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We present a comprehensive study of the spin excitations—as measured by the dynamical spin structure
factor S(q, w)—of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We
realize this state via both a multi-orbital Hubbard model and a generalized Kondo-Heisenberg Hamiltonian.
Due to various competing energy scales present in the models, the system develops periodic ferromagnetic
islands of various shapes and sizes, which are antiferromagnetically coupled. The 2 x 2 particular case was
already found experimentally in the ladder material BaFe,Se; that becomes superconducting under pressure.
Here we discuss the electronic density as well as Hubbard and Hund coupling dependence of S(gq, @) using
density matrix renormalization group method. Several interesting features were identified: (1) An acoustic
(dispersive spin-wave) mode develops. (2) The spin-wave bandwidth establishes a new energy scale that is
strongly dependent on the size of the magnetic island and becomes abnormally small for large clusters. (3)
Optical (dispersionless spin excitation) modes are present for all block states studied here. In addition, a
variety of phenomenological spin Hamiltonians have been investigated but none matches entirely our results that
were obtained primarily at intermediate Hubbard U strengths. Our comprehensive analysis provides theoretical
guidance and motivation to crystal growers to search for appropriate candidate materials to realize the block
states, and to neutron scattering experimentalists to confirm the exotic dynamical magnetic properties unveiled
here, with a rich mixture of acoustic and optical features.
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I. INTRODUCTION

Iron-based high critical temperature superconductivity
(SC) has challenged [1,2] important aspects of the electron-
electron Coulomb interaction as the driving force of the
pairing mechanism. In contrast to the Cu-based materials,
with Mott insulating parent compounds at ambient pres-
sure [3-6], the undoped Fe-based compounds exhibit (bad)
metallic behavior. Cuprates are typically characterized by the
single-band Hubbard model deep into the Mott phase regime,
and the undoped insulating behavior is a consequence of the
onsite interaction U—much larger than the non-interacting
bandwidth W—that localizes electrons in an antiferromag-
netic (AFM) staggered spin pattern. As a consequence, the
AFM state with wave vector (i, ), and associated pairing
mechanism, is at the center of theoretical and experimental
studies in Condensed Matter Physics.

The parent compounds of the iron-based superconductors
do not fit the description for cuprates. Their metallic behavior,
associated with electrons’ mobility, suggests that the Hubbard
U strength is not sufficient to localize entirely all the electrons.
This apparent dichotomy between Cu- and Fe-based super-
conductors originates in the valence states of the transition
metals. While nominal Cu®>" has only one unpaired electron
in its 3d° atomic orbital, Fe®* has four unpaired electrons in
the 3d° configuration. As a consequence, although the single-
band Hubbard model is sufficient to describe the Cu-based
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materials, the Fe-compounds have to be modeled [7-9] with
several active bands near the Fermi level, i.e., employing a
multi-orbital Hubbard model.

Similarly as in the large-U single-orbital Hubbard model,
the very large-U multiorbital Hubbard model also exhibits in-
sulating behavior with staggered AFM ordering. However, the
additional energy scales present in the iron description, and
the reduced value of U /W as compared with cuprates, leads to
new phases at intermediate couplings that are unique to multi-
band physics. The most important of these additional energy
scales is the onsite (atomic) ferromagnetic Hund exchange Jy
between spins at different orbitals [10]. This Hund interac-
tion accounts for the first Hund’s rule, favoring ferromagnetic
alignment for the partially filled 3d degenerate bands of rel-
evance in this problem. The competition between U and Jy
can drive the system to a state with enhanced electronic and
magnetic correlations in a still overall metallic state.

A unique state can emerge in multiorbital correlated
models: the orbital-selective Mott phase (OSMP) and its as-
sociated Hund’s metallic behavior [11,12]. This bad-metallic
state is a candidate for the parent state of iron-based su-
perconductors. In the OSMP, the electronic correlations
Mott-localize the electrons of one of the orbitals keeping
the rest metallic, resulting in an exotic mixture of localized
and itinerant electrons at different orbitals. This OSMP state
in the regime of robust Hund coupling is stable at interme-
diate U/W before the region where Mott features are fully
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developed. However, the effect of electronic correlations can-
not be ignored.

Experience with the cuprate’s parent compounds indicates
that the proximity to the AFM state could be responsible for
the pairing mechanism. Consequently, much efforts have been
devoted to understanding the magnetism of iron superconduc-
tors. In this context, and employing various techniques such
as angle-resolved photoemission spectroscopy, the OSMP was
argued to be relevant for two-dimensional (2D) superconduct-
ing materials from the 122 family, such as (K, Rb),Fe;Se,
[13] and KFe;As; [14], or in the iron chalcogenides and oxy-
chalcogenides like FeTe;_,Se, [15] and La,O,Fe,O(Se, S),
[16]. Furthermore, there is growing evidence that the OSMP is
relevant for low-dimensional ladder materials of the 123 fam-
ily, such as BaFe,S; and BaFe,Se; [17-22]. Compounds from
this family become superconducting under pressure [23-27],
similarly as it occurs in Cu-based ladders. Moreover, inelastic
neutron scattering (INS) experiments on the 123 compounds
reported two distinctive magnetic phases. For (Ba, K)Fe,S3
and (Cs, Rb)Fe,;Se; a (7, 0) AFM state with ferromagnetic
(FM) rungs and AFM legs was reported [18,28-30]. How-
ever, for BaFe,Se; INS identified an exotic type of ordering
[31] with spins forming AFM-coupled FM magnetic “islands”
along the legs, namely, 11 |, the so-called block magnetic
ordering. The same conclusion was also reached on the basis
of neutron [32-34] or X-ray diffraction [34], and muon spin
relaxation [34]. Interestingly, similar magnetic blocks were
identified in two dimensions in the presence of /5 x /5
ordered vacancies (K, Rb)Fe,Se, [35-38] and also in com-
pounds from the family of 245 iron-based SC (K, Rb),Fe4Ses
[39,40]. Finally, recent first-principles calculations [41] pre-
dicted that the block-magnetism may also be relevant for the
one-dimensional (1D) iron-selenide compound Na,FeSe,, as
well as in yet-to-be synthesized iron-based ladder tellurides
[42,43].

In recent density matrix renormalization group (DMRG)
studies of the block phase [44—46], it was argued that the novel
block-magnetism emerges from competing energy scales
present in the OMSP. As discussed later in this manuscript, on
the one hand, the large on-site Hubbard U drives the system
into an AFM state (as in the cuprates). On the other hand,
having a robust Hund coupling favors FM ordering (as in the
manganites). Within the OSMP, when these two energy scales
compete on equal footing, the system finds a “compromise”
by forming block-magnetic islands of various shapes and
sizes: inside the blocks FM order wins, but in between the
blocks AFM order wins. However, much remains to be inves-
tigated about these exotic phases. In particular, only recently
[47] the first study of the dynamical spin structure factor
S(q, w) was provided, confirming the experimental findings
of the INS spectra of BaFe,Se; in powder form [31].

In this work, we will present a comprehensive description
of the ground-state spin excitations—as measured by the dy-
namical spin structure factor S(g, w)—of the block-magnetic
states of the OSMP (“block-OSMP”). We will introduce
an effective model for the OSMP—the generalized Kondo-
Heisenberg Hamiltonian—which accurately reproduces the
static and dynamic properties of this phase. We will show
that the size of the FM individual blocks has a drastic effect
on the spin excitations present in the system. Two distinctive

modes are identified: (1) a dispersive acoustic spin excitation
mode spanned between zero and the propagation wave vector
gmax Of the magnetic block, and (2) a localized optical, i.e.,
dispersionless, spin excitation mode between gn,ax and 7. The
former (acoustic) reflects the fact that the spin excitations
between the magnetic blocks—with the blocks behaving as a
rigid unit—dominate the spectrum at low-energies. The latter
(optical) is attributed to local excitations inside the block (or
even within one site of the block) regulated, for example,
by the onsite Hund exchange. We will also discuss simpler
phenomenological purely spin models that can be used to
mimick the spin excitations of block-OSMP. Note that the
language used to classify modes into acoustic and optical is
borrowed from phononic studies and refers to their dispersive
and dispersionless characteristics, respectively. Further work
can clarify how these modes are coupled to lattice excitations,
not included in this effort.

We remark that we study multiorbital chains while ex-
periments, as in Ref. [31], are for ladders. However, our
previous effort [47], addressing computationally both ladders
and chains at the density that favors blocks of size 2 showed
that both systems shared many common aspects, such as the
presence of acoustic and optical modes. The reason is that in
both cases along the long direction, a pattern of two spins up
and two spins down is regularly repeated, and the presence of
blocks is the main reason for the physics unveiled in Ref. [47]
and in our study below. As a consequence, while we focus on
chains with ferromagnetic blocks of N spins, we believe our
results are also valid for ladders with blocks of N x 2 spins.
Another aspect to remark before addressing the results is that
we are assuming the interchain coupling is small, and that
the dynamical spin structure factor will be dominated by the
physics of chains. In the experimental studies on ladders [31]
using spin-wave theory the Heisenberg interchain coupling
was reported to be approximately 8-10 times smaller than
the intrachain coupling. As a consequence, as a first approx-
imation it is reasonable to focus on the physics of individual
chains or ladders.

This publication is organized as follows. In Sec. II, we
introduce the orbital-selective Mott phase. We will discuss the
multiorbital Hubbard model, the emergent block magnetism,
and the effective Hamiltonian that simplifies the calculations.
Section III contains the main results: the dynamical spin struc-
ture factor S(g, w) within the various block-OSMP states.
In Sec. IIT A and Sec. III B our main results are presented,
addressing various fillings, and various Hubbard and Hund
couplings, respectively. Finally, in Sec. IV effective phe-
nomenological spin models are discussed. Conclusions are in
Sec. V. In the Appendix we present results for half-filling, i.e.,
for the antiferromagnetically ordered states.

II. OSMP AND ITS PROPERTIES
A. Multiorbital Hubbard model

The kinetic portion of the multiorbital Hubbard model on
the chain geometry used here is given by

H = — Z t;,y/(c;l’acy,qgﬂ’a + H.c.)+ Z Ay ny, g,
vy to y.L
(1)
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where c; o (cy’ M) creates (destroys) an electron with spin
o ={1,]} at orbital y of site £. t,,, denotes the hop-
ing amplitude matrix, and A, stands for the crystal-field
splitting (energy potential offset of orbital y) with n, , =
Za:?»i ny ¢,c being the total electron density at (y, £). In

the most general case, the Fe-based materials with Fe2t va-
lence should be modeled with 6 electrons on five 3d-orbitals
(three ty-orbitals: dyy, d.., dy;, and two eg-orbitals: d,2_y2,
d,). Accurate numerical treatment of five fermionic bands
(with onsite Hilbert space of 1024 states) is extremely hard, if
not impossible, with current wave-function based numerical
techniques. However, in Refs. [44,47] we have shown that
magnetic properties (both static and dynamic) of the OSMP
can be accurately described with a three-orbital Hubbard
model [7] with electronic filling nyg = (ng +n; + n2)/3 =
4/3, namely, by the ,,-sector: d,., d., and d,,, respectively.
Such results are consistent with the eg-orbitals being far from
the Fermi level (especially in the presence of the Hubbard
interaction), as expected for iron-based materials [7]. Also,
note that the d,.- and d, -orbitals are often close to being
degenerate in tetragonal systems, such as BaFe,Se; [31].

In the OSMP, the three-orbital Hubbard model used here
has two itinerant (metallic) bands (0 and 1, resembling d,,
and d,), each with n,, ~ 1.5, and a localized band (2, resem-
bling d,,) with strictly one electron per site. Furthermore, in
Refs. [46,48] we showed that the static properties of OSMP
can be reproduced accurately with a two-orbital Hubbard
model with one itinerant and one localized orbital (with filling
nyg = 2.5/2 per site). In this manuscript, we will show that
this simplified two-orbital model can correctly describe the
energy-resolved properties as well. As a consequence, we
will adopt a diagonal hopping amplitude matrix defined in
orbital space y with oo = —0.5 and #;; = —0.15 in eV units
and crystal-field splittings Ag =0 and A; = 0.8 eV (with a
total kinetic energy bandwidth W = 2.1 eV which we use as
a unit of energy). Such choice of the wide and narrow band
is motivated by ab initio calculations of the low-dimensional
iron-based materials from the 123 family [7,44,49]. Note that
we will consider the setup without inter-orbital hybridiza-
tion, i.e., t,, o d,,. Consequently, the notion of orbitals
and bands is equivalent. This is not the case for nonzero
hybridization. However, our previous investigation shows that
the overall physics is not affected by realistically small finite

tyty
Y#Y
The interaction portion of the multiorbital model is

H,=U Zny,g,¢ny,z,¢ + WU —5/u/2) Z Ny eNy' ¢
y.L y<vy'.t

20 Y Sy Syt Yy (PP, +He),
<yt y.y'st

@

where (i) the first term represents the onsite Hubbard repulsion
U at each orbital, (ii) the second term U — 5Jy/2 describes
the intra-orbital interaction, (iii) the third term represents the
ferromagnetic Hund coupling Jy between spins at different or-
bitals, and (iv) the fourth term describes the onsite interorbital
pair hopping P;’ .= c;’ i TcT .¢.- All these many terms emerge
from matrix elements of the Coulombic “1/r” interaction, as

explained in Ref. [50]. To reduce the number of parameters in
the model we will express Jy as a fraction of the interaction U .
Typically, in iron-based superconductors the Hund interaction
is estimated to be Jy = U /4, which we will adopt for most of
the remaining discussion. However, in Sec. III B we will also
vary this parameter.

Although complicated, the Hamiltonian H = Hy + H,, is
the most generic form of the SU(2) symmetric multiorbital
Hubbard model. It is evident that in addition to the standard
Hubbard repulsion U, the many-orbital physics is controlled
by the Hund interaction Jy as well. In Fig. 1(a) we present the
generic U-Jy phase diagram obtained with help of the dynam-
ical mean-field theory [51-53], Hartree-Fock approximation
[54,55], and density-matrix renormalization group (DMRG)
method [44,46]. In addition to the “standard” paramagnetic
metal at U <« W and Mott insulator (MI) at U > W, working
at intermediate U ~ W and robust values of Jy lead to phases
unique to multiband systems, such as the orbital-selective
Mott phase. In the latter, one (or more) orbital localizes in
the Mott sense, while the remaining orbitals display metallic
behavior with itinerant electrons. In addition, other features
of the Mott physics on the localized orbital were identified
within the OSMP: (i) decreased charge fluctuations [46], (ii)
reduced quasi-particle weight [56,57], and (iii) energy gap in
the single-particle spectral function (different to the behavior
of the metallic bands with finite spectral weight at the Fermi
level) [48,56].

B. Magnetic orders of OSMP

In the “standard” metallic state (as in the small U single-
orbital Hubbard model), the magnetic moments S? = S(S +
1) are small. This is in contrast to the spin’s behavior within
OSMP in the metallic regime, with itinerant electrons coexist-
ing [44,46,48] with well-developed local magnetic moments.
Such coexistence creates a rich magnetic phase diagram
within OSMP.

In Fig. 1(b), we present a sketch of various magnetic
states, as obtained with the DMRG method for the two-orbital
model discussed in Ref. [46]. As expected, at small U/W
the system is in the paramagnetic phase for all possible fill-
ings ng. At U 2 W and special values of electronic filling,
the system also displays a standard behavior. For example
at half-filling, ng = 2/2 (two electrons in two orbitals), the
system develops staggered w-AFM order 1|1} 1] 1. As ex-
plained in the Appendix, due to the presence of Hund coupling
which maximizes the local magnetic moment S = 2, the
two-spinon continuum of the half-filled single-band Hubbard
model is not present. In the other limit i.e., ngy = 3/2 one of
the bands (i.e., y = 0) is doubly occupied and exhibits band
insulating behavior while the other resembles an AFM state
with S2,. = 3/4. In between the aforementioned dopings,
2/2 < ng < 3/2, and at large enough value of interaction
such as U > W, the spins always order ferromagnetically
(FM) MMM 111 1. Interestingly, when the interaction is of the
same order as the kinetic energy, U ~ W, the system develops
the novel magnetic order described before, with FM islands
(or blocks) of various sizes AFM coupled. This is the so-called
block-magnetism with a typical example being 1] | 114 4.
Sketches of the reported magnetic orders of this type are in
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FIG. 1. (a) Hubbard-Hund interaction (U-Jy) phase diagram of
the generic multiorbital Hubbard model. At U <« W (with W the
kinetic energy bandwidth), the system is a paramagnetic metal.
At U > W, the system is a Mott insulator. These two phases are
separated, at robust Hund interaction and intermediate U, by the
orbital-selective Mott phase with at least one orbital Mott localized
and the other orbitals displaying metallic behavior. The schematic
shapes of the density-of-states are also shown. (b) Magnetic phase
diagram of the OSMP. At U < W, the system is paramagnetic for
all fillings. At the two limiting fillings in the plot, i.e., at half-filling
and at one electron above the band-insulator, the state is antiferro-
magnetic with staggered spin. For large enough repulsion U > W,
ferromagnetic (FM) order is observed for all noninteger values of the
electronic filling. For U ~ W, the system is in the block-magnetic
phase. In between the latter and FM, a block-spiral order dominates.
Arrows indicate the representative spin order.

—_

Interaction U/W

the top panel of Fig. 2. The FM phase and block-magnetic
phase are separated by an exotic block-spiral phase [48] where
blocks maintain their character and start to rotate rigidly. We
refer the interested reader to Ref. [48] for details about this
novel frustrated state which will not be addressed further in
this publication.

The spin excitations of the block-OSMP in the multiorbital
Hubbard model are the primary focus of this work. Our previ-
ous DMRG efforts [45,46] identified that the electronic filling

S
(AR (11119 #1144

8 [ T T

T
—_— qmax :71'/3
Gmax :77/4

—*— (Qmax — T

— qmax :7‘(’/2

Static structure factor S(

Wavevector q/m

FIG. 2. Static structure factor S(g) of the magnetic orders present
in the block-OSMP regime. Top panel: sketch of spin alignment with
wave Vector gma = 7/l for [ =1,2,3,4. Bottom panel: S(g) of
the static spin structure factor for a given gn.x. The presented data
have 0.5 offset (top to bottom) for clarity. Arrows for gm. = 1/3
and ¢m,x = 1/4 indicate additional Fourier modes present for block-
magnetic order. Data reproduced from Ref. [46].

of the system controls the size and shape of the magnetic
blocks. Starting with an AFM Mott insulator (MI) state for
U = W at half-filling, upon electron doping ny > 2/2 all ad-
ditional electrons are placed in the metallic orbitals rendering
the system an orbital-selective Mott insulator. Such a behavior
continues until the itinerant orbitals are fully occupied and
exhibit band-insulating behavior. For the two-orbital model,
this is the case for ny = 3/2 (three electrons per site). How-
ever, note that a more complicated situation could emerge
with more orbitals. For example, for three orbitals [45], three
different OSMP phases were identified varying doping, with
bands being (i) two metallic and one localized, (ii) one metal-
lic and two localized, and (iii) one metallic, one localized, and
one doubly occupied.

Nevertheless, since the electron doping predominantly af-
fects the itinerant bands, the block-magnetism is controlled
by the filling of the metallic orbitals. The position of the max-
imum gmax Of the static spin structure factor S(q) = (S, - S;)
(where S, = )", exp(i€q)S;), proved to be a good first mea-
sure of the block-magnetism [44,46]. In such a case, S(g)
develops a sharp maximum at wave vector gma.x = 2kp (see
Fig. 2, i.e., at the Fermi wave vector of the metallic band).
For the two-orbital Hubbard model on the chain geometry,
the latter is given by 2kr = mny. It is important to note that
although g, follows the noninteracting (U — 0) value of
kg, the magnetism of OSMP is an effect of competing energy
scales induced by the interaction U: (i) OSMP itself is an
effect of the interactions; (ii) The magnetic moments S? are
well developed in the block-OSMP, a signature of large-U
physics; (iii) Fermi instability at 2kg is just a short-range
feature of S(g) in the U — 0 limit. However, the block-
magnetism resembles S(gmax) o log(L)L scaling (with L as
a system size), as expected for a low-dimensional system with
quasi-long-range order.
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Let us comment now on the specific magnetic orders
present in the block-OSMP. The most interesting cases are
realized when the maximum of S(g) occurs at an integer
fraction of 7, i.e., at gmax = /Il withl = 1,2,3,.... In such
cases, the spins perfectly align inside FM islands of equal size
which are AFM coupled, as in the top panel of Fig. 2. Note
that the standard AFM order (I = 1 realized forny = 2/2,1i.e.,
two electrons in the two-orbital model), namely, {11414,
is not an OSMP but a Mott insulator instead. Probably the
most robust block case occurs at [ = 2 (ny = 2.5/2 per site),
i.e., for the 11} 11 state realized in BaFe,Ses [31]. Nu-
merical results indicate [46] that / = 3 and 4 are also stable (at
ng = 2.66/2 and ng = 2.75/2 in two orbitals, respectively).
As sketched in Fig. 1(b) the range of couplings where the
block-magnetic phase is stable narrows for fillings close to
the band-insulator, i.e., for large [ values of large magnetic
islands. In practice, it is unknown how large is the maximum
possible size of the blocks. Our results also indicate [46] that
adding SU(2) breaking terms could stabilize large blocks in
the system. Another type of block states develop for systems
where the maximum of S(q) happens at gm.,x = mm /n with
n/m ¢ Z. For example, for gm.x = 37 /4 the perfect pattern
MU was observed [46]. Tt is, however, unclear if
for a generic m/n ratio, the magnetic islands form perfectly
periodic arrangements or the system enters phase separation.
To study such cases unambiguously, we need system sizes L
much larger than the magnetic unit cell (of size [), beyond the
scope of this work.

Finally, note that the various discussed magnetic orders are
deduced based on the spin correlations (S-S, ) (and their
Fourier transforms) and not on the basis of local expectation
values such as (S7). The latter is always O in a finite clus-
ter due to SU(2) rotational invariance. Correspondingly, the
block states are not merely a combination of domain walls,
and the term FM magnetic island should be considered as
the magnetic region of FM correlations. Investigations using
exact diagonalization [47] indicate that at least 50% of the
ground state within 7 /2 block-OSMP is of the singlet form
[T 4d) — 44 11). Consequently, it is instructive to view the
block-magnetic phase as a Néel-like state of the enlarged
magnetic unit cell (due the to correspondence to 7-AFM order
of single-band Mott insulator physics), namely with quantum
fluctuations between adjacent blocks possible.

C. Effective model for OSMP

The multiorbital Hubbard model requires a consider-
able numerical effort to be accurately described. For exact
wave-function based methods, such as full diagonalization,
Lanczos, or DMRG the exponential growth of the Hilbert
space [dim(H ) = 4"F where I' is the number of orbitals] lim-
its the available system sizes L which can be considered. For
example, with the first two methods mentioned above, only a
few sites on a moderate-sized computer cluster can be studied.
Consequently, there is a considerable interest in establishing
an effective model for OSMP to perform calculations with a
reasonable computational effort. Here we will briefly describe
the generalized Kondo-Heisenberg (gKH) model. We will
show that this model can capture the essential physics of the
multiorbital Hubbard model in the OSMP regime. All results

discussed in this work were obtained using the DMRG method
with a single-center site approach with up to M = 1200 states
[58-61] and at least 10 sweeps, which allow us to accurately
address system sizes up to L =~ 60 sites. The dynamical cor-
relation functions were calculated with the dynamical-DMRG
method [62-64], evaluated directly in terms of frequency via
the Krylov decomposition [64,65]. The frequency resolution,
if not otherwise stated, is chosen as Aw = wmax/50 where
Wmax 18 the maximum frequency presented for a given figure,
while the broadening is set to = 2Aw. Open boundary con-
ditions are assumed.

The rationale behind the effective Hamiltonian discussed
here is that within the OSMP the charge degrees of freedom
are frozen at the localized orbital and they can be traced out by
the Schrieffer-Wolff transformation [66]. Let us consider the
two-orbital Hubbard model (as defined above) at electronic
filling ny = 2.5/2 per site and its orbital y-resolved single-
particle spectral function,

1 ) 1 .
- § ilq e
Ay(q, @) = Lm & ¢ Im <C}”Z ot — H + €gs cy’L/2>

— L eiZq Im CT ;C
L n vt gt + H — egs v.Li2 [
(3

where ¢, =Y ¢y, ® =w+in, and (-) = (gs| - |gs)
with |gs) the ground-state vector with energy egs. The
function defined above is directly measurable in ARPES ex-
periments. In Fig. 3(a) we present results for A(g, @) in the
paramagnetic regime U/W = 0.1. Here, the spectral func-
tion resembles the tight-binding U = 0 solution, with wide
and narrow cosine-like functions (from using large #y and
small #;).

Increasing the interaction U changes the spectral function
drastically. In the block-OSMP at U/W = 1 [see Fig. 3(b)] the
previously narrow y = 1 band splits in two around the Fermi
level ep, while the y = 0 orbital remains itinerant with states
at e [see the density-of-states (DOS) on the right-hand-side
of Figs. 3(a)-3(c)]. Similar features for the A(q, w) spectra
were also reported for the three-orbital Hubbard model [21].
The splitting of the y = 1 orbital resembles the upper and
lower Hubbard bands of the single-orbital Hubbard model.
Note that at the intermediate value U = W discussed here,
the spectral gap of the localized orbital y =1 is already
robust ~8¢;, while the corresponding Hubbard repulsion is
U/t; = 14. Within this localized band, charge fluctuations
are heavily suppressed [46] and double occupancies can be
traced out, which is standard at large U. Such a procedure was
already implemented in Ref. [46] for the two-orbital Hubbard
model resulting in the generalized Kondo-Heisenberg (gKH)
Hamiltonian,

Hx = —ty Z(CS,E,GCO,Z-H,U +Hc)+U Z no,¢,4M0,e, |
Lo l

+K> Si0-Steri—Jk Y Soe St “
¢ ¢

where K = 4t121 /U and Jx = 2Jy. The electronic filling of the
effective Hamiltonian is either nx = nyg — 1 or ng = 3 — ny
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FIG. 3. Single-particle spectral function function A(g, w). (a, b)
are for the two-orbital Hubbard model and (c) for the generalized
Kondo-Heisenberg model at electronic filling ny = 2.5/2 and ng =
3/2, respectively. In both cases L = 48 is used. (a) is in the paramag-
netic regime U/W = 0.1, and (b) in the block-OSMP regime U/W =
1.0. (c) Results for the OSMP effective Hamiltonian (generalized
Kondo Heisenberg model) at U/W = 1.0. The right panels of (a—c)
are the corresponding density of states (DOS). (d) Comparison of
DOS between the two models. In all calculations we used frequency
resolution Aw = 0.02 [eV] and broadening n = 2Aw.

due to the particle-hole symmetry of Eq. (4). For a finite
crystal-field splitting A, # 0 such symmetry is not present in
the multiorbital Hubbard model Eq. (1). In Fig. 3(c), A(gq, )
of the gKH model at U/W = 1 is shown. The behavior of the
itinerant orbital is clearly accurately captured by our effective
Hamiltonian [see also Fig. 3(d) for the DOS comparison be-
tween the models].

III. SPIN EXCITATIONS OF BLOCK-OSMP

In the previous section, we showed that the generalized
Kondo-Heisenberg model correctly captures the electronic
properties of the block-OSMP state. Here, we will show that
the same holds for the dynamical spin correlations, and we

will use the gKH model to comprehensibly study the proper-
ties of the block-OSMP spin spectrum.

The zero-temperature dynamical spin structure factor
S(g, w) is defined as

1 ; 1
S(C], (,()) = —E Zell‘] Im <Se m SL/2>. (5)
£

Here S, = Zy S¢, is the total spin at site £. The above
quantity is directly related to the differential cross-section
measured by INS experiments. Before discussing the new
spin spectra of block-OSMP, let us briefly describe previous
findings for S(g, @) using the 1D three-orbital Hubbard model
[47] at electronic filling ny = 4/3 per orbital. For such filling
the system develops a sharp peak at ¢ = /2 in the static
S(q), reflecting the £ | order, in qualitative agreement with
the BaFe,Se; INS spectra [31]. Two distinctive characteristics
of S(g, w) were reported: (i) a low-frequency acoustic mode
with strongly wave vector-dependent intensity spanning from
g = 0to g >~ 7 /2, and vanishing weight for ¢ 2 7 /2. These
excitations resembled the two-spinon continuum (known from
the S = 1/2 1D Heisenberg model) of the effective magnetic
unit cell, i.e., the Brillouin zone constructed from two sites;
(i1) a novel optical mode at high-w spanning from ¢ >~ 7 /2 to
q = m. The latter was attributed to the influence of the onsite
Hund coupling (see the discussion in Sec. III B).

Our results for the two-orbital Hubbard model shown in
Fig. 4(a) display very similar features. Consequently, based
on the single-particle and spin spectra results discussed here,
it is clear that already the two-orbital Hamiltonian can capture
the essence of the spin dynamical properties in the OSMP
state. Furthermore, in Fig. 4(b), we show similar calculations
now within the gKH model. From the presented results it is
clear that the effective Hamiltonian accurately reproduces the
multiorbital findings [see also Figs. 3(d) and 4(c)]. This allows
us to use the former to perform a comprehensive study of the
spin excitations across OSMP.

A. Filling dependence

In this subsection we present one of the main results of this
publication: the spin excitations of several block-magnetic
orders. In particular, we will emphasize novel results gathered
for magnetic orders 1]} and M1 1], with wave
vectors 77 /3 and 7 /4, respectively.

As already discussed, initial investigations [46] of the static
spin structure factor S(q) revealed that for the electronic filling
ng = 1/1 with integer / the gKH model develops quasi-long-
range block-magnetic order with the maximum of S(g) at
gmax = /1 (see Fig. 2). In Fig. 5 we present the dynamical
spin structure factor S(q, w) for I = 2, 3, and 4. Several con-
clusions can be obtained directly from the presented results:

(1) The high-frequency optical (i.e., dispersionless) mode
is present for all considered fillings. Interestingly, the range
in the wave vector space of this mode changes with ng. Our
results clearly show that it has finite weight for g S g < 7
with vanishing intensity in 0 < ¢ < gmax. AS a reminder to
the readers, in Ref. [47] it was argued that the optical mode
is related to internal excitations within each block. More
specifically, the Hund coupling dependence of these optical
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FIG. 4. Comparison of the dynamical spin structure factor
S(q, ) between (a) the two-orbital Hubbard and (b) the general-
ized Kondo-Heisenberg models, as calculated for L = 48, Jy/U =
0.25,U =W, and ny = 2.5/2 (nx = 1/2). (c) Frequency depen-
dence of S(g, w) forqg =m/2and g = 7.

modes led us to believe [47] that the excitations are at the
atomic level, i.e., at one site, and related to the total local spin
not acquiring its maximum value, which is thus penalized by
the Hund coupling. We believe that the optical modes in the
variety of blocks studied in this publication have a similar
origin.

(ii) The low-frequency acoustic mode has the largest inten-
sity at (gmax, @ — 0). Furthermore, for all considered fillings,
we can observe a dispersion of spin excitations in the range
0 < g < gmax- For the m/2-block case, all low-frequency
weight is contained within this regime. However, the spectrum
of the m/3- and m/4-block-magnetic orders reveal addi-
tional features with smaller intensity in the vicinity of wave
vector 1.

To understand the appearance of acoustic weight away
from the range 0 < g < gmax consider the Fourier transforms
of the corresponding classical Heaviside-like spin patterns
AL AL AL, and AL )L, namely, /1 with
1 =1,2,3,4, respectively. The classical staggered m /1 pat-
tern obviously has only one sharp (§-peak) Fourier mode
at ¢ = . Similarly, one can show that the 7 /2-block will
have a single §-mode at 7 /2 [see Figs. 6(a) and 6(d)]. How-
ever, the Fourier analysis of the 7 /3-block pattern indicates
that besides the expected 7 /3-mode, there is an additional
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Wavevector ¢

FIG. 5. (a—) Dynamical spin spin structure factor S(g, w) in the
orbital-selective Mott regime corresponding to the (a) 7 /2-block
144, () 7/3-block 111141, and (¢) 7 /4-block 11414414
phases. Results shown are for L = 48 sites, U/W ~ 1, and Jy/U =
0.25 using the generalized Kondo-Heisenberg model. White lines
are fits to the dispersion relation wa(q) = J | sin(g ng )| (with J=
0.035,0.011, 0.003 for nx = 1/2, 1/3, 1/4, respectively).

contribution at ¢ = w [see Figs. 6(b) and 6(d)]. Two modes
can also be also found for the m /4-pattern, with §-peaks at
wave vectors 7 /4 and 37 /4 [Figs. 6(c) and 6(d)]. For the
generic block pattern of size [ (perfect  //-block) the Fourier
analysis always yields two components: the leading one 7 /I-
and secondary w — 7 /I-mode or -mode, for even or odd /,
respectively.

Returning to the quantum gKH results, it is evident from
Fig. 5 that the intensity of the leading propagation vec-
tor is dominant. However, the secondary modes predicted
by the classical analysis, although with smaller weight, are
clearly visible. Also, the additional Fourier modes can be
observed in the static structure factor (see arrows in Fig. 2),
although they are obscured by the optical mode since S(gq) =
(1/m) f dw S(g, w). If in the future a material is found with
7 /3- or m/4-block spin order, finding in neutron scattering
these secondary peaks in addition to the dominant one at
gmax Would provide a clear verification of the block nature
of the magnetic order. Reciprocally, if instead of blocks we
would have a simple sine-wave arrangement of spins with
wave vector gmax, the extra §-peaks would be missing. The
secondary peaks and the optical modes provide the smoking
gun of 7 /3- or 7 /4-block order.
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FIG. 6. (a—c) Fourier components of the classical spin patterns
for the 7 /I-block states, with [ = 2, 3, 4. Lines represent the com-
ponents of the Fourier transform, while color (gray) arrows represent
spins which contribute (do not contribute) to a given mode. Boxes
represent the latter within one magnetic unit cell. (d) Fourier trans-
forms of the classical 7 /I-block patterns. § functions where broaden
by a Gaussian kernel for better clarity in the plot.

Regarding the acoustic mode, let us comment about pos-
sible gaps in the spectrum. In the ladder inelastic neutron
experiments [31] a gap A =~ 5[meV] was reported, but at-
tributed to single-ion anisotropies that we do not incorporate
in our calculations. However, the two-leg ladders and Haldane
chains are well-known for having spin gaps of quantum origin.
Thus, our results in multiorbital Hubbard models on chains
may display such quantum spin gaps. However, our present
effort, as well as our previous results [47], do not have suffi-
cient accuracy to unveil very small gaps. As a consequence,
while within our present resolution we do not observe a gap,
a small spin gap in our results cannot be excluded.

(iii) Finally, let us comment on the energy range in which
the dynamical spin structure factor S(q, ) carries a substan-
tial weight. Our results presented in Fig. 5 indicate that the
frequency scale of all of the modes is strongly dependent on
the electronic filling ng and, as consequence, on the size of
the magnetic block /. To extract the leading energy scale we
fit the acoustic mode to the simple dispersion given by

= J | sin(g ng )|, (6)

with only one free parameter J which represents the effective
energy scale of the acoustic spin excitation involving small
rotations of the block orientations. .

In Fig. 7 we show the dependence of J on the electronic
filling n, as extracted from the results in Figs. 5 and 12 from
the Appendix. Surprisingly, the energy scale J changes a cou-
ple orders of magnitude between ng = 1 and ng = 1/4, i.e.,
between the 7 /1-block (staggered AFM 1| 1) and the 7 /4-
block 1111 |. More specifically our results, see inset of
Fig. 7, indicate that the overall energy scale J decreases by
one order of magnitude at each doubling of the magnetic unit

wa(q)

T T T T T T T
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i~ 0.2 | 191 L __-',!' - - - fit to aexp(bnk) #®
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FIG. 7. Electronic filling nx dependence of the overall energy
scale J of the dispersion relation wa (g). Dashed lines represent fits
to a phenomenological expression J=a exp(bng). Inset is the same
data but in a y-log scale. The dashed red horizontal line represents
the smallest explicit energy scale present in the generalized Kondo-
Heisenberg model, namely, the localized spin-exchange K.

cell. The filling dependence of J can be phenomenologically
approximated by J o exp(ng). Regardless of fittings, it is
clear that the energy scale of the block-magnetism J becomes
much lower than the lowest explicit energy scale present in the
Hamiltonian, namely, the exchange K of the localized spins.
As a consequence, we believe that the block-magnetism is
an emergent phenomena and cannot be deduced easily from
the individual constituents of the model. When various phases
are in competition, small energy scales typically emerge due
to frustration effects that are not explicit in our model but
nevertheless exist in the system.

B. Hubbard and Hund coupling dependence

As discussed in previous sections, the characteristic feature
of the OSMP spin spectrum is the coexistence of an acoustic
dispersive mode with an optical localized mode. In this section
we will discuss the U and Jy dependence of these modes at
ng = 1/2, with $1] | block-magnetic order. Note that within
the gKH model as defined in Eq. (4), the localized spin-
exchange (K = 4t121 /U) and the Hund interaction (Jy = U /4)
are dependent on the Hubbard interaction U value. Here, we
will first describe the full U dependence of spin dynamics
S(g, w) at fixed Jy = U/4. Next, we will vary the ratio Jy/U
atfixedU = W.

At weak interaction, U — 0, the gKH model does not
accurately describe multiorbital physics because of the as-
sumption of having spin localization in one of the orbitals.
Previous investigations showed [46] that the mapping is valid
for U/W = 0.5. At small U, the system is in the paramag-
netic state and the dynamical spin structure factor S(gq, )
(not shown) resembles the U — 0 result of the single-band
Hubbard model at given filling ng .

Increasing the interaction U and entering the block-
phase at U ~ W, the spin spectrum changes drastically [see
Figs. 8(a)-8(d)]. First, the spectral weight of the low-energy
dispersive mode shifts from the wave vectors range 7 /2 <
q < m to the region around ¢ ~ 7 /2 (for general filling the
spectral weight accumulates at g ~ 2k as evident from the
results in Fig. 5). This transfer of weight reflects the emer-
gence of the block-magnetic order 11 | at propagation wave
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FIG. 8. (a—f) Hubbard U and (g-1) Hund exchange Jy dependence of the dynamical spin structure factor S(g, w), calculated for L = 48
and ng = 1/2. Panels (a—f) depict results for U/W = 0.6, ..., 1.4 and Jy /U = 0.25, while panels (g-1) for Jy = 0.1,...,035and U/W = 1.
The white line in panels (f) and (1) indicate the wo(g) = 0.051 4 0.005| sin(2¢)| dispersion.

vector gmax = 2kp. Consequently, in the block-OSMP, the
low-energy short-wavelength g > 7 /2 spin excitations are
highly suppressed. This indicates that at low energy spin ex-
citations within the magnetic unit cell (within the magnetic
island) cannot occur because they require more energy, and
the spectrum is thus dominated by excitations between differ-
ent blocks.

The second characteristic feature upon increasing the inter-
action U is the appearance of the high-frequency, seemingly
momentum-independent, optical band. As shown in Figs. 8(c)
and 8(d), for U ~ U, ~ 0.8W—in parallel to the shift of the
weight previously described—the dispersion w(q) of the spin
excitations is heavily modified in the short-wavelength limit.
Namely, increasing the interaction up to U ~ U, increases and
flattens the w( /2 < g < m) features. It is interesting to note
that previous studies [46] of the static structure factor S(g) in-
dicate that the system enters the block-OSMP at U ~ U... For
U > U, the flat band “detaches” from the dispersive portion
of w(g) and creates a novel momentum-independent mode
wo. Further increasing the interaction strength U/W leads
to the increase of the frequency where this optical mode is
observed [see Figs. 8(d)-8(f) and also Figs. 9(a) where the
detailed frequency dependence of S(¢ = 7, w) is presented].

Simultaneously, the energy span of the acoustic mode wa(q)
decreases. The latter qualitatively resembles the usual behav-
ior of spin superexchange in the Mott limit, i.e., J o< 1/U.
Although our numerical data indicate a smooth crossover
between the paramagnetic and block-OSMP phases, we can-
not exclude sharp transitions between the blocks of the former.
For example, as shown in Figs. 8(d)-8(f) and Figs. 8(j)—
8(1) the main features of the |sin(gny)|-like dispersion (also
for g > gmax = /2 with vanish weight) persist deep into
the block-OSMP regime. As a consequence, at U ~ U, the
matrix elements S,.,, of the dispersive energy levels are
suppressed, behaving oppositely to the flat energy band that
increases. In this scenario the flat optical mode appears at
the transition to block-OSMP. Nevertheless, in both cases, the
presence of the optical mode wo implies the presence of the
block-OSMP state where the spin excitations are dispersive
for long-wavelengths and localized for short-wavelengths.
Up to now, we have discussed the interaction U depen-
dence of the full dynamical spin structure factor S(q, ®)
within the gKH model. However, it is instructive to examine
the specific effect of Jy on S(g, w), which ferromagnetically
couples the spins at different orbitals in a direct way. As a
consequence, in the rest of this subsection, we fix U/W =1
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FIG. 9. (a, b) Frequency w dependence of the dynamical spin
structure factor S(g, w) at ¢ = 7 as calculated for L = 48 sites.
In (@) U/W =0.6,0.7,...,1.4 (top to bottom) at fixed Jy/U =
0.25, while in (b) U/W = 1.0 is fixed and we vary Jy/U =
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and interaction U/W (top x axis) dependence of the position of the
maximum in S(q = 7, w), at fixed U/W =1 and Jy/U = 0.25, re-
spectively. In addition we show data for the model with Jy = 0.25W
while varying U/W . See text for details.

(and corresponding K), and we vary the Jy /U ratio solely for
the ng = 1/2 filling.

Similarly to the U — 0 limit, the small Hund exchange
leads to paramagnetic behavior. When Jy — 0 the multior-
bital Hubbard model decouples into two single-band Hubbard
chains: one with U/fy ~5 and one with U/f; ~ 16 (for
U/W =1). Again we want to stress that this region is only
crudely represented by the gKH model since the latter as-
sumes localized electrons at the narrow band. Such scenario
is depicted in Fig. 8(g) for Jy/U = 0.1 and resembles the
S(q, ®) spectrum before entering the block-OSMP [e.g., com-
pare with Fig. 8(b)]. Increasing Jy, with results depicted in
Figs. 8(g)-8(i), leads to the already discussed shift of the
spectral weight from short- to long-wavelengths (from 7 /2 <
g <mwtoqg < m/2forng = 1/2 with gmax = 7/2). Similarly,
as with regards to the U-dependence, with increasing Jy the
flat momentum-independent mode smoothly develops in the
m/2 < g < & region at high-w [see Figs. 8(h)-8()].

Interestingly, in the block OSMP, the dispersive mode
wa(q) is weakly dependent on Jy, opposite to the behavior
of the optical mode, as shown in Fig. 9(b). Such behavior
indicates that the localized spin excitations wg are predomi-
nantly controlled by the the local Hund exchange Jy. Further
insight can be gained from the analysis of the position of
the maximum o7, of the optical mode at ¢ = m. The later
is shown in Fig. 9(c) varying the U/W and Jy interactions.
It is evident from the presented results that o], increases
with Jy. A similar behavior is observed with increasing U,
however, this behavior is again caused by the increasing Hund
coupling due to the Jy = U/4 relation. However, when the
Hund exchange is fixed to Jy/W = 0.25 [the full S(g, ») data
is not shown] changing U leads to a much weaker dependence
of the position of the optical mode in the block-OSMP region.

Finally, it is worth noting that for large Jy the optical
band develops a narrow sinelike dispersion. This is de-
picted in Fig. 8(f) (for U = 1.4W =2.94[eV] and Jy =
0.25U = 0.735[eV]) and in Fig. 8(f) (U = W = 2.1[eV] and
Ju = 0.35U = 0.735 [eV]). Although the energy range of the
acoustic modes changes (due to varying U), it is clear that
the optical bands behave similarly for both parameter sets.
The latter can be described with a simple form wo(q) = @ +
Jo sin(g/2), with oy the frequency offset and Jo = 0.005 [eV]
providing a very small dispersion. This indicates that the exci-
tations contributing to the optical mode can propagate within
the magnetic unit cell for large values of the Hund exchange.

IV. EFFECTIVE SPIN MODELS

The competing energy scales present in the block-OSMP
render the spin dynamics nonperturbative. For example, as
was shown in Sec. III A, the effective spin exchange of the
acoustic mode decreases by over one order of magnitude just
by doubling the magnetic unit cell. The strong correlation
between electronic density and the block size could naively
indicate that the spin exchange is “simply” mediated by the
Ruderman-Kittel-Kasuya-Yosida like interaction. However,
the latter is the perturbative limit of Jy — 0, while in the
block-OSMP the value of the Hund interaction is significant.
However, the behavior of the optical mode, discussed in the
last section, while controlled by the Hund exchange cannot
be deduced from the Jy — oo limit. As a consequence, in the
intermediate coupling regime of our focus—which also is the
important physical regime for iron-based superconductors—it
is not possible to derive analytically in a controlled manner
an effective Heisenberg-like Hamiltonian for the block-OSMP
region. Instead, in this section, we will discuss simple phe-
nomenological models which can be used by experimentalists
to analyze the neutron scattering spectrum.

The INS spectrum of the powder BaFe,Se; sample was
analyzed [31] within the spin-wave theory using an FM-AFM
alternating model of the form

Hyjer = Z (—Jrm S2i-1 - Soi + Jarm S2i - S2i1), (1)
i.e., with alternating FM and AFM exchanges along the ladder
legs of similar magnitude Jgv =~ Japwm, reflecting the 11
spin arrangement [see sketch in Fig. 10(a)]. Our results pre-
sented in Fig. 10(b) indicate that the FM-AFM alternating
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model has significant low-energy spectral weight in the g >
7 /2 range, a feature not observed in the gKH result (compare
with Fig. 5). As a consequence, we believe that this model
is not sufficient to describe the more fundamental multiorbital
Hubbard model results, in spite of the fact that an optical mode
nicely appears in the correct wave-vector range.

Another approach to the modeling of the block magnetism
should be followed. Consider now a longer-range phe-
nomenological Heisenberg model with FM nearest-neighbor
exchange —J; and AFM exchange Jy acting at the distance
equal to the block length N (see sketches in Fig. 11), i.e.,

HlN:_JIZSi'SiJrl + Jy Zsi'SHN- (®)

From the perspective of the block-magnetism, the above
Hamiltonian has two candidates for classical ground state:
the FM state |[1111) with energy €y = —J; + Jy, and the
classical Heaviside-like block state of size N, i.e., [11]])
for N =2, ™M1l l]) for N =3, etc.,, with energy ¢y =
—Ji(N —2)/N — Jy. Clearly, for Jy/J; > 1/N the latter has
lower energy.

Although such classical estimates are not necessarily accu-
rate for the behavior of the quantum ground state, our results
presented in Fig. 11 for S = 1/2 and J; = Jy = 1 indicate
that the low-energy dispersive (acoustic) modes can be prop-
erly described by the J;-Jy model Eq. (8) for all considered
block sizes. In Fig. 11(a) we show results for N = 2, i.e.,
for the 7 /2-block 11 {. It is clear from the data that the
J1-J, model properly accounts for the transfer of weight to the
long-range wavelengths with accumulation of weight around
~g /2. Furthermore, similarly to the gKH model results, the
spin excitations of the J;-J, model are gapless. Also, it is
worth noting that: (a) the J;-J, model was used in Ref. [47]
to describe the spin spectrum of the three-orbital chain and
two-orbital ladder systems, and (b) a similar model with lead-
ing consecutive FM and AFM interactions was used in the
analysis [48] of the block-spiral state [i.e., the state stable in
the vicinity of block-magnetism, see Fig. 1(b)].

The agreement between the gKH and J;-Jy spin spec-
tra goes beyond the 11| order. In Figs. 11(b) and 11(c)

FM exchange
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FIG. 11. Dynamical spin structure factor S(g, w) calculated for
the 1D J;-Jy model Hy, (8), corresponding to (a) N = 2, (b) N = 3,
and ()N =4 (J; =Jy = 1,L =64, 8w/J; = 1072). On top of each
panel we present a schematic representation of each J;-Jy model.

we show results corresponding to the m/3- and 7 /4-block
magnetic order, i.e., N =3 and N = 4, respectively. In all
considered cases, the spectral weight is spanned between 0
and gm.x = 7 /N wavelengths, in accord with the g = /1
of a given block size /. Finally, the J;-Jy model accounts also
for the additional Fourier components of the block-ordered
systems, i.e., the additional small spectral weight at 7 — 7 /[
or w wave vector for even or odd /, respectively (see Fig. 6).
Although the J;-Jy model properly reproduces the acoustic
modes, the optical (localized) excitations are not present in
this model. This is a drawback compared to the FM-AFM
alternating model (7) as evident from the results presented in
Fig. 10(b). In summary, in spite of our attempts we could not
find a simple “toy model” that could reproduce all the features
contained in our analysis of the multiorbital Hubbard model in
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the intermediate coupling range needed to stabilize the block
states.

V. CONCLUSIONS

To summarize, we studied the spin dynamics of the block-
magnetic order within the orbital-selective Mott phase of
the one-dimensional generalized Kondo-Heisenberg model.
Specifically, we investigated the dynamical spin structure fac-
tor S(g, w) varying various system parameters, such as the
electron density ng, the Hubbard interaction U, and the Hund
exchange Jy. We have shown that the acoustic dispersive
mode is strongly dependent on the electronic filling, reflecting
the propagation vector gp,x of the given block-magnetic order.
Also, due to competing energy scales present in the system,
the spin-wave bandwidth of this mode is strongly dependent
on the size of the latter and becomes abnormally small for
large clusters. We have also studied the evolution of the op-
tical mode of localized excitations which is predominantly
controlled by the Hund exchange, a property unique to the
multiorbital systems within OSMP. Finally, we have discussed
possible phenomenological spin models to analyze the INS
spectrum of block-magnetism.

Our results provide motivation to crystal growers to search
for appropriate candidate materials to realize block mag-
netism beyond the already-confirmed BaFe,;Se; compound.
Furthermore, our analysis of the exotic dynamical magnetic
properties of block-OSMP unveiled here, particularly the
exotic coexistence of acoustic and optical spin excitations,
serves as theoretical guidance for future neutron scattering
experiments.
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APPENDIX: ANTIFERROMAGNETIC STATE

Let us consider the half-filled case ngx =2/2, i.e., two
electrons per site in a two-orbital model. In this case, a Mott
insulator state with Sim ~ 2,1i.e., spin ~1, is the ground state.

Although this fully charge gapped AFM state (for U = W)
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FIG. 12. Dynamical spin structure factor S(g, w) of the half-
filled antiferromagnetic state. (a) Results for the generalized
Kondo-Heisenberg at ny =1 and U/W =1, using L = 48 sites.
The dashed line is a fit to the sinelike dispersion, namely, wa(g) =
0.2 sin(q). (b) S(g, w) of the § = 1 isotropic Heisenberg model with
J = 0.07 [eV]. (c) Comparison of results between the gKH and § =
1 Heisenberg models at wave vectors ¢ = 7 /2 and g = 7.

does not belong to OSMP, it can be viewed as a limiting
case of block-magnetism with a magnetic unit cell of length
! =1 (am/1-block). In Fig. 12(a) we show results for ng = 1
calculated using the gKH model at U/W = 1. Evidently, the
OSMP high-frequency optical mode is missing because
the block has size one. In addition, the results do not resemble
the two-spinon continuum expected in the “usual” Mott
phase of the single-band § = 1/2 Hubbard model. Instead, the
S(gq, w) displays the single magnonlike mode characteristic of
the S =1 1D AFM Heisenberg model (AHM) with energy
dispersion wa (q) =~ 0.2sin(g) [67]. In Fig. 12(b) we present
results for S(g, w) directly using the S = 1 antiferromagnetic
Heisenberg model with spin-exchange J = 0.07 [eV]. The
good agreement between these models [see Fig. 12(c)] can be
easily explained by the large Hund coupling that aligns ferro-
magnetically spins on different orbitals and favors the S = 1
state at each site. These results are in agreement with the
recent proposal [68] of a generalized Affleck-Kennedy-Lieb-
Tasaki-like state (that provides a qualitative understanding of
the S = 1 Heisenberg chain [69,70]) as a ground state of the
two-orbital Hubbard model at half-filling.
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