automorphism ��(β+, β−) = −(β+, β−)
that reverses the orientations of both subbundles B+

I (2) and
B+

II (2). We give in Appendix F an explicit example of a con-
tinuous deformation of the Hamiltonian that reverses the Euler
class of oriented subbundles of models with two occupied and
two unoccupied bands.

This implies that any two phases with, on the one hand,
(χI , χII ) and, on the other hand, (−χI ,−χII ), belong to the
same homotopy class, which we write

(χI , χII ) ∼ (−χI ,−χII ) . (47)

On the contrary,

(χI , χII ) � (χI ,−χII ) ∼ (−χI , χII ) . (48)

Given the sum rule of Euler classes, and given the above
reduction, we readily obtain the following list of all equiva-
lence classes of topologically nonequivalent phases that are
bounded by 0 � |χI |, |χII | � 3, and written in terms of Euler
class, i.e.,

(χI , χII ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0)
(1, 1) ∼ (−1,−1)

(−1, 1) ∼ (1,−1)
(2, 0) ∼ (−2, 0)
(0, 2) ∼ (0,−2)
(2, 2) ∼ (−2,−2)

(−2, 2) ∼ (2,−2)
(1, 3) ∼ (−1,−3)
(3, 1) ∼ (−3,−1)

(−1, 3) ∼ (1,−3)
(−3, 1) ∼ (3,−1)

(3, 3) ∼ (−3,−3)
(−3, 3) ∼ (3,−3)

, (49)

of which Fig. 6 presents only a subset.

D. Fragile topology of four-band models

We conclude this section by commenting on the fragility
through a repartitioning of the bands. Let us start from the
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band structure with (χI , χII ) = (2, 0) [Fig. 6(d)]. As indicated
by their Euler class, the two higher bands are connected by
a minimum of zero nodal points, and as such they can be
separated by an energy gap [as readily visible in Fig. 6(d)] thus
enabling a finer partitioning BI (2) ∪ BIIa(1) ∪ BIIb(1). Then
we can lower the band IIa in energy and close the gap with
the block I , leading to the new partitioning B′

I (3) ∪ B′
II (1) ∼=

BI (2) ⊕ BIIa(1) ∪ BIIb(1). The (oriented) classifying space
corresponding to the repartitioned bands is thus Gr+

3,4 = S3.
Then π2[S3] = 0 tells us that the nontrivial fragile topology
of the occupied two-band subspace (χI = 2) has been trivial-
ized, in agreement with w2[B′

I (3)] = w2[BI (2) ⊕ BIIa(1)] =
(w2[BI (2)] + w2[BIIa(1)]) mod 2 = χI mod 2 + 0 = 0.

The same conclusion can alternatively be obtained by con-
sidering the tangent bundle to the 3-sphere which is associated
to the classifying space S3. We explain in Sec. X that oriented
vector subbundles pulled back from F+

3,4
∼= TS3, i.e., the tan-

gent bundle of the 3-sphere, are classified by πd [S3] where
d is the dimensionality of the system. Then, since π2[S3] =
0, the two-dimensional restriction of any vector subbundle
pulled back from F+

3,4 must be fully trivial.

X. GENERALIZATIONS

We now briefly highlight how our construction can be
extended in certain directions, underpinning the generality of
the presented geometric framework.

A. Band structures with multiple gaps

As a first direction, we can generalize to systems with
more bands and with multiple energy gaps, as has been briefly
foreshadowed in Secs. VI A and VI B. We discuss here the
concrete example of Fl2,2,2 for the orientable phases. In this
case the total gapped bundle is composed of three vector sub-
bundles, E2,2,2;6 = BI (2) ∪ BII (2) ∪ BIII (2). First lifting the
problem to the oriented bundle, we have

π2[Fl+2,2,2] = Z ⊕ Z ⊕ Z � (c1, c2, c3). (50)

The two-band subspaces are characterized by an Euler class,
χi = χ [Bi(2)] ∈ Z, i = I, II, III , which must satisfy the
sum rule [χI + χII + χIII ] mod 2 = 0, which follows directly
from the Whitney sum formula and from the triviality of the
total Bloch bundle. There is then a homomorphism from the
homotopy invariants to the cohomology invariants,

χI = c2 + c3, χII = c3 + c1, χIII = c1 + c2 . (51)

The classification of orientable phases, as opposed to ori-
ented ones, is then obtained by dropping the orientation. This
is obtained by taking the quotient

[S2, Fl2,2,2] = π2[Fl2,2,2]/π1[Fl2,2,2], (52)

where the first homotopy group is π1[Fl2,2,2] = Z2 ⊕ Z2 with
elements corresponding to the four Berry phase configurations

(γI , γII , γIII ) ∈
{(0, 0, 0), (π, π, 0), (π, 0, π ), (0, π, π )} mod 2π. (53)

After dropping the orientation, we hence obtain the following
homotopy equivalence expressed through the Euler class of

each two-band subspace, i.e.,

(χI , χII , χIII ) ∼ (−χI ,−χII , χIII )

∼ (−χI , χII ,−χIII )

∼ (χI ,−χII ,−χIII ). (54)

While the above results constitute a complete homotopy clas-
sification of orientable band structures associated to Fl2,2,2,
the flag manifold Fl+2,2,2 has a dimension of 12 which makes
explicit parametrization challenging.

B. Higher-dimensional fragile topologies

Our construction, relating the nontrivial tangent bundle
of the sphere and the nontrivial fragile topological band
structures of three-level systems, can be straightforwardly
generalized to other dimensions. Indeed, any band structure
with p occupied bands and one unoccupied band has the
classifying space RPp, or Gr+

p,p+1
∼= Sp when the orienta-

tion is artificially fixed. The total tautological bundle is then
T +

p,p+1 = F+
p,p+1 ∪ F+

1,p+1
∼= TSp ∪ NSp, where the tautolog-

ical rank-p subbundle is the tangent bundle of the p-sphere,
F+

p,p+1
∼= TSp, and the tautological line bundle is the normal

bundle of the p-sphere, F+
1,p+1

∼= NSp.
Fixing d as the dimensionality of the system, we focus on

the orientable phases (note that the definition of orientabil-
ity of Sec. IV generalizes to an arbitrary dimension of the
base space). Then, generalizing the two-dimensional case dis-
cussed in Sec. VIII (d = p = 2), in general the Hamiltonian
defines a map η

(d,p)
q = f (d,p) ◦ t (d )

q : T d → Sd → Sp, where
t (d )
q wraps T d on Sd q times, and f (d,p)(Sd ) is an element of
πd [Sp]. Any associated total gapped bundle is thus obtained
as the pullback bundle Eq+,(d )

p,p+1 = ( f (d,p) ◦ t (d )
q )∗T +

p,p+1 with a
topology that is classified both by πd [Sd ] (corresponding to
the classification of maps t (d )

q : T d → Sd ) and by πd [Sp] (for
the classification of maps f (d,p) : Sd → Sp). We conclude that
in general the topology is captured by the direct sum[

Eq+
p,p+1

] ∼= πd [Sd ] ⊕ πd [Sp]. (55)

In the special case d = p, the topology is classified by the sin-
gle homotopy group πd [Sd ], similar to Sec. VII. When d < p,
we have πd [Sp] = 0 and all associated total gapped bundles
have a trivial topology. This explains the triviality achieved
by the repartitioning of bands as discussed in Sec. IX D. On
the contrary when d > p, we predict a richer classification
than the examples studied so far in this work. One well-known
example is the Hopf bundle and the associated Hopf insulators
obtained for d = 3 and p = 2 [79–82].

We conclude this section by a generalization of Sec. VIII D
that addressed the unstable nontrivial homotopy of the normal
bundle of the sphere NS2. It is a classical result of algebraic
topology that the tangent bundles TSd of the d-sphere for d =
1, 3, 7 are fully parallelizable, i.e., smooth global sections
(vector fields) can be formed over these spheres. Nevertheless,
since πd [Sd ] = Z for all d’s, it readily follows from our
construction that topologically nontrivial bundles can be ob-
tained as the pullback of parallelizable tangent bundles. This
again points to the finer topological content of the homotopy
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classification as compared to the cohomology (i.e., stable)
characterization of vector bundles.

The higher-dimensional topologies we are alluding to here
will be studied comprehensively elsewhere.

XI. CONCLUSION AND DISCUSSION

We have provided a geometric perspective on fragile
topological phases beyond symmetry indicators, while also
addressing structures that emerge when a refined partition-
ing of bands is taken into account. This topological analysis
also underlies the novel braiding properties found in [50,52]
when nodes of different bands are considered. The framework
rests on direct homotopy evaluations of the relevant Grass-
mannians using a geometrical construction, which involves
the so-called Plücker embedding into the more manageable
projective exterior product spaces. This construction does
not only provide descriptive power, enumerating the possible
topologies on a generic footing, but in reverse also allows
for a direct construction of rather tractable models displaying
the desired topological features. These explicit Hamiltonian
models provide a valuable platform to investigate the possible
experimental signatures of fragile topology beyond symme-
try indicators. In this regard, we point out the very recent
Ref. [56], in which some of the present authors investigated
the expected fingerprints of the three-band Euler-insulator
models of Sec. VIII in cold-atoms setups.

We conclude with outlining prospective theoretical gener-
alizations. Firstly, there are the extensions already outlined in
Sec. X, namely, the generalization to fragile topology in the
presence of multiple bands gaps on the one hand (Sec. X A),
and the generalization to higher-dimensional spaces on the
other hand (Sec. X B). Although in the present work we only
consider real-symmetric Hamiltonians, such as in the presence
of C2T or PT symmetry, the finer repartitioning of bands dis-
cussed in Sec. VI A can similarly be considered for complex
Hamiltonians classified by complex flag varieties.

Related to the generalization to higher dimensions, when
the third momentum is played by the time direction of a
periodic drive, it appears that the language of flag varieties
may provide a natural language to describe other classes
of topological systems, especially in the case of periodi-
cally driven Floquet systems [90–92]. Here, the periodicity
of the quasienergy implies that there is no canonical choice
of chemical potential. One therefore often assigns the same
importance to all spectral gaps of Floquet systems [93], sug-
gesting a very natural application for the language of refined
band partitioning developed in Sec. VI.

Another promising application of the refined band par-
titioning and of fragile topology arises in the context of
non-Hermitian models [94–96], where nonstandard gap con-
ditions were recently investigated using homotopy theory
[74,97]. Indeed, as noted in Sec. VIII, the topology of a
generic two-band non-Hermitian Hamiltonian has been shown
by Ref. [72] to be essentially equivalent to the fragile topol-
ogy of three-band real-symmetric Hamiltonians discussed
here. Furthermore, in analogy with the non-Abelian recipro-
cal braiding of band nodes in real-symmetric Hamiltonians
[50,52], refined band partitioning in non-Hermitian models

has been shown to also facilitate noncommutative exchange
of exceptional points inside momentum space [98].

The final extension, which is of particular importance for
the study of materials, concerns the interplay with crystalline
symmetries. We have shown in Ref. [36] that a point group of
crystalline symmetries can lead to an obstruction on the Wil-
son loop winding (Euler class) of two-band subspaces. This
was proved to be directly rooted in the representation theory
of the Wilson loop. All the observations we made here should
have a similar natural explanation from the exhaustive topo-
logical classification of band structures and their explicit real-
ization. We will report on this in due time at another occasion.
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APPENDIX A: GEOMETRIC AND TOPOLOGICAL
PROPERTIES OF GRASSMANNIANS

We review here a few basic facts about Grassmannians that
motivate the results of their homotopy groups and that allow
us to formulate in a rigorous way the action of π1[Grp,N ] on
π2[Grp,N ] in Appendix B.

Let us start from the definition of the Grassmannian in
Sec. III B. O(N ) is a Lie group and O(p) × O(N − p) is a
Lie subgroup (by Cartan’s closed subgroup theorem [99]), so
that the unoriented Grassmannian is a smooth (and closed
[63]) manifold. Then, representing Grp,N as the space of
(nonoriented) p-dimensional hyperplanes passing through the
origin in RN , it readily follows that the Grassmannian is
path-connected, and thus connected, as any two hyperplanes
(i.e., two points of the Grassmannian) can be smoothly rotated
into each other. The same conclusions hold similarly for the
oriented Grassmannian.

There is a continuous two-to-one surjective map from the
oriented Grassmannian to the unoriented Grassmannian,

q̄ : Gr+
p,N → Grp,N : {[R]+, [Rsr]+} �→ [R], (A1)

where we assume R ∈ SO(N ), in particular with q̄([1N ]+) =
q̄([1sr

N ]+) = [1N ] [see Eqs. (4) and (6)]. The map q̄ is a cov-
ering map and Gr+

p,N a covering space of the base space
Grp,N [99].15 Therefore the oriented Grassmannian Gr+

p,N is
the orientable double cover of the unoriented Grassmannian
Grp,N . It is interesting to note that the nonorientability of the
connected Grp,N is a necessary and sufficient condition for
the connectedness of Gr+

p,N , i.e., the orientable double cover is
made of a single piece, as it can be readily seen in the example
of S2 → RP2 shown in Fig. 2 (that is to be contrasted, e.g.,

15We remark the relative freedom in defining the covering map as
we could have shifted the image as q̄([1N ]+) = q̄([1sr

N ]+) = [R] with
an arbitrary R ∈ SO(N ), since there is no favored choice of origin for
a Grassmannian. This freedom does not play any role in the topology
of Grassmannian though.
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with the double cover group O(N ) of SO(N )). Furthermore,
we take for granted that the oriented Grassmannian is simply
connected (i.e., π1[Gr+

p,N ] = 0 [63,73]) which makes it the
universal cover of the unoriented Grassmannian [99].

Further important information on the homotopy of Grass-
mannians is readily obtained from the lifts of continuous maps
through the covering map q̄. The lifting criterion says that
every continuous map f : S2 → Grp,N lifts to a continuous
map f + : S2 → Gr+

p,N with f = q̄ ◦ f +, such that the lift f +
is uniquely defined once a reference image point is fixed,
e.g. f +(k0) = [R0]+ [73,99]. It further follows that every map
f + : S2 → Gr+

p,N projects to a map q̄ ◦ f + : S2 → Grp,N .
A lift can be composed with an automorphism of the

covering map q̄, called a deck transformation, defined by
an homeomorphism ϕq̄ : Gr+

p,N → Gr+
p,N such that q̄ ◦ ϕq̄ = q̄

[99]. There are only two possible choices for ϕq̄ given a fixed
q̄, namely the identity, i.e., with ϕq̄([1N ]+) = [1N ]+, and the
orientation reversal [Eq. (7)], i.e., with ϕq̄([1N ]+) = [1sr

N ]+.
(This freedom plays the role of a gauge symmetry of the
gapped Hamiltonians). Let us summarize the above definitions
in one diagram

(A2)

Since sr2 = id, the set of automorphisms of q̄ form the auto-
morphism group of the covering Autq̄[Grp,N ] = {id, sr}.

The lift of one point, say [R(k0)] = [R0], is called the
fiber and is here given by q̄−1([R0]) = {[R0]+, [Rsr

0 ]+}. Let us
transfer the lifting property to the homotopy classes [ f ][R0] ∈
π2[Grp,N ] and [ f +][R0]+ ∈ π2[Gr+

p,N ] with the respective base
points [R0] and [R0]+. We have q̄∗[ f +][R0]+ = [q̄( f +)][R0] =
[ f ][R0] and q̄−1

∗ [ f ][R0] = {[ f +][R0]+ , [sr( f +)][Rsr
0 ]+}. Fixing the

base point of the lifted map, say [R0]+, we thus have a bijec-
tion of homotopy classes leading to the isomorphism [73]

π2[Grp,N ] ∼= π2[Gr+
p,N ] . (A3)

This isomorphism lies at the core of our strategy to built
homotopy-based tight-binding models in Sec. VII.

We define the action of a nontrivial element [�] ∈
π1[Grp,N ] (with the base point [R0]) on the fiber q̄−1([R0]) in
terms of the end point of the lifted paths �+

a,b, i.e., [R0]+ · [�] =
�+

a (1) = [Rsr
0 ]+ and [Rsr

0 ]+ · [�] = �+
b (1) = [R0]+, called the

monodromy action of the fundamental group on the fiber of
the covering map. In our case, it is equivalent to the restriction
of the deck transformation “sr” to the fiber over a point.

Let us now consider the first homotopy group of the unori-
ented Grassmannian. Since Gr+

p,N is connected, there exists a
continuous path �+

a : [0, 1] → Gr+
p,N : s �→ �+

a (s) connecting
any element [R]+ = �+

a (0) to its reversal partner [Rsr]+ =
�+

a (1). By projecting onto Grp,N , the path defines a non-
contractible loop � = q̄(�+

a ) ⊂ Grp,N . Inversely, the lift of a
noncontractible loop � ⊂ Grp,N produces an open path in
Gr+

p,N which end points have reversed (subframe) orientation.
This directly captures the nonorientability of Grp,N . (That also
characterizes nonorientable vector subbundles BI |l over a base
loop l as discussed in Sec. V). Furthermore, the lift can be

composed with the nontrivial deck transformation ‘‘sr,” from
which we get the path �+

b = sr(�+
a ) with �+

b (0) = �+
a (1) and

�+
b (1) = �+

a (0). The open path �+
b then projects as � = q̄(�+

b ).
If we now take the composed loop � · � ⊂ Grp,N (contrary
to the composition of functions, we read the composition of
paths/loops from left to right), it lifts to a closed loop (� ·
�)+ = �+

a · �+
b = �+

a · sr(�+
a ) ⊂ Gr+

p,N which is contractible to
a point since π1[Gr+

p,N ] = 0. Thus � · � is itself contractible
by continuity of the covering map q̄. We conclude that the
unoriented Grassmannian has a nontrivial fundamental group
π1[Grp,N�3] = Z2 [27]. It is actually true in general that
the automorphism group of a universal covering is isomor-
phic to the fundamental group of the space being lifted, i.e.,
Autq̄[Gr+

p,N ] ∼= π1[Grp,N ] [99].
We illustrate these properties with the example of the pro-

jective plane in Sec. III C.

APPENDIX B: ACTION OF π1[Grp,N] ON π2[Grp,N]

This Appendix gives the precise definition of the action
of π1[Grp,N ] on π2[Grp,N ] which then leads to the results
of Sec. V C. For this we use the definition of the first,
respectively the second, homotopy groups in terms of con-
tinuous functions � : (I, ∂I) → (X, x0) from the unit interval
I = [0, 1], respectively continuous functions f : (I2, ∂I2) →
(X, x0) from the unit square I2 = [0, 1] × [0, 1], to a topologi-
cal space X , such that the boundaries ∂I = {0, 1}, respectively
∂I2, are mapped to the base point x0 = �(0) = �(1) =
f (∂I2) ∈ X , see Fig. 7 that follows Ref. [73]. Importantly, the
base point is kept constant for all the maps and the orientation
of the unit interval (square), seen as a subspace of the real
vector space R1(2), transfers to an orientation of the image �(I)
( f (I2)) within the target space X . These allow the definition
of composition of homotopies which then induces a group
structure on the homotopy equivalence classes [�] ∈ π1[X ]
([ f ] ∈ π2[X ]) [73]. By removing the constraint of a fixed
base point we obtain the free homotopy set [Id , X ] ∼= [Sd , X ]
which may lack a group structure. We show below that this is
the case for the unoriented Grassmannian.

In the following, we take X = Grp,N and x0 = [R(k0)] =
[R0].16 Let us define the homotopy [73] F� : f → � f as the
pre-composition of f with the displacement of the base point
x0 along the loop � as shown in Fig. 8. F� induces the (right)
action of [�] on [ f ] through the group automorphism

�� : π2[Grp,N ] → π2[Grp,N ] : [ f ] �→ [ f ] · [�] = [� f ]. (B1)

While the homotopy F� preserves the homotopy classes in the
free homotopy set [S2, Grp,N ] (we write f � � f ), it can lead
to a change of homotopy classes in π2[Grp,N ]. It is however
not obvious to see it from the above definition. It turns out that

16We can now motivate the lifting criterion presented in Appendix
A. By taking a one-dimensional cross-section of the mapping f
(Fig. 7), i.e., f |l with l ⊂ I2 and ∂l ∈ ∂I2, we find [ f |l ] = [0] ∈
π1[Grp,N ]. We thus conclude that the image f (I2) for any [ f ] ∈
π2[Grp,N ] is orientable, and f can be lifted to a map into the ori-
entable double cover, i.e., f + : (I2, ∂I2) → (Gr+

p,N , x0). (The gapped
total bundle associated to f , interpreted as the classifying map, is
thus orientable as well).
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FIG. 7. Graphic representation of the second homotopy group π2[X ], following [73], in terms of the continuous maps f : (I2, ∂I2) →
(X, x0 ) with the base point x0 = f (∂I2) (I = [0, 1] is the unit interval, and I2 the unit square). The homotopy equivalence classes of such maps
[ f ] constitute the elements of π2[X ]. The elements of the first homotopy group π1[X ] are defined as the homotopy equivalence classes [�] of
the maps (red) � : (I, ∂I) → (X, x0 ) with the base point x0 = �(0) = �(1).

we can derive the effect of the action �� from the action of [�]
on the homotopy class [ f +] ∈ π2[Gr+

p,N ] of the lifted map f +,
as done below.

The loop � and the sphere image f (I2) lift respectively
to a path �+ ⊂ Gr+

p,N and a sphere image f +(I2) ⊂ Gr+
p,N

[Appendix A]. We now can define the lifted homotopy F+
� as

the homotopy of the lifted maps, i.e., F+
� = F�+ : f + → �+ f +

which is unique by the homotopy lifting property [73]. If �0 is
a contractible loop in Grp,N , the lifted loop �+

0 is then also
contractible in Gr+

p,N (see Appendix A), in which case there
is a homotopy f + � �+

0 f + and [ f +] = [�+
0 f +] in π2[Gr+

p,N ].
On the contrary, for a noncontractible loop �, we have seen
in Appendix A that it lifts to a path �+

b connecting end points
of opposite orientation in Gr+

p,N , which we write x+
0 = �+

b (0)
(≡[R(k0)]+) and x+

1 = �+
b (1) (≡[R(k0)sr]+). We thus have a

based-point-changing homotopy F�+
b

: f + → �+
b f + according

to the first row of Fig. 9. Since �+
b f + has the base point x+

1 ,
it cannot be compared within π2[Gr+

p,N ] to f + which has the
base point x+

0 (Fig. 9). Applying the orientation reversal (the
deck transformation “sr”) gives sr(�+

b f +) = �+
a sr( f +) with

the base point x+
0 . Therefore f + and �+

a sr( f +) can now be
compared within π2[Gr+

p,N ].
We thus define the action of [�] on f + through

f + · [�]x+
0

= sr ◦ F�+
b

( f +) = sr(�+
b f +) = �+

a sr( f +), (B2)

according to Fig. 9, which then induces the action of [�] on
[ f +]x+

0
as

�+
� : π2[Gr+

p,N ] → π2[Gr+
p,N ] :

[ f +]x+
0

�→ [ f +] · [�]x+
0

= [�+
a sr( f +)]x+

0
. (B3)

Projecting back onto Grp,N , we get q̄( f + · [�]x+
0

) =
q̄(�+

a sr( f +)) = � f , since q̄(sr( f +)) = q̄( f +) = f , and thus
q̄∗�+

� ([ f +]x+
0

) = ��([q̄( f +)]x0 ) = ��([ f ]x0 ) as expected
from Eq. (A3).

We now show that �� acts nontrivially in the case p = 2.
Before doing so though it is useful to briefly review the
cohomology invariants introduced in Sec. V D that can be
used as indicators of the stable homotopy classes of the lifted
map f +. On the one hand, the Euler class χ f +

p=2
∈ Z can be

used as an indicator of the (stable) homotopy class17 [ f +
p=2] ∈

π2[Gr+
2,N�5], such that the sign sgn{χ f +

p=2
} ∈ ±1 defines faith-

fully the orientation of f +
p=2(I2). In other words, the reversal

of the orientation of f +
p=2 must also flip the sign of the Euler

class, i.e.

χsr( f +
p=2 ) = −χ f +

p=2
. (B4)

On the other hand, the case p = 1 is stably trivial (i.e.,
π2[Gr+

1,N�3] = 0), and the case p � 3 is indicated by the Z2

second Stiefel-Whitney class which forgets orientation, see
Sec. V D.

The second row of Fig. 9 gives �+
a sr( f +) � sr( f +), and

from Eq. (B4), we find

χ f +
p=2·[�]x+0

= χ�+
a sr( f +

p=2 ) = χsr( f +
p=2 ) = −χ f +

p=2
. (B5)

17The Euler class is defined for the rank-2 oriented subbundle
B+(2) of the gapped total bundle E+

2,N associated to f +, i.e., the
pullback by f + of the total tautological bundle E+

2,N = ( f +)∗T +
2,N , see

Sec. VII.

FIG. 8. Graphic representation of the homotopy F� : f → � f which generates the displacement of the base point x0 = �(0) = �(1) along
the loop � ⊂ Grp,N . While this is a homotopy equivalence within the free homotopy set [S2, Grp,N ] ( f � � f ), it can lead to a change of
homotopy classes of the based homotopy group π2[Grp,N ].
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FIG. 9. Action of [�] ∈ π1[Grp,N ] on the lifted map f + : (I2, ∂I2) → (Gr+
p,N , x+

0 ) with base point x+
0 , which we write f + · [�]x+

0
. It is

given as the composition of the based-point-changing homotopy F�+
b

: f + → l+
b f + (corresponding to the monodromy action x+

0 · [�] = x+
1 ,

see Appendix A) and the nontrivial deck transformation ‘sr’ that reverses orientation. This induces the action of [�] ∈ π1[Grp,N ] on [ f +] ∈
π2[Gr+

p,N ], given by [ f +] · [�]x+
0

= [sr(l+
b f +)]x+

0
= [l+

a sr( f +)]x+
0

= [sr( f +)]x+
1

. We show in the text that it is a nontrivial automorphism of

π2[Gr+
p,N ] for p = 2, and trivial otherwise.

Since the Euler class is an indicator of the stable homotopy
class [ f +

p=2] ∈ π2[Gr+
2,N ] and from Eq. (A3) there is a one-to-

one correspondence [ f +
p=2]x+

0
→ [ fp=2]x0 , we finally conclude

��([ fp=2]) = [� fp=2] = [ fp=2]−1 . (B6)

For p �= 2, we either have [ fp=1] = [0] or [ fp�3] ∈ Z2 that
is indicated by the second Stiefel-Whitney class which is
invariant under orientation reversal. Thus, �� acts nontrivially
only when p = 2. Since [ fp�=2] = [ fp�=2]−1 though we can
generalize Eq. (B6) to every p.

APPENDIX C: TIGHT-BINDING MODELS

In order to get an explicit tight-binding model, we
first sample H (k) over a grid �∗ in the Brillouin zone
and perform an inverse discrete Fourier transform (FT ).
This gives us the hopping matrix elements tμν (R j − 0) =
FT [{Hμν (km)}m∈�∗ ](R j − 0). Typically, the hopping ele-
ments decay exponentially and we can truncate them beyond a
finite support including a few neighbors R j around the center
0. The three-band example with Euler class 2, and all the
four-band examples shown in Sec. IX are truncated beyond
the second neighbors in both directions, i.e., tμν (R j − 0) =
0 for all R j ∈ {n1a1 + n2a2}n1,n2 �=0,1,2, while the three-band
example with Euler class 4 has been truncated beyond the
third neighbors in both directions, i.e., tμν (R j − 0) = 0 for all
R j ∈ {n1a1 + n2a2}n1,n2 �=0,1,2,3.

The implementation in Wolfram MATHEMATICA of the
above algorithm is available at Ref. [58]. The codes gener-
ate three-band, and four-band, tight-binding models for any
fixed Euler class through the use of the Plücker embeddings
presented in Sec. VIII, Sec. IX, and Appendix E, respectively.

APPENDIX D: EULER CLASS REVERSAL IN RP2

For completeness, in this Appendix, we reproduce from
Ref. [72] the continuous and adiabatic transformation that
reverses the Euler class of the two-band oriented subbundle
of an orientable gapped three-band model classified by RP2,
hence realizing the automorphism �� : χ → −χ of Sec. V C
(and Appendix B).

Our representative Hamiltonians of orientable gapped
three-band systems [cf. Eqs. (25) and (40)] can conveniently
be parametrized as [27]

H[n](θ, φ) = 2n(θ, φ) · n(θ, φ)T − 13, (D1)

with n(θ, φ) = u3 ∈ S2 the unit eigenvector of the single un-
occupied band, and n = n1e1 + n2e2 + n3e3.

Since H[n] is explicitly invariant under the inversion
n → −n there is not canonical signed Euler class associ-
ated with the Hamiltonian. The indeterminacy can be lifted
though by assigning a smooth structure to the vector field
{n(θ, φ)|(θ, φ) ∈ S2}, which is allowed by virtue of the triv-
iality of any real line bundle defined over the sphere (see
Sec. V D).

As in Sec. VIII this is achieved by setting [27] n(θ, φ) =
er = (cos φq sin θq, sin φq sin θq, cos θq) ∈ S2, where q ∈ Z
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defines the number of times n wraps around the sphere [cf.
Eq. (36)]. The Euler class of the oriented occupied two-band
subbundle is then χ0 = 2q ∈ 2Z. We have thereby promoted
the Hamiltonian Eq. (D1) to an oriented total gapped bundle
with a well defined Euler class.

Since we are interested in an automorphism of the based
homotopy group π2[RP2] it is crucial to specify a chosen base
point that will serve as a reference for comparing any two
elements of the group. Let us fix n(θ = 0, φ = 0) = e3 at the
blue pole of the sphere [Fig. 3].

Defining the rotation

S(s) =
⎛⎝cos s 0 − sin s

0 1 0
sin s 0 cos s

⎞⎠ . (D2)

for s ∈ [0, π ], we obtain a smooth deformation of the Hamil-
tonian through

H[S(s) · n] = 2(S(s) · n) · (S(s) · n)T − 13, (D3)

which is adiabatic (i.e., it preserves the gap between the eigen-
values) since it can be rewritten as the change of basis, i.e.,

H[S(s) · n] = S(s) · H[n] · S(s)T . (D4)

Exploiting the gauge freedom of the Hamiltonian (i.e.,
H[n] = H[−n]), we eventually find

H[−S(s) · n] = 2(−S(s) · n) · (−S(s) · n)T − 13, (D5)

which at s = π preserves the base point of the original Hamil-
tonian, i.e., −S(π ) · n(0, 0) = n(0, 0) = e3. Furthermore, we
find

−S(π ) · n = n1e1 − n2e2 + n3e3, (D6)

such that the Euler class of H[−S(π ) · n] is χπ = −χ0 =
−2q. Therefore, at s = π , the transformation realizes the au-
tomorphism �� : χ0 �→ χπ = −χ0.

As a conclusion, the above construction defines the contin-
uous deformation of Hamiltonian

�(s) : RP2 → RP2 : H[n] → H[−S(s) · n]. (D7)

with �(0) = id and �(π ) = ��. Then, keeping track of H[n]
at the base point (θ, φ) = (0, 0) through the deformation, i.e.,
{�(s)H[n](0, 0)|s ∈ [0, π ]}, this defines a noncontractible
loop within RP2, i.e., a generator of π1[RP2] = Z2 [72].

APPENDIX E: PLÜCKER EMBEDDING FOR Gr+
2,4

In this Appendix, we derive the explicit Plücker embedding for Gr+
2,4 = SO(4)/[SO(2) × SO(2)] ∼= S2 × S2. We do it

starting from the parametrizations of SO(4) in terms of the Lie algebra of real and antisymmetric matrices.

1. Parametrization of SO(4)

A matrix R ∈ SO(4) can be decomposed as [100] R = QcUr with

Qc = exp

(
C D
D −C

)
, Ur =

(
ReU −ImU
ImU ReU

)
, (E1)

where C and D are arbitrary real antisymmetric matrices, and Ur is a generic matrix in U(2). Qc can be parametrized as [100]

Qc =

⎛⎜⎝ cos ρ sin ρ sin ξ 0 sin ρ cos ξ

− sin ρ sin ξ cos ρ − sin ρ cos ξ 0
0 sin ρ cos ξ cos ρ − sin ρ sin ξ

− sin ρ cos ξ 0 sin ρ sin ξ cos ρ

⎞⎟⎠ , (E2)

with the angle ρ = √
c2 + d2, where c = Pf[C] and d = Pf[D], and an other angle defined through cos ξ = c/ρ and sin ξ = d/ρ.

The range of these angles are ρ, ξ ∈ [0, 2π ). A generic matrix Ur ∈ U(2) can be decomposed as

Ur = eiϕ/2

(
eiφ1 cos ψ eiφ2 sin ψ

−e−iφ2 sin ψ e−iφ1 cos ψ

)
, (E3)

with the angles ϕ, φ1, φ2 ∈ [0, 2π ) and ψ ∈ [0, π ). This results in

R(ρ, ξ, ϕ, ψ, φ1, φ2) = Qc(ρ, ξ )Ur (ϕ,ψ, φ1, φ2)∈SO(4). (E4)

We now need the constraints among the six angles, {ρ, ξ, ϕ, ψ, φ1, φ2}, as to only cover the quotient space SO(4)/[SO(2) ×
SO(2)] ∼= S2 × S2. Before doing so, we first review the diffeomorphism of spaces SO(4)/[SO(2) × SO(2)] ∼= S2 × S2. The
readers familiar with the Plücker embedding may jump to the solution Eq. (E15).

2. SO(4)/[SO(2) × SO(2)] ∼= S2 × S2

We review here the standard result SO(4)/[SO(2) × SO(2)] ∼= S2 × S2 obtained through the Plücker embedding [101]. This
section follows the argument of [101] with a few more steps.
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The Plücker embedding ι : Gr+
2 (R4) ↪−→ �2R4 represents the points of the oriented Grassmannian as elements of the second

exterior power of R4, �2R4, that is a vector space of dimension (4
2) = 6 spanned by bivectors, i.e., the exterior product (· ∧ ·) of

two vectors of R4. More specifically, for x ∈ �2R4 the image of the Plücker embedding is defined by the solutions to the system

x ∧ x = 0, |x|2∧ = 2, (E5)

where the norm | · |∧ = √〈·, ·〉∧ is defined in terms of a inner product in �2R4, see below.
Let us take (u1, u2, u3, u4) an oriented orthonormal frame of R4. There is a bijection between any oriented plane V ⊂ R4 and

an element u1 ∧ u2 ∈ �2R4, given that V is spanned by the orthonormal frame (u1, u2). The orthogonal complement V c = {u ∈
R4|〈u, v〉 = 0, ∀v ∈ V } is then represented by the Hodge dual ∗(u1 ∧ u2) = u3 ∧ u4.

We have ∗(αu1 ∧ u2 ± βu3 ∧ u4) = ±(βu1 ∧ u2 ± αu3 ∧ u4) ∈ �2R4, α, β ∈ R. Thus, the ±1-eigenspaces of the Hodge
star ∗, which we note �2

+ and �2
−, are composed of elements of the form v± = α(u1 ∧ u2 ± u3 ∧ u4). These are perpendicular

with respect to the exterior and the inner products, i.e., v+ ∧ v− = 〈v+, v−〉∧ = 0 for v+ ∈ �2
+ and v− ∈ �2

−, where the inner
product of two elements of �2R4 is defined through 〈a ∧ b, c ∧ d〉∧ = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉 with a, b, c, d ∈ R4.

Setting x = v+ + v−, the equation x ∧ x = 0 gives |v+| = |v−|, and the equation |x|2 = 2 gives |v+|2 + |v−|2 = 2. Combining
these we get the relation |v+| = |v−| = 1. Thus, the system Eq. (E5) is readily satisfied for v± = α(u1 ∧ u2 ± u3 ∧ u4) with
α = 1/

√
2. We conclude that an element of Gr+

2,4 is represented by an element x = u1 ∧ u2 = v+ + v− ∈ �2R4 with v+ ∈ �2
+

and v− ∈ �2
−.

For v± ∈ �2
± ⊂ �2R4 we have 〈v+, v−〉∧ = 0, such that v+ and v− split �2R4 into two orthogonal components each of

dimension 3, i.e., �2R4 = V+ ⊕ V−. Since v± are unit bivectors, the spaces �2
± are the unit spheres in V±, i.e., (v+, v−) ∈

�2
+ ⊕ �2

− ∼= S2
+ × S2

−. Since every point of the oriented Grassmannian is represented through the Plücker embedding by a
bivector x = v+ + v−, we conclude that the image of the embedding is ι(Gr+

2,4) ∼= S2
+ × S2

−.

3. From SO(4) to SO(4)/[SO(2) × SO(2)]

The previous section provides the guidelines for the derivation of the constraints Eq. (E15) that map the elements of SO(4)
to the elements of SO(4)/[SO(2) × SO(2)].

Choosing a Cartesian frame for R4, each column vector of R = (u1u2u3u4) ∈ SO(4) reads

ui = u1
i ê1 + u2

i ê2 + u3
i ê3 + u4

i ê4, for i = 1, 2, 3, 4, and with ê j
i = δi j . (E6)

We then choose a reference basis for �2R4,

{ě1, ě2, ě3, ě4, ě5, ě6} = {ê3 ∧ ê2, ê3 ∧ ê1, ê1 ∧ ê2, ê4 ∧ ê1, ê2 ∧ ê4, ê3 ∧ ê4}, (E7)

and compute the elements v+ = u1 ∧ u2 + u3 ∧ u4 ∈ �2
+ and v− = u1 ∧ u2 − u3 ∧ u4 ∈ �2

−.
For the parametrization R(ρ, ξ, ϕ, ψ, φ1, φ2) derived in Eq. (E4), we find

v+ = (ě1 ě2 ě3 ě4 ě5 ě6) · (a b c a b c)T , (E8)

v− = (ě1 ě2 ě3 ě4 ě5 ě6) · (d e f − d − e − f )T , (E9)

with

a = cos(ψ )2 sin(2φ1) + sin(ψ )2 sin(2φ2) ,

b = sin(2ψ ) sin(φ1 − φ2) ,

c = cos(ψ )2 cos(2φ1) + sin(ψ )2 cos(2φ2) ,

d = cos(ρ)2 sin(ϕ) + sin(ρ)2 sin(ϕ + 2ξ ) ,

e = − cos(ϕ + ξ ) sin(2ρ) ,

f = cos(ρ)2 cos(ϕ) − sin(ρ)2 cos(ϕ + 2ξ ) .

(E10)

Note that 〈v+, v−〉∧ = ad + be + c f − ad − be − c f ≡ 0.
Let us make the following change of basis for �2R4,

ě′
1 = ě1 + ě4 ,

ě′
2 = ě2 + ě5 ,

ě′
3 = ě3 + ě6 ,

ě′
4 = ě1 − ě4 ,

ě′
5 = ě2 − ě5 ,

ě′
6 = ě3 − ě6 ,

(E11)

which we rewrite as

(ě1 ě2 ě3 ě4 ě5 ě6) = (ě′
1 ě′

2 ě′
3 ě′

4 ě′
5 ě′

6) · S, with S = 1
2

(
13×3 13×3

13×3 −13×3

)
. (E12)

In the new basis, we then get

v+ = (ě′
1 ě′

2 ě′
3 ě′

4 ě′
5 ě′

6) · S · (a b c a b c)T ,

= (ě′
1 ě′

2 ě′
3 ě′

4 ě′
5 ě′

6) · (a b c 0 0 0)T = (a, b, c, 0, 0, 0), (E13)
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v− = (ě′
1 ě′

2 ě′
3 ě′

4 ě′
5 ě′

6) · S · (d e f − d − e − f )T ,

= (ě′
1 ě′

2 ě′
3 ě′

4 ě′
5 ě′

6) · (0 0 0 d e f )T = (0, 0, 0, d, e, f ), (E14)

i.e., this basis emphasizes that v+ and v− live in three-dimensional orthogonal complements V± of the six-dimensional vector
space �2R4 = V+ ⊕ V−.

The restriction of v+ = (a, b, c) and v− = (d, e, f ) to unit spheres is then obtained through

φ1 = −φ2 = θ+/2, ψ = φ+/2, ρ = θ−/2, ϕ = −ξ = φ−, (E15)

with the spherical angles (φ+(−), θ+(−) ) ∈ [0, 2π ) × [0, π ] ∼= S2
+(−). Indeed, substituting Eq. (E15), we find in the basis

{ě′
i}i=1,...,6,

v+ = (a, b, c, 0, 0, 0) = (cos φ+ sin θ+, sin φ+ sin θ+, cos θ+, 0, 0, 0)

∈ S2
+ ⊂ Span{ě′

1, ě′
2, ě′

3},
v− = (0, 0, 0, d, e, f ) = (0, 0, 0, sin φ− cos θ−,− sin θ−, cos φ− cos θ−)

∈ S2
− ⊂ Span{ě′

4, ě′
5, ě′

6} .

The inverse Plücker embedding then gives a bijection,

ι−1 : S2
+ × S2

− → SO(4)/[SO(2) × SO(2)] : (φ+, θ+, φ−, θ−) �→ [R(φ+, θ+, φ−, θ−)], (E16)

that we use in Sec. IX for building explicit tight-binding models for all homotopy classes.

APPENDIX F: EULER CLASS REVERSAL IN Gr2,4

Let us consider the following transformation for R = (u1 u2 u3 u4),

�(s) : R �→ Rs = S(s) · R · G, (F1)

with the rotation

S(s) =

⎛⎜⎝1 0 0 0
0 cos s − sin s 0
0 sin s cos s 0
0 0 0 1

⎞⎟⎠, (F2)

for s ∈ [0, π ], and the gauge transformation

G =

⎛⎜⎝1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠ . (F3)

We then readily find that applying the Plücker embedding of the previous section to Rs and at s = π , gives

ũ1 ∧ ũ2 = ṽ+ + ṽ− = (−a, b, c,−d, e, f ), (F4)

in the basis (ě′
1, ě′

2, ě′
3, ě′

4, ě′
5, ě′

6). Therefore the winding numbers for Rπ are (q̃+, q̃−) = (−q+,−q−), corresponding to a reversal
of Euler class (χ̃I , χ̃II ) = (−χI ,−χII ). Choosing the base point (θ±, φ±) = (0, 0) at which (a, b, c, d, e, f ) = (0, 0, 1, 0, 0, 1),
the path of left cosets {�(s)[Rs(θ± = 0, φ± = 0)]|s ∈ [0, π ]} defines a noncontractible loop in Gr2,4, i.e., the generator of
π1[Gr2,4] = Z2.
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