
PHYSICAL REVIEW B 102, 115133 (2020)
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We generalize the dynamical large-N multichannel Schwinger-boson approach to study the quantum phase
transition of a two-dimensional Kondo-Heisenberg model, relevant for heavy electron systems, close to an
antiferromagnetic Kondo destruction quantum critical point. By breaking up a Kondo singlet into a charge
fermion (holon) and a bosonic spinon, we identify and characterize the quantum phase transition from an
antiferromagnetically ordered state to a Kondo-dominated paramagnetic state, and attribute a jump in the
holon phase shift to Kondo breakdown. We calculate transport and thermodynamic quantities. The global
finite-temperature phase diagram and the critical behavior of various physical observables therein show a close
resemblance to experimental observations.
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I. INTRODUCTION

“Strange metal (SM)” behavior, which is characterized
by a linear-in-temperature resistivity and a logarithmic-in-
temperature specific-heat coefficient, has been reported in
many strongly correlated electron systems close to onset
of magnetization. The magnetic quantum critical points
(QCP) are the result of competing order, and occur in a
wide spectrum of quantum materials, including cuprate
superconductors [1] and heavy electron systems [2]. The
microscopic origin of this common phenomenology, however,
has remained enigmatic.

Heavy electron materials often can be tuned from an
antiferromagnetically ordered phase through a QCP to a para-
magnetic Kondo-screened heavy Fermi liquid [3]. At the
magnetic phase boundary, many heavy electron compounds
and, in particular, YbRh2Si2 [4], CeCu6−xAux [5–8], and
CeMIn5 with M = Co, Rh [9,10], display SM behavior.
Low-temperature measurements such as the spin susceptibil-
ity indicate that in the majority of these materials the effective
low-energy degrees of freedom are two dimensional (2D),
despite the three-dimensional (3D) crystal structure of theses
materials [3,9,11,12]. Moreover, many experimental findings
strongly suggest Kondo breakdown (KB) [13,14] to occur, a
mechanism where the conventional quasiparticle description
completely breaks down at the QCP, and the Kondo effect
plays an important role in driving the phase transition. Among
these experiments are Hall measurements [15] indicating a
jump of the Fermi volume at T = 0, and neutron spectroscopy
[7], optical conductivity [16], and STM measurements [17],
pointing to ω/T scaling of various quantities at the transition.

These findings go beyond the standard Hertz-Millis type
of spin-density-wave theory [18], critical quasiparticle ap-
proaches [19], and phenomenological approaches [20].

To account for the nature of the QCP, Doniach’s frame-
work for heavy electron systems where the Kondo effect
competes with the nearest-neighbor antiferromagnetic (AF)
interaction in the form of a Kondo-Heisenberg (KH) model
is an appropriate starting point. Kondo breakdown in the KH
model has been extensively studied by the extended dynam-
ical mean-field theory (EDMFT) method [13,21,22], which
covers the antiferromagnetically ordered and Kondo-screened
heavy Fermi-liquid phases and captures the dynamical ω/T
scaling in the quantum critical regime that reflects the dynami-
cal competition between the Ruderman-Kittel-Kasuya-Yosida
(RKKY) and Kondo interactions [23]. Several other tech-
niques have also been used to study this problem [24–27],
which capture aspects of the Kondo breakdown physics. An
essential step to address the SM behavior is to study the
global finite-temperature phase diagram as well as thermody-
namics and transport properties near the Kondo breakdown
QCP. In this paper, we take an alternative approach to this
problem by using the dynamical large-N Schwinger-boson
approach to the 2D KH model, generalized from the two-
impurity Kondo model [28]. A simplified version of this
approach on a one-dimensional (1D) Kondo lattice model to
describe aspects of KB QCP was recently studied [29,30],
where the AF ordered phase is absent, and the critical prop-
erties are expected to fall into a different universality class
from that in two dimensional. However, it has not yet been
applied to a two-dimensional lattice, allowing for long-range
AF order to realistically capture the AF-KB transition seen
experimentally. This method is able to describe both the an-
tiferromagnetic phase through the condensation of bosons as
well as aspects of the heavy electron phase.

Moreover, the breakup of a Kondo singlet into a charge
fermion (holon) and a bosonic spinon has advantages in
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FIG. 1. (a) Phase diagram for κ = 0.2 mapped out using the
specific-heat coefficient. The AF and heavy FL ground states are
separated by a QCP at ξc ≈ 0.635. Note that the AF-LRO phase only
exists at T = 0 for the 2D KH model (bold solid line). The regions
(light green) enclosed by the quantum critical region and the two
stable ground states are the crossover regime. (b) |�|2 and the holon
phase shift δχ/π as functions of ξ . (c) Temperature dependence of
the magnetic short-range order |�|2 at different ξ = TK/JH marked
by A to D in (a).

addressing possible quasiparticle fractionalization at the KB
QCP [25] and the emergent critical charge/spin fluctua-
tions. We identify the antiferromagnetic Kondo breakdown
(AF-KB) QCP [see Fig. 1(a)] via the holon phase shift linked
to the Kondo hybridization and condensation of bosonic
spinons. The global finite-temperature phase diagram and the
critical behavior of various physical observables therein show
a close resemblance to experimental observations.

II. HAMILTONIAN OF KONDO-HEISENBERG
LATTICE MODEL

We start from the KH model on a square lattice,

H = H0 + HK + HJ , (1)

where the Kondo term HK and the AF interaction HJ are
described as

HK = JK

∑
i

Si · σ i, HJ = JH

∑
〈i, j〉

Si · S j, (2)

respectively. In Eq. (2), the Kondo coupling JK and the AF
interaction JH are treated to be independent of each other
for generality. Here, H0 = ∑

paα εpψ
†
paαψpaα describes the

noninteracting conduction electron part of the model with
ψ†

paα being the creation operator of a conduction electron

with quasimomentum p with channel index a ∈ [1, K] and
spin index α ∈ {−N−1

2 ,−N−1
2 + 1, . . . , N−1

2 − 1, N−1
2 }. The

large-N [Sp(N)] generalization of H in the Schwinger-boson
representations reads as [28]

H → H0 +
∑
i,a,α

[
1√
N

(b†
iαψiaα )χia + H.c. + |χia|2

JK

]

+
∑

〈i, j〉,α

[
sgn(α)biαb j,−α�ij + H.c. + N

∣∣�ij

∣∣2

JH

]

+
∑

i

λi[nb(i) − 2S]. (3)

In Eq. (3), ψ
†
iaα is the Fourier component of ψ†

paα with i

being the site index. The Schwinger-boson operator b†
iα cre-

ates a spinon of spin α. Note that the large-N generalization
to the local spin operator Si at site i can be expressed in
terms of either the N-flavored bilinear fermions [31] or bosons
[28–30,32]. The Kondo hybridization in this formulation,
χia ∝ ∑

α〈ψ†
iaαbiα〉, is a charged, spinless fermionic holon

field obtained through decoupling of the original Kondo term.
Unlike the pseudofermion representation of spins, here χ does
not break a gauge symmetry, i.e., 〈χia〉 ≡ 0. On the paramag-
netic side electrons and spinons form bound Kondo singlets.
An energy gap appears in both the spinon and holon spec-
trum which protects the spin singlets from being destroyed by
thermally excited spinons [33]. As a result, various physical
quantities exhibit Fermi-liquid behavior at low temperatures.
On the other hand, the absence of the Kondo resonance peak
at the Fermi energy due to the holon gap is an artifact of our
approach [see Appendix C].

The AF Heisenberg interaction HJ is expressed in terms
of the Sp(N)-invariant resonating valence bond (RVB) term,
sgn(α)biαb j,−α�ij, where �ij = − N

JH

∑
α〈sgn(α)b†

j,−αb†
iα〉 is

the AF short-range order (SRO) parameter. A SRO bosonic
spin liquid may appear in systems with strong magnetic frus-
tration and/or disorder. The AF long-range order (LRO) phase
is represented in terms of gapless spinon excitations or equiv-
alently a nonvanishing boson condensate 〈biα〉 
= 0 [34]. The
capability of describing both LRO and SRO is a major advan-
tage of our approach over the fermionic representation. The
last term in H enforces the constraint nb(i) = ∑

α〈b†
iαbiα〉 =

2S, where 2S = K corresponds to exact spin screening [28].
We will assume that λi = λ, and �i,i+x̂ = �i,i+ŷ = �. The
ratio κ ≡ K/N is kept constant (κ = 0.2 here [35]) as we take
the large-N limit.

III. METHOD

To solve Eq. (3), we exploit the self-consistent Dyson-
Schwinger equations in terms of the fully dressed Green’s
functions and self-energies. We assume that all the self-
energies are momentum independent, i.e., 
(iω, p) →

(iω), similar to what is used in the DMFT. Due to the local
nature at the KB QCP [13], we expect this local approximation
captures various aspects of the transition though the long-
ranged fluctuations are neglected. The resulting local Green’s
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FIG. 2. The Feynman diagrams for the self-energy of (a) the
holon field χ , 
χ , (b) the Schwinger boson b, 
b, and (c) the conduc-
tion electron, 
c. (d) The bare vertex of the Kondo term contributes
a factor of 1/

√
N . The double dashed (wavy) line denotes the full

Green’s function of the Schwinger-boson b (χ ) field. The single solid
line represents the bare Green’s function of the conduction electrons.

functions read as

Gc0(iω) =
∑

p

1

iω − εp
, Gb(iν) =

∑
p

−γb(−iν)

4|�|2ξ 2
p − �(ν)

,

Gχ (iω) = [−J−1
K − 
χ (iω)]−1, (4)

and


χ (iω) = 1

β

∑
ν

Gc0(iν − iω)Gb(iν),


b(iν) = − κ

β

∑
ω

Gc0(iω + iν)Gχ (−iω). (5)

In the above equations, ω ≡ π (2n + 1)/β and ν ≡ 2πn/β

denote the fermionic and bosonic Matsubara frequencies, and
εp the conduction electron dispersion. In Eq. (4), �(ν) ≡
γb(iν)γb(−iν) and γb(z) ≡ z − λ − 
b(z), and ξp = sin px +
sin py is the bare dispersion of the spinon on a square lattice.
We keep the leading terms in 
b and 
χ of order of unity
(Fig. 2), but ignore the vertex corrections and the conduction
electron self-energy 
c, which are of higher order in 1/N , i.e.,

c(iω) = (1/Nβ )

∑
ν Gb(iν − iω)Gχ (iν).

Two constraints for the Green’s functions are obtained by
minimizing the free energy with respect to λ and �:

κ = −1

β

∑
ν

Gb(iν),
1

JH
= −1

β

∑
p,ν

ξ 2
p

4|�|2ξ 2
p − �(ν)

. (6)

The unknowns, Gχ (ω), Gb(ν), 
χ (ω), 
b(ν), λ, and �,
are obtained self-consistently through Eqs. (4)–(6). Note

that Eqs. (4)–(6) go beyond the static large-N mean-field
saddle-point solutions, and are capable of describing non-
Fermi-liquid (NFL) behaviors [28–30,33].

IV. RESULTS

A. Global phase diagram

Our main results are summarized in Fig. 1(a): a phase
diagram in terms of the tuning parameter ξ ≡ TK/JH (TK =
De−D/JK is the bare Kondo temperature with D being the
half-bandwidth of the conduction electrons) and the temper-
ature T/JH is mapped out via the specific-heat coefficient
CV /T . Here, we set κ = 0.2, at the brink of AF-LRO ground
state in the 2D Heisenberg limit: the AF-LRO phase exists
for κ � 0.2 [32,36]. At T = 0, a QCP at ξ = ξc, separating
AF-LRO phase at small ξ and the paramagnetic FL ground
state at large ξ is clearly identified via the low-temperature
evolution of various quantities. The AF-LRO phase can be
inferred from the gapless spinon excitations (or equivalently
the development of boson condensation 〈b〉 
= 0), while the
heavy Fermi liquid (FL) phase is identified through the linear-
in-T entropy and the holon phase shift δχ , defined as

δχ

π
= −Im ln[1 + JK
χ (i0+)]. (7)

Within the FL phase, the magnetic SRO vanishes, and
both the spinons and holons develop gaps in their spectral
functions. The abrupt jump of the holon phase shift δχ/π

[Fig. 1(b)], and for ξ > ξc, the vanishing of |�|2 as T → 0
[Fig. 1(c)] indicate a reconstruction of the Fermi surface at
the QCP [see Appendix C], which is consistent with the
Kondo breakdown observed in various heavy electron com-
pounds including YbRh2Si2 [15] and CeCu6−xAux [7,8]. For
illustration, we consider a finite N and calculate the con-
duction electron spectral density (−1/π )ImGc(p, ω) with
G−1

c (p, ω) = ω − εp − 
c(ω) by including the conduction
electron self-energy 
c self-consistently [Fig. 2(c)], and find
that a Kondo hybridization gap opens near the Fermi energy
[Fig. 3(a) and Appendix C]. In addition, |�| → 0 indicates the
complete suppression of the AF-SRO in the heavy FL phase
[28–30]. We find an AF-LRO ground-state phase to persist at
finite temperature [Fig. 1(a)]. However, the finite-temperature
AF-LRO phase is ruled out by the Mermin-Wagner theorem
[37] and thus is an artifact of our approach (see the Discus-
sions and Appendix C). The holon and spinon gaps both close
at the QCP and in the AF phase, giving rise to singular-in-T
observables.

B. Entropy and specific-heat coefficient

Figure 4 shows the temperature dependence of the entropy
S [38] where

S

N
= β2

π

∫
dν

[
dnB

dβ

(
1

2Ns

∑
p

Im ln det
[−G−1

b (p, ν)
] + 
′′

b G′
b

)
+ κ

[
dnF

dβ

(
Im ln

[−G−1
χ

] + 
′′
χG′

χ − N
′
cG′′

c0

)]]
(8)
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FIG. 3. (a) The conduction-electron spectral function
(−1/π )ImGc(k, ω) in terms of momentum k and frequency ω for
N = 10, K = 2 with TK/D = 0.082, ξ = 0.874, and T/TK = 0.12.
The hybridization gap is of order of TK . (b) Temperature dependence
of the local spin susceptibility χloc(T )/N at different values of
ξ . Arrows indicate the onset temperature of AF LRO, TLRO.
(c) Temperature-dependent electrical resistivity ρ(T ) with different
values of ξ . The dashed lines in (b) and (c) schematically show the
extrapolations of χloc(T ) and ρ(T ) at the QCP. (d) The resistivity
behaves as ρ(T ) ∼ exp(−JH/T ), fitted by the dashed lines, in the
lower-temperature regime. (e) The imaginary part of Gχ exhibits
ω/T behavior near the QCP (ξ = 0.634). Inset: G′′

χ without being
scaled. (f) Spatial dependence of the spin susceptibility along the x
direction, χij/N (red dots), fitted to g(r/a) ≡ (a2/5r2) cos(3.21r/a)
(solid curve) with 
ri − 
r j ≡ (r, 0) and a being the lattice constant.

with

−G−1
b (p, ν) =

( −γb(ν) 2i�ξp

−2i�∗ξp −γb(−ν)

)
, (9)

and the specific-heat coefficient γ ≡ CV /T = ∂S/∂T at dif-
ferent values of ξ . For ξ > ξc, and at low temperatures, the
specific-heat coefficient develops a plateau, reflecting the for-
mation of a FL state with S ∼ T (see inset of Fig. 4). As ξ

approaches ξc from the Kondo side, the temperature range of
the plateau shrinks monotonically and vanishes at the QCP.
Above the FL region, the specific-heat coefficient increases
until it reaches a “Schottky” peak (see Fig. 4).

FIG. 4. Temperature dependence of CV /NT at different values
of ξ [from ξ = 0.61 (blue) to ξ = 0.95 (red)]. Inset: entropy per
spin as functions of temperature at ξ < ξc (left) and ξ > ξc (right),
respectively. At T = 0, there is a residual entropy at the QCP, as
indicated by the black dotted curves.

Note that the peak temperatures [open circles in Fig. 1(a)]
display a weakly first-order jump at the QCP [29,39,40]. The
collapse of energy scales from both sides as the QCP is ap-
proached is clearly seen in the color map of the γ coefficient
[Fig. 1(a)] with a fan-shaped quantum critical region. A large
residual (T = 0) entropy S/N ∼ 0.2 is found at the QCP.

Including finite-N fluctuations, we found this residual en-
tropy still survives, as indicated in Appendix G. We suspect
that the residual entropy is due to the local character of our
approximation, which will be addressed elsewhere.

C. Magnetic susceptibility

The static local (momentum-integrated) magnetic suscep-
tibility χloc(T ) as a function of temperature for T > TLRO

defined as

χloc(T )

N
= 2

∫
dz

π
nB(z)G′

b(z)G′′
b (z) (10)

is plotted in Fig. 3(b) at different values of ξ near the QCP.
Note that we consider the direction of the applied field is
parallel to the orientation of sublattice magnetization (see
Appendix E). Besides, in this work we only self-consistently
calculate χloc(T ) in the temperature range of T � TLRO for
ξ < ξc. The local magnetic susceptibility χloc(T ) shows two
distinct properties corresponding to the two regimes ξ > ξc

and ξ < ξc as T/JH → 0. In the Kondo limit, the susceptibil-
ity displays a crossover from a saturated Pauli susceptibility
at low temperatures, where all the local spins are fully
screened, to a typical spin-liquid behavior at relatively high
temperatures [41]. As expected, at temperatures well above
the spin-liquid region, the local susceptibility exhibit a 1/T
behavior [see Appendix E]. Furthermore, χloc shows a power-
law divergence at low T on the AF side due to the softened
spinon gap in proximity to LRO. The quantum critical fan is
identified in our calculations through the power-law scaling of
the local susceptibility, as illustrated in Appendix E.
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FIG. 5. The one-loop diagram of 
c(ω).

To obtain the susceptibility for T < TLRO, one needs to in-
clude the condensed Schwinger bosons, xiα ≡ 〈biνα〉 = 〈b†

iνα〉,
into our self-consistent equations (only one particular spin
flavor gets condensed at each particular site), which is tech-
nically challenging and is not the main focus of this work.
Although we did not self-consistently calculate the spin
susceptibility for T < TLRO, we qualitatively estimate the
low-temperature behavior of susceptibility for temperatures
T � TLRO, where the condensate of Schwinger boson xiα is
developed: biνα = xiα + δbiνα with δbiνα being the fluctuating
boson field. The condensate xiα (T ) increases with decreasing
T until all bosons are condensed and 〈δb†

iναδbiνα〉 = 0 at T =
0. As is shown in Appendix E, by the fluctuation-dissipation
theorem, spin susceptibility depends only on the correlations
of the fluctuating boson fields 〈δbδb†〉, and does not explic-
itly depend on the condensate fields xiα [see Eq. (E10)]. As
a result, for T < TLRO, the local spin susceptibility χloc(T )
monotonically decreases as the boson fluctuation is gradually
suppressed by the enhanced boson condensation with the de-
creasing of temperature, and eventually reach its minima as
T → 0 where the boson condensation completely develops.
A simple calculation for spin susceptibility χij between sites i
and j at T = 0 can confirm the above qualitative estimation:
Since all bosons are condensed at T = 0, the spin susceptibil-
ity χij of Eq. (E3) reads as

χij = 〈MiMj〉 − 〈Mi〉〈Mj〉
=

∑
νν ′αα′

sgn(α)sgn(α′)
[
x2

iαx2
jα′ − x2

iαx2
jα′

] → 0, (11)

where the z-direction sublattice magnetization of local
spin can be estimated as Mi = ∑

να sgn(α)b†
iναbiνα =∑

να sgn(α)x2
iα for T = 0. Combining the above estimations

and calculations, we expect that χloc starts to decrease as
the system enters the LRO phase, and eventually vanish as
T → 0. The above argument and calculations also apply to
the uniform spin susceptibility χuni (see Appendix E).

D. Electrical resistivity

Figure 3(c) shows the electrical resistivity obtained through
the Boltzmann formula [42]

ρ−1(T ) = −ne2

m

∫
τ (ω)

∂nF (ω)

∂ω
dω, (12)

where nF (x) ≡ [exp(x/T ) + 1]−1 denotes the Fermi func-
tion and τ−1(ω) = −2
′′

c (ω) ∝ O(1/N ) is the scattering rate
of the conduction electrons (see Fig. 5). At low and with

decreasing temperatures, electrical resistivity shows a sin-
gular increase on the AF side due to softened spinon gap
close to LRO, while it decreases on the heavy FL side as
a result of developing coherent Kondo hybridization (holon)
gap. The qualitative features are consistent with that seen in
CeCu6−xAux and are somewhat reminiscent of a metal-to-
insulator transition [6], where apart from the AF-KB QCP,
the short-ranged AF spin fluctuations have also been seen
experimentally [3].

Note that, to leading order in N , the expected T 2

Fermi-liquid behavior is replaced by an exponential decay
[Fig. 3(d)], due to the finite holon and spinon gaps [33]. To
recover the T 2 resistivity, one needs to include the contribu-
tions to the scattering rate of order O(1/N2) [33].

E. ω/T scaling

The ω/T scaling has initially been observed in the dynam-
ical spin response [7], and connected to the critical Kondo
breakdown [22,26,30]. More recently, dynamical scaling has
also been demonstrated in the charge response [43] and ob-
served in optical conductivity measurements on YbRh2Si2

[16], which is thus believed to be induced by the emergent
critical charge fluctuations at the KB QCP. This observation
is further supported by the ω/T scaling of the critical va-
lence fluctuations in Gχ at the KB QCP, i.e., G′′

χ (ω, T ) =
−T 0.56 f (ω/T ) with f (ω/T ) being a universal function [see
Fig. 3(e)]. The weakly first-order transition at the QCP ξc,
similar to the jump of the position of Schottky peak of
specific-heat coefficient near the QCP (see Fig. 1), also re-
flects on the slight shift of peak position of the holon spectrum
−G′′

χ (ω) as one goes from one side of the QCP to the other
[see Appendix C]. We also observed that G′′

χ (ω) does not peak
at ω = 0, violated with the result in Ref. [30]. We suspect that
it is likely due to the particle-hole asymmetry of our model.

V. EFFECT OF 1/N FLUCTUATIONS

To examine the stability of the infinite-N results against the
finite-N fluctuations, we include the contributions of the full
Green’s function Gc and the self-energy 
c of the conduction
electrons in our self-consistent Schwinger-Dyson equations in
Eq. (2) (we set N = 10 here).

Before we present our finite-N results, we would like to
make a remark concerning our finite-N approach: To fully
address the finite-N corrections, in general, we also need
to include fluctuations of the Lagrange multiplier λ and the
corrections higher than O(1/N ). However, the restriction to
the 1/N correction in only 
c which we used here may still
be reliable to some extent, at least in the finite-N SU(N )
Schwinger-boson method to the infinite-U Anderson model,
as studied in Ref. [33]. This approach is capable of reproduc-
ing the Langreth sum rule (Friedel sum rule for Anderson’s
model) in the Fermi liquid [33], which cannot be addressed in
the strict large-N limit. This suggests that the fluctuations of
λ and other corrections higher than 1/N are not likely to play
a significant role here. Nonetheless, a proper analysis of the
1/N corrections although technically challenging may shed
light on the overall stability of the fixed point.
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FIG. 6. The finite-temperature phase diagram with the inclusion
of finite-N correction: a QCP can be seen at TK/JH ∼ 0.517. The
dark circle marks the position of the Schottky peak which indicates
the onset of Fermi-liquid phase.

The self-consistent equations for Gc and 
c can be ob-
tained as

G−1
c (ω) = G−1

c0 (ω) − 
c(ω),


c(ω) = 1

Nβ

∑
ν

Gb(ν − ω)Gχ (ν) ∝ O(1/N ). (13)

In addition to the inclusion of self-consistent equations of Gc

and 
c, we also have to replace Gc0 by Gc which appears in
the self-consistent equations of the infinite-N case [Eqs. (4)
to (6)]. It turns out that the finite-temperature phase diagram
(Fig. 6), the ω/T scaling, as well as various thermodynamic
observables are in close resemblance to the large-N results
except for some quantitative changes. Details are provided
in Appendix G. We thus believe that the large-N approach
is robust against the 1/N fluctuations arising from the con-
duction electron self-energy, and the large-N results are able
to correctly describe the qualitative features of the finite-
temperature phase diagram.

VI. DISCUSSIONS

The origin of the AF-LRO phase at finite tempera-
tures we found for JK 
= 0 and JH 
= 0, which violates the
Mermin-Wagner theorem, deserves further discussions. In the
2D Heisenberg limit (JK = 0, JH 
= 0), we did not obtain
the finite-temperature AF-LRO phase. The evolution of the
spinon gap λ − 4|�| with temperature at the low-temperature
regime follows the trend of (a/T ) exp(−b/T ) with a, b > 0
being constants and thus is nonvanishing at finite temperatures
(see Appendix C). This is in agreement with Mermin-Wagner
theorem and the results of the large-N [SU(N )] Schwinger-
boson approach to the 2D antiferromagnetic Heisenberg
model by Arovas and Auerbach [32,36]. In contrast to the
2D Heisenberg limit, for the more general case where JK 
= 0
and JH 
= 0, we found that the spinon gap |λ + Re
b(i0+)| −
4|�| with 
b being the Schwinger-boson self-energy, van-
ishes at a particular T 
= 0 [see Appendix C], suggesting the

onset of finite-temperature AF-LRO state. We therefore con-
clude that it is 
b that leads to the formation of AF LRO and
the associated long-range behavior in the position-dependent
spin-spin correlations χij [see Fig. 3(f)] in the presence of
finite Kondo coupling [44]. It is expected that a proper treat-
ment of nonlocal correlations beyond the local approximation
will remedy this problem [45]. Likewise, the violation of
Mermin-Wagner theorem in our finite-temperature AF-LRO
phase when JK 
= 0, JH 
= 0 is likely due to the neglect of
momentum dependence in the self-energies. We think that
neglecting the momentum-dependent self-energies may si-
multaneously make us neglect the effect of long-wavelength
spin fluctuations of the RKKY interaction induced by Kondo
coupling, which, via the Mermin-Wagner theorem, is respon-
sible for destroying the magnetic order in low-dimensional
systems. This will lead to the formation of AF-LRO state at
finite temperatures as we show in our finite-temperature phase
diagram.

At nonzero temperatures, the region with |�| 
= 0 extends
to the quantum critical region. We attribute this feature to
the bosonic representation of impurity spins where the holon
field χ retains its 〈χ〉 = 0, giving rise to an overestimated
RVB mean field �. Introducing a combined boson-fermion
supersymmetric representation of spins [46] may remedy
this artifact. We checked that the qualitative features of our
large-N results are robust against finite-N fluctuations, as
shown in Appendix G. Meanwhile, whether the residual en-
tropy at the QCP can survive beyond the local approximation
needs further investigations [30,47,48]. Near the LRO phase
boundary, topological excitations related to the Berezinskii-
Kosterlitz-Thouless (BKT) physics, which may affect the
critical properties, have not been considered here [49], and
will be addressed elsewhere [50]. There are other approaches
to this model: A fermionic mean-field analysis of the K-H
model on square lattice shows the similar competition be-
tween Kondo and AF ground states. Nevertheless, the critical
properties are out of reach within this approach [51]. A renor-
malization group (RG) analysis of this model on the square
lattice shows the breakdown of hydrodynamic behavior as the
spin-wave velocity is suppressed logarithmically [52].

VII. CONCLUSIONS

We have generalized the dynamical large-N [Sp(N )] mul-
tichannel Schwinger-boson approach to explore the quantum
phase transition and the quantum criticality of heavy elec-
tron compounds in an antiferromagnetic Kondo-Heisenberg
model on a two-dimensional lattice reflecting the realistic
quasi-2D nature of the materials. Our approach efficiently
captures important aspects of the antiferromagnetic Kondo
breakdown quantum critical point, separating the antiferro-
magnetic long-range order phase from the Kondo-screened
heavy Fermi-liquid phase. The finite-temperature phase dia-
gram is similar to that of YbRh2Si2 and CeCu6−xAux.

The calculated resistivity profile near criticality and the
ω/T scaling in the emergent critical charge fluctuations show
a close resemblance to CeCu6−xAux and YbRh2Si2, respec-
tively. Further theoretical and experimental studies to clarify
the strange metal behaviors are needed.
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APPENDIX A: DERIVATION OF THE SELF-CONSISTENT
EQUATIONS

In this Appendix, we provide detailed derivations for the
self-consistent Schwinger-Dyson equations for the large-N
[Sp(N )] approach to the Kondo-Heisenberg model.

The path-integral action for the Kondo-Heisenberg model
of Eq. (3) can be written as

S = −
∑
pωaα

ψ∗
pωaα (iω − εp)ψpωaα −

∑
pνα

b∗
pνα (iν − λ)bpνα

+ 1√
N

∑
pkωνaα

b∗
pναψkωaαχp−k,ν−ω,a + H.c.

−i�̄
∑
pνα

sgn(α)bpναb−p,−ν,−αξp + H.c. + S0

+
∑
pωa

|χpωa|2
JK

+ S0. (A1)

Here, S0 = βNNs(2|�|2/JH − λκ ) is a constant. For sim-
plicity, the measure 1/(βNs) associated with each sum of
momentum and frequency has been dropped.

Note that, in Eq. (A1), the fields ψpωaα and bpνα carry a
dimension of the inverse of energy, while the holon field χpωa

is dimensionless. The parameters β−1, λ, �, JH , and JK all
have the dimension of energy. Within our calculations, we take
the half-bandwidth of conduction electron D as the energy
unit, i.e., taking β → βD−1, λ → λD−1, . . . in Eq. (A1) so
that all of them are dimensionless.

The equations of motion (EOM) for the dynamic fields
(b, ψ , χ ) can be derived using the standard generating func-
tion

Z[I, J, K] =
∫

b,ψ,χ

e−S exp[I†b + J†ψ + K†χ + H.c.],

(A2)
where I , J , and K are the external sources coupled to the three
fields b, ψ , and χ (I is an ordinary complex field, while J and
K are Grassmann fields), with I†b ≡ ∑

pνα I∗
pναbpνα and so on.

Note that the external sources I, J , and K will be set to zero
at the end of derivation.

The EOM can be obtained via the fact that the functional
integral of Eq. (A2) is invariant under infinitesimal variation
of the integral variables b, ψ , and χ . First of all, the EOM
corresponding to the variation of the b field, b → b + δb, are
given by

0 = 1

Z

δZ

δb∗
pνα

= (iν − λ)〈bpνα〉 − 2i� sgn(α)ξp〈b∗
−p,−ν,−α〉

− 1√
N

∑
kωa

〈ψkωaαχp−k,ν−ω,a〉 + Ipνα (A3)

and
1

Z

δZ

δb−p−ν−α

= −(iν + λ)〈b∗
−p−ν−α〉 + 2i�̄ sgn(α)ξp〈bpνα〉

− 1√
N

∑
kωa

〈χ∗
−p−k,−ν−ω,aψ

∗
kωa,−α〉 + I∗

−p−ν−α

= 0, (A4)

where 〈O〉 ≡ 1
Z

∫
b,ψ,χ

Oe−S+I†b+J†ψ+K†χ+H.c. denotes the sta-
tistical average of O in the presence of external sources. There
are another four EOMs corresponding to the transformations
of the ψ and χ fields, ψ → ψ + δψ and χ → χ + δχ .

The Dyson-Schwinger equations for the Green’s function
of the spinon field b can be derived through the functional
derivative of the EOM of Eqs. (A3) and (A4) with respect to
Ipνα , yielding

−(iν − λ)〈bpναb∗
pνα〉c + 2 sgn(α)i�ξp〈b∗

−p,−ν,−αb∗
pνα〉c

+ 1√
N

∑
kωa

〈ψkωaαχp−k,ν−ω,ab∗
pνα〉c = 1 (A5)

and

(iν + λ)〈b∗
−p−ν−αb∗

pνα〉c − 2i�̄ sgn(α)ξp〈bpναb∗
pνα〉c

+ 1√
N

∑
kωa

〈χ∗
−p−k,−ν−ω,aψ

∗
kωa,−αb∗

pνα〉c = 0, (A6)

where 〈AB〉c ≡ 〈AB〉 − 〈A〉〈B〉 is the connected part of corre-
lation function, as indicated by the subscript “c.” Note that,
in this work, we do not consider the long-range ordered case
where 〈bpνα〉 
= 0, we have 〈AB〉c = 〈AB〉. Similarly, there
are two more equations for the off-diagonal correlation func-
tion 〈bpναb−p−ν−α〉c, given by the functional derivatives of
Eqs. (A3) and (A4) with respect to I∗

−p−ν−α .
In the large-N limit, one can safely ignore the vertex

corrections since it is subleading [of order of O(N−3/2)].
Therefore, the three-point correlation functions of Eqs. (A5)
and (A6) can be expressed as simple multiplications of the
two-point Green’s functions:

〈ψkωaαχp−k,ν−ω,ab∗
pνα〉c = 1√

N
Gc(k, iω)Gχ (p − k, iν − iω)Gb(p, iν);

(A7)

〈χ∗
−p−k,−ν−ω,aψ

∗
kωa,−αb∗

pνα〉c = 1√
N

Gχ (−p − k,−iν − iω)Gc(k, iω)〈b∗
−p,−ν,−αb∗

pνα〉,
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with

Gc(p, iω) ≡ −〈ψpωaαψ∗
pωaα〉,

Gχ (p, iω) ≡ −〈χpωaχ
∗
pωa〉,

Gb(p, iν) ≡ −〈bpναb∗
pνα〉. (A8)

Note that all the Green’s function in Eq. (A8) are diagonal in
the spin and channel subspaces.

By multiplying both sides of Eq. (A6) with sgn(α) and
defining the α-independent anomalous Green’s functions as

Fb(p, iν) ≡ −sgn(α)〈b∗
−p,−ν,−αb∗

pνα〉,
(A9)

F̄b(p, iν) ≡ −sgn(α)〈bpναb−p,−ν,−α〉,
one can rewrite Eqs. (A5) and (A6) into the following matrix
form:(

iν − λ − 
b(p, iν) −2i�ξp

2i�̄ξp −iν − λ − 
b(−p,−iν)

)

×
(

Gb(p, iν)
Fb(p, iν)

)
=

(
1
0

)
(A10)

with 
b being the self-energy of the b boson, obeying


b(p, iν) = −κ
∑
kω

Gc(k + p, iω + iν)Gχ (−k,−iω).

(A11)
The solution of Eq. (A10) can be obtained as(

Gb(p, iν)
Fb(p, iν)

)
= 1

4|�|2ξ 2
p − γb(p, iν)γb(−p,−iν)

×
(−γb(−p,−iν)

2i�̄ξp

)
, (A12)

where γb(p, iν) ≡ iν − λ − 
b(p, iν).
The Dyson-Schwinger equations for Gc(p, iω) and

Gχ (p, iω) are derived through the same procedure as illus-
trated above. One has

G−1
c (p, iω) = iω − εp − 
c(p, iω),

G−1
χ (p, iω) = − 1

JK
− 
χ (p, iω),

(A13)

with the self-energy 
c and 
χ ,


c(p, iω) = 1

N

∑
kν

Gχ (k − p, iν − iω)Gb(k, iν),


χ (p, iω) =
∑
k,ν

Gc(k − p, iν − iω)Gb(k, iν). (A14)

As we shall see in Fig. 5 for its diagrammatic representation,

c(p, iω) is proportional to 1/N (each vertex contributes a
factor of 1/

√
N). In the large-N limit, it is irrelevant as com-

pared with 
χ and 
b (the diagrammatic representation of 
χ

and 
b is illustrated in Fig. 2). We therefore replace Gc with
the bare function Gc0(p, iω) = 1/(iω − εp) in Eqs. (A11) and
(A13).

The variational parameters λ and � are obtained via min-
imizing ln Z with respect to λ and �, i.e., 0 = ∂ ln Z/∂λ =

∂ ln Z/∂�, yielding the following self-consistent equations:

κ = −
∑

pν

Gb(p, iν),

1

JH
= −

∑
pν

ξ 2
p

4|�|2ξ 2
p − γb(p, iν)γb(−p,−iν)

. (A15)

For simplicity, we assume all the self-energies are mo-
mentum independent. This assumption is widely used in the
dynamical mean-field theory approach to the strongly corre-
lated problems. We are thus allowed to integrate Eqs. (A11)
to (A15) over the momentum space and take the momentum-
independent Green’s functions and the self-energies as the
unknown variables. We arrive at the following self-consistent
equations [with 1/(βNs) recovered] of Eqs. (4)–(6).

APPENDIX B: MOMENTUM AND FREQUENCY SUM

Below, we simplify the momentum sum of the Green’s
function of spinon Gb of Eq. (4). The momentum sum of Gb

can be written as

Gb(iν) = −γb(−iν)

4|�|2
1

Ns

∑
p

1

(sin px + sin py)2 + A
, (B1)

where

A ≡ −γb(iν)γb(−iν)

4|�|2 (B2)

is a momentum-independent complex number. We now take
the infinite size limit Ns → ∞, after which the momentum
sum becomes an integral,

I1(A) ≡ 1

Ns

∑
p

1

(sin px + sin py)2 + A

= 1

(2π )2

∫
�

d2 p

(sin px + sin py)2 + A

= 1

(2π )2

∫
�

d2 p

A + 4
(
sin px+py

2 cos px−py

2

)2

= 1

2π2

∫ π

x=−π

∫ π

y=0

dx dy

A + 4 sin2 x cos2 y
, (B3)

with � being the first Brillouin zone of square lattice. In the
last step, we have changed the variables and rearranged the
domain of integration, as illustrated in Fig. 7. As one can
see, the integrand is divergent within the range −4 < A < 0.

FIG. 7. Rearrangement of the momentum integration domain.
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Outside this range, the integral can be performed as

I1(A) = 2

πA

∫ π/2

0
dx

1√
1 + 4

A sin2 x
= 2

πA
EK

[
− 4

A

]
, (B4)

where EK [Z] is the complete elliptic integral of the first kind
(elliptic-K function). The function EK [Z] is analytic in the
whole complex plane except for a branch cut along the real
axis ReZ > 1, which exactly corresponds to the range −4 <

A < 0 for Z = −4/A. Substituting this result into Eq. (B1),
one obtains

Gb(iν) = 2

πγb(iν)
EK

[
16|�|2

γb(iν)γb(−iν)

]
. (B5)

It is useful to rewrite the momentum integral as

I1(A) ≡
∫ 4

0
dε

ρ(ε)

ε + A
= 2

πA
EK

[
− 4

A

]
, (B6)

where

ρ(ε) = 1

Ns

∑
p

δ(ε − (sin px + sin py)2) (B7)

is the density of states of the free spinon.
Following a similar approach, one can further simplify

the momentum sum of the self-consistent equation for � in
Eq. (6). We first introduce the following function I2, given by

I2(A) ≡ 1

Ns

∑
p

(sin px + sin py)2

(sin px + sin py)2 + A
=

∫ 4

0
dε

ερ(ε)

ε + A

=
∫ 4

0
dε ρ(ε) − A

∫ 4

0
dε

ρ(ε)

ε + A

= 1 − 2

π
EK

[
− 4

A

]
. (B8)

Therefore, the second equation in Eq. (6) takes the form

1

JH
= − 1

4|�|2β
∑

ν

I2

(
−γb(iν)γb(−iν)

4|�|2
)

= 1

2π |�|2
∫ ∞

−∞

dν

π

1

eβν − 1

× ImEK

[
16|�|2

γb(ν + i0+)γb(−ν + i0+)∗

]
, (B9)

where the Matsubara sum is transformed into an integration
according to the formula (η = ±1 for fermion and boson,
respectively):

1

β

∑
ωn

F (ωn)eiωn0+ =
∫ ∞

−∞

dω

π

−η

eβω + η
ImF (ω + i0+).

(B10)
Similarly one has, for the other constraint,

κ = − 1

β

∑
ν

Gb(iν) = −
∫ ∞

−∞

dν

π

1

eβν − 1
ImGb(ν + i0+).

(B11)

The frequency sums in the self-energies of Eq. (5) can be
performed using the usual Matsubara technique as follows:


χ (iω) = −
∑

z0

Res

[
1

eβz − 1
Gc0(z − iω)Gb(z)

]

=
∫

dx

π

[
1

eβx − 1
Gc0(x − iω)ImGb(x)

− 1

eβx + 1
Gb(x + iω)ImGc0(x)

]
, (B12)

where z0 denotes the poles of Gc0Gb in the first line of the
above equation. Following a similar approach, 
b can be
obtained as


b(iν) = −κ

∫
dx

π

[
1

e−βx + 1
Gc0(iν − x)ImGχ (x)

− 1

eβx + 1
Gχ (iν − x)ImGc0(x)

]
. (B13)

APPENDIX C: SPECTRAL FUNCTIONS AND
ANTIFERROMAGNETIC LONG-RANGE ORDER

The Green’s functions can be obtained by solving the self-
consistent equations numerically. Due to the branch cut of the
elliptic-K function (EK ) in Gb, the spinon spectral function
develops discontinuity within some region of the parameter
spaces. We now show that this discontinuity corresponds to
the development of antiferromagnetic long-range order (AF
LRO). The branch cut of elliptic-K function lies at the real
axis of its complex argument, running from 1 to infinity,
indicated as the black solid line in Fig. 8(a). For comparison,
let us first consider the pure 2D Heisenberg model (JK = 0),
in which the argument of the elliptic-K function can be sim-
plified as Z = 16|�|2/(λ2 − ν2 − 2iνδ). For different values
of λ2/16|�|2, the function Z (ν) intersects with the real axis
at different positions. For λ2 < 16|�|2, Z (ν) intersects with
the branch cut, resulting in a discontinuity of the spinon spec-
tral function [Fig. 8(b)]. Right at λ2 = 16|�|2, the spectral
function has a finite value at zero frequency, corresponding
to massless Goldstone mode associated with the formation of
AF LRO.

According to the Mermin-Wagner theorem, AF LRO in the
2D Heisenberg model is always destroyed by fluctuations at
any finite temperatures. This can be confirmed by solving
the two self-consistent equations of Eq. (6) in the Heisen-
berg limit (or, equivalently, in the absence of the self-energy

b of Schwinger bosons which is generated by the Kondo
term). In the Heisenberg limit and for κ � 0.2, the spinon
gap λ − 4|�| always remains positive down to the lowest tem-
peratures we can reach [see Fig. 8(c)] and tends to vanish at
T = 0, thus rules out the formation of finite-temperature AF-
LRO state. We further found that the temperature-dependent
spinon gap at the low-temperature regime obeys the analyti-
cal result of the large-N [SU(N )] Schwinger-boson approach
to the 2D antiferromagnetic Heisenberg in Refs. [32,36],
i.e., λ(T ) − 4�(T ) = (a/T ) exp(−b/T ) where the constants
a, b ∝ JSZc with J being the antiferromagnetic coupling, S
being the effective spin, and Zc being the renormalization
factor of spin-wave velocity [see the black dashed lines in
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FIG. 8. (a) Branch cut of elliptic-K function on the complex
Z plane, indicated as the black solid line. For a pure Heisenberg
model (JK = 0), one has Z = 16|�|2/(λ2 − ν2 − 2iνδ). The three
curves show evolution of Z upon varying frequencies in three
different cases: λ2 >, =,< 16|�|2. (b) The corresponding spinon
spectral function of the 2D Heisenberg model. (c) Spinon gap λ −
4� of the pure Heisenberg model with κ = 0.18 (blue), κ = 0.2
(orange), and κ = 0.22 (green). The black dashed lines represent
fitting to (a/T )exp(−b/T ) with a, b being fitting parameters. No
finite-temperature AF LRO (corresponding to λ − 4|�| = 0) can be
found down to the lowest temperatures. (d) Spinon gaps of the pure
Heisenberg model with κ = 0.2 (orange) and the Kondo-Heisenberg
model |λ + Re
b(ω = 0)| − 4|�| with TK/JH = 0.37 with κ = 0.2
(blue). The black dashed line marks the temperature at which the
2D Kondo-Heisenberg model (with κ = 0.2, TK/JH = 0.37) starts to
form AF LRO, corresponding to the condition |λ + Re
b(i0+)| −
4|�| = 0. Inset of (b): spinon gap of the Kondo-Heisenberg model in
the linear-linear scale. The thick blue line indicates the temperature
range where the spinon gap vanishes.

Fig. 8(c)]. Therefore, our results in the Heisenberg limit obey
the Mermin-Wagner theorem.

However, in the more general case 2D Kondo-Heisenberg
model (JK 
= 0), the AF-LRO state at finite temperatures

FIG. 9. Finite-temperature phase diagram of the 2D Kondo-
Heisenberg model, determined by the value of holon phase shift
δχ/π . The red and blue curves marked as T �

ξ<ξc
and T �

ξ>ξc
are the

characteristic temperatures above which the local magnetic suscepti-
bility shows quantum critical scaling.

indeed violates the Mermin-Wagner theorem within our ap-
proach. This needs further investigations. When considering
the Kondo coupling, the corresponding condition for the for-
mation of AF LRO is modified as |λ + Re
b(i0+)| − 4|�| =
0. This can be deduced by combining

Re

[
16|�|2

γb(ν + i0+)γb(−ν + i0+)∗

]∣∣∣∣
ν=0

� 1 (C1)

with the fact that Im
b(i0+) = 0 [see Eq. (B13)]. Our numer-
ical result shows that the spinon gap |λ + Re
b(i0+)| − 4|�|
indeed vanishes below a particular finite temperature [see
Fig. 8(d)]. We think that it is the Re
b(i0+) term that tends
to cancel the contributions from λ − 4�, making the spinon
dispersion gapless at finite temperatures. We therefore tend
to conclude that the self-energy of Schwinger boson, 
b, is
responsible for the formation of AF LRO, which indirectly
implies that the emergence of AF LRO is primarily due to the
Kondo term [see Fig. 8(d)]. To further check what causes the
cancellation of the spinon gap mentioned above, one of our
coauthors and his collaborators generalized our approach to
include momentum dependence in 
b in the KH model. They
showed that the finite-temperature AF-LRO region disappears
as the spinon gap remains finite at finite temperatures. They
further showed a power-law divergence in staggered magnetic
susceptibility on the AF side, extending to T � TLRO [45].
The above reasons/findings strongly suggest that the vio-
lation of Mermin-Wagner theorem in our finite-temperature
AF-LRO phase when JK 
= 0, JH 
= 0 is likely due to the ne-
glect of momentum dependence in the self-energies. We think
that neglecting the momentum- dependent self-energies may
simultaneously make us neglect the effect of long-wavelength
spin fluctuations of the RKKY interaction induced by Kondo
coupling, which, via the Mermin-Wagner theorem, is respon-
sible for destroying the magnetic order in low-dimensional
systems. This will lead to the formation of AF-LRO state at
finite temperatures as we show in our finite-temperature phase
diagram.
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FIG. 10. Holon and spinon spectral functions for the 2D Kondo-Heisenberg lattice model at different sides of the QCP (TK/JH = 0.629
and TK/JH = 0.7, respectively). The spinon spectral function at TK/JH = 0.629 shows appearance of zero-energy mode at T/JH = 0.015 (red
curve). Both spinon and holon develop gaps at the Kondo side.

Figure 9 shows the full phase diagram in the T/JH ∼
TK/JH plane, determined by the value of holon phase shift
δχ = −Im ln [1 + JK
χ (i0+)]. Note that the conduction elec-
tron phase shift δc (per spin flavor per screening channel)
is related to the holon phase shift via the Ward identity
δc = δχ/N , producing in total an order O(N × K/N ) = O(N )
contribution to free energy (see Ref. [28]). The phase bound-
ary of AF LRO (the black solid curve) is determined by the
condition |λ + Re
b(i0+)| − 4|�| = 0. Figures 10 and 11
show evolution of spinon and holon spectral functions of the
2D Kondo-Heisenberg model on varying temperatures and
TK/JH , respectively. In Figs. 11(a) and 11(b), we observe a
slight shift of the peak position of the holon spectrum −G′′

χ (ω)
as one moves across the QCP [see the black areas in Figs.
11(a) and 11(b)]. Figure 12 shows the imaginary part of the
conduction-electron self-energies, −Im
c(ω), and its spectral
functions, −ImGc(k, ω), calculated at finite−N . In Fig. 12(a),
we find the absence of the Kondo resonance peak at the Fermi
energy, due to an artifact of our approach. Fig. 12(c) reveals
a Fermi surface enlargement as TK/JH is tuned to the Fermi
liquid regime.

APPENDIX D: CONDUCTION ELECTRON T MATRIX

To check the Kondo resonance peak on the paramagnetic
phase, we further calculate the conduction electron T matrix,

defined as

T (ω) = 
c(ω)

1 − Gc0(ω)
c(ω)
. (D1)

We find that the imaginary part of the T matrix at the large-
N level vanishes near the Fermi energy, while it shows a
resonance peak at an energy of the order of the holon gap
(∼TK ). The absence of the Kondo resonance peak at the Fermi
energy is due to the holon and spinon gaps of order TK , and
is an artifact of the Schwinger-boson approach. As is shown
in Ref. [33], including 1/N corrections, e.g., through a fully
self-consistent evaluation results in a gapless T matrix where
the peak position of the resonance is identical to that at the
large-N level. Figure 13 shows the temperature evolution of
the T matrix with the following choice of parameters: N =
10, K = 2, TK/D = 0.082, TK/JH = 0.852. The value at zero
energy appears to saturate at low temperatures and agrees
reasonably well with the Friedel sum rule

−πρ ImT (0 + iη) = sin2 δc, (D2)

where δc = δχ/N = π/N is the electron phase shift at zero
temperature when the impurities are exactly screened. Sim-
ilar results have been obtained for the Schwinger-boson
approach to the infinite-U single-impurity Anderson model
(see Ref. [33]).

FIG. 11. Density plots of (a) holon and (b) spinon spectral functions at T/JH = 0.025 and T/JH = 0.05, respectively.

115133-11



WANG, CHANG, MOU, KIRCHNER, AND CHUNG PHYSICAL REVIEW B 102, 115133 (2020)

FIG. 12. (a), (b) Imaginary part of conduction electron self-energy at TK/D = 0.082, and for different values of TK/JH . (c) Spectral function
of the c electrons, −ImGc(k, ω), and the corresponding Fermi surface, −ImGc(kx, ky, ω = 0). We take N = 10 here. In the upper row of (c),

the spectral functions are plotted along k ≡
√

k2
x + k2

y for kx = ky, in between (kx, ky ) = (0, 0) and (π, π ) of the first Brillouin zone.

APPENDIX E: MAGNETIC SUSCEPTIBILITY

To derive the static magnetic susceptibility, we add the
following source term to the action:

Szee = −
∑
iνα

Hi sgn(α)b∗
iναbiνα, (E1)

where Szee is along the z direction and Hi can be interpreted
as the magnitude of perpendicular magnetic field at site i.
We consider the direction of the sublattice magnetization is
parallel to Szee, thus has the form

Mi = d ln Z

dHi
=

∑
να

sgn(α)b∗
iναbiνα, (E2)

where we have dropped the notations for the orientation of
Mi and Szee throughout this paper. The magnetic susceptibility
χij ≡ dMi/dHj is given by

χij = 〈MiMj〉 − 〈Mi〉〈Mj〉
=

∑
ναν ′α′

sgn(α)sgn(α′)[〈b∗
iναbiναb∗

jν ′α′b jν ′α′ 〉

−〈b∗
iναbiνα〉〈b∗

iν ′α′biν ′α′ 〉]. (E3)

Since we are not considering the LRO phase, Mi vanishes
without external magnetic field. One therefore has

χij =
∑

ν,α;ν ′,α′
sgn(α)sgn(α′){〈b jν ′α′b∗

iνα〉〈biναb∗
jν ′α′ 〉 + 〈b∗

iναb∗
jν ′α′ 〉〈biναb jν ′α′ 〉}

= 1

βN 2
s

∑
p,k,ν,α

[Gb(p, iν)Gb(k, iν) − Fb(p, iν)F̄b(k, iν)]ei(k−p)·(ri−r j ) = χi− j . (E4)

The local susceptibility is defined as

χloc

N
≡ χi− j=0

N
= 1

β

∑
ν

Gb(iν)Gb(iν).

Here the anomalous function has no contribution since∑
p

Fb(p, iν) = 0. However, it contributes to the uniform

susceptibility

χuni

N
≡

∑
i− j

χi− j

N
= 1

βNs

∑
p,ν

[Gb(p, iν)Gb(p, iν)

− Fb(p, iν)F̄b(p, iν)]. (E5)

The momentum sum can be performed using the previous
results (B6) and (B7) as

1

Ns

∑
p

Gb(p, iν)Gb(p, iν)

= γb(−iν)2

16|�|4
1

Ns

∑
p

1

[(sin px + sin py)2 + A]2

= γb(−iν)2

16|�|4
∫ 4

0
dε

ρ(ε)

(ε + A)2

= −γb(−iν)2

16|�|4
∂I1(A)

∂A
(E6)
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FIG. 13. The imaginary part of scattering T matrix T (ω), ob-
tained by solving the self-consistent equations at finite N with the
following choice of parameters: N = 10, K = 2, TK/D = 0.082,
TK/JH = 0.852. The inset shows the region near the Fermi energy,
where the black dot marks the value sin2 (π/N ).

and

1

Ns

∑
p

Fb(p, iν)F̄b(p, iν)

= 1

4|�|2
1

Ns

∑
p

(sin px + sin py)2

[(sin px + sin py)2 + A]2

= 1

4|�|2
∫ 4

0
dε

ερ(ε)

(ε + A)2

= − 1

4|�|2
∂I2(A)

∂A
. (E7)

According to the following identity,

∂

∂z
EK [z] = EE [z] − (1 − z)EK [z]

2z(1 − z)
, (E8)

where EE (z) = ∫ π/2
0

√
1 − z sin2 θ dθ , one has

χuni

N
= 1

πβ

∑
ν

(
γb(iν) − γb(−iν)

4|�|2γb(iν)

EE
[−4

A

]
4 + A

+ γ −1
b (iν) + γ −1

b (−iν)

γb(iν)
EK

[−4

A

])
. (E9)

The results for uniform susceptibility χuni(T ) are shown in
Fig. 14(a). The temperature dependence of uniform suscep-
tibility at ξ = 0.95 is consistent with what one would expect,
i.e., χuni(T ) exhibits a 1/T Curie law at high temperatures [see
Fig. 14(c)] and reaches a saturated value at low temperatures
when the local moments are completely screened. As TK/JH

approaches the QCP, the uniform susceptibility is suppressed
at intermediate temperatures. This is caused by the nonzero
value of RVB mean-field value � in this region.

Here, we give evidences for its critical scaling behaviors
in different regions of the phase diagram. One of the scaling

FIG. 14. (a) Uniform magnetic susceptibility at different values
of ξ = TK/JH . The inverse (b) local and (c) uniform spin suscep-
tibility for TK/JH = 0.95. Both χloc and χuni show 1/T Curie-law
behavior at higher temperatures, as indicated by the red dashed lines.

behaviors is the power-law scaling right above the antifer-
romagnetic LRO boundary, with a characteristic temperature
proportional to the “Néel temperature” of the AF-LRO phase
denoted by T ∗

1 [see Fig. 15(a)]. Another scaling behavior is the
quantum critical scaling in the region above the two crossover
temperatures T �

ξ<ξc
and T �

ξ>ξc
(see the red and blue curves in

Fig. 9) [T �
ξ<ξc

and T �
ξ>ξc

exhibit a power-law behavior with
|ξ − ξc|, see the right panel of Fig. 15(c)]. Figure 15(b) shows
the collapsed data in the quantum critical region, exhibiting
a possible power-law scaling with the exponents α varying
linearly with ξ [see the left panel of Fig. 15(c)].

In addition, we also estimate the behavior of both χloc and
χuni in the AF-LRO phase T � TLRO where the boson con-
densate is developed, i.e., xiα ≡ 〈biνα〉 
= 0. This estimation
is shown below: we start from the general expression of spin
susceptibility of Eq. (E3). For temperatures below the LRO-
AF transition temperature, to include the boson condensate we
need to rewrite a boson operator b as its mean-field condensate
value x plus its fluctuation δb: biνα = xiα + δbiνα . Note that
biνα = δbiνα if there is no condensate. For x 
= 0, the general
expression of spin susceptibility of Eq. (E3) can be proved as

χij =
∑

νν ′αα′
sgn(α)sgn(α′)[〈b jν ′α′b∗

iνα〉c〈biναb∗
jν ′α′ 〉c

+ 〈b∗
iναb∗

jν ′α′ 〉c〈biναb jν ′α′ 〉c], (E10)

where 〈. . . 〉c denotes connected correlation function. In deriv-
ing Eq. (E10), we neglect the three- and four-boson correlators
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FIG. 15. Critical scaling of local susceptibility in (a) the region
above the antiferromagnetic-LRO phase, and (b) the quantum critical
region. Here, T ∗

1 is proportional to the “Néel temperature” of the AF-
LRO phase, T � is the crossover temperature to the quantum critical
region which shows different power-law behavior for ξ > ξc and ξ <

ξc [see Fig. 9 and (c) below], and α is a nonuniversal exponent [see
(c) below]. (c) Right: T �/JH versus |ξ − ξc| for ξ > ξc (blue) and
|ξ − ξc| (red), respectively. Left: α versus ξ .

and use the following identities of the four- and two-boson
correlators:

〈ABCD〉 =〈A〉〈B〉〈C〉〈D〉 + 〈A〉〈BCD〉c + 〈B〉〈ACD〉c

+ 〈C〉〈ABD〉c + 〈D〉〈ABC〉c + 〈AB〉c〈CD〉c

+ 〈AC〉c〈BD〉c + 〈AD〉c〈BC〉c + 〈ABCD〉 (E11)

and

〈AB〉 = 〈A〉〈B〉 + 〈AB〉c

⇒ 〈AB〉c = 〈(A − 〈A〉)(B − 〈B〉)〉 = 〈δAδB〉 (E12)

with A, B, C, D in Eqs. (E11) and (E12) being boson operators
and δA and δB being the fluctuations of A and B. In the ab-
sence of boson condensation 〈A〉 = 〈B〉 = 0, we have 〈AB〉 =
〈AB〉c and Eq. (E10) goes back to Eq. (E4). Via Eq. (E12),
it is easy to see that the spin susceptibility of Eq. (E10) only
explicitly depends on the fluctuations of Schwinger boson.

As Eq. (E10) only depends on fluctuations, it suggests
the spin susceptibility reaches its maxima at the transition
temperature TLRO where the fluctuations of boson prevail. As
temperature is lower than TLRO, the boson fluctuations tend to
be suppressed as the strength of the boson condensate gets
enhanced with decreasing of temperature, giving rise to a
monotonic decrease of spin susceptibility. Eventually, it ap-
proaches the minima at T = 0 where the boson condensation
is completely developed. Alternatively, the vanishing of spin
susceptibility at T = 0 can be simply obtained from Eqs. (11)
and (E3). See Sec. IV C for details. We prove that both χloc

and χuni maximize at T = TLRO and, as the system enters the
LRO phase, start to decrease as the condensation of bosons
becomes more dominant with the decreasing of temperature.
Both the local and uniform spin susceptibilities eventually
vanish as T → 0.

APPENDIX F: ENTROPY

Here, we simplify the expression of entropy, Eq. (8). The
momentum sum in Eq. (8) can be performed as

1

Ns

∑
p

ln
[
det

{−G−1
b (p, ν)

}]

= 1

Ns

∑
p

ln
[
γb(ν)γb(−ν) − 4|�|2ξ 2

p

]

= ln(−4|�|2) + 1

Ns

∑
p

ln
(
ξ 2

p + A
)
, (F1)

and using the density of states defined in Eq. (B7), we have

1

Ns

∑
p

ln
(
ξ 2

p + A
) =

∫ 4

0
dε ρ(ε) ln(ε + A). (F2)

Noticing that

∂

∂A

∫ 4

0
dε ρ(ε) ln [ε + A] =

∫ 4

0
dε

ρ(ε)

ε + A
= 2

πA
EK

[
− 4

A

]
,

(F3)
one can first assume A is real and perform the integration over
A,∫ 4

0
dε ρ(ε) ln [ε + A] = 2

π

∫
dA

A
EK

[
− 4

A

]

= 1

π
G2,2

3,3

(
4

A

∣∣∣∣1/2, 1/2, 1
0, 0, 0

)
+ C. (F4)

Here, G2,2
3,3( 4

A |
1
2 , 1

2 , 1
0, 0, 0

) is the Meijer G function, and C is a con-

stant independent of A. Since lim
A→0

G2,2
3,3( 4

A |
1
2 , 1

2 , 1
0, 0, 0

) = 0, one
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has

C =
∫ 4

0
dε ρ(ε) ln ε = 1

Ns

∑
p

ln[(sin px + sin py)2]

= 1

(2π )2

∫
�

d2 p ln

[
4
(

sin
px + py

2
cos

px − py

2

)2]

= 1

2π2

∫ π

x=−π

∫ π

y=0
ln[4 sin2 x cos2 y] = −2 ln 2. (F5)

The result is then analytically continued to the whole
complex-A plane. The other terms in Eq. (8) are independent
of momentum.

APPENDIX G: FINITE-N CALCULATIONS

In this Appendix, we summarize the results of the
self-consistent Schwinger-Dyson equations for the Kondo-
Heisenberg model with the inclusion of finite N (N = 10, 20)
correction.

Finite-temperature phase diagram. The finite-temperature
phase diagram with finite value of N (N = 10) in terms of
the dimensionless tuning parameter ξ ≡ TK/JH and temper-
ature T/JH is mapped out via the specific-heat coefficient
CV /NT , as shown in Fig. 6 in Sec. V. At zero temperature,
a QCP at ξ = ξc ≈ 0.517, separating the AF-LRO phase at
small ξ and the paramagnetic FL ground state at large ξ is
clearly identified via the low-temperature evolution of various
quantities. The observed phases and features including a AF-
LRO state at ξ < ξc, a heavy Fermi-liquid phase at ξ > ξc,
a Kondo breakdown QCP ξc, and a fan-shaped region in the
finite-temperature regime for finite N are in close resemblance
to the phase diagram of the infinite-N case [see Fig. 1(a)]
except for some quantitative changes such as the position of
the QCP. Furthermore, we found that the first-order-like jump
at the QCP still survives for the finite N , as indicated by
the extrapolation of the solid circles in the finite-temperature
phase diagram.

Magnetic susceptibility. Figures 16(a), 16(b), and
16(c) show the temperature-dependent local (momentum-
integrated) spin susceptibility χloc(T )/N , the critical
scaling of χloc(T )/N in the quantum critical regime, and
the uniform spin susceptibility χuni(T )/N . Regarding the
uniform susceptibility when ξ > ξc, it exhibits a Curie-law
behavior χuni(T )/N ∝ T −1 at high temperatures, where the
local spin moments are unscreened, and then saturates at
low temperatures when the local moments are completely
screened. As ξ approaches the QCP, the χuni is suppressed
at intermediate temperatures. The qualitative features of
the finite-N uniform susceptibility resemble the infinite-N
results closely. The local susceptibility displays a crossover
from a saturated Pauli susceptibility at low temperatures
to a spin-liquid behavior in the intermediate-temperature
range in the Kondo limit ξ > ξc. Above the spin-liquid
region where � > 0, the system shows a 1/T divergence
in the local susceptibility at high temperatures. Within the
finite-temperature quantum critical region, the scaled local
spin susceptibility shows a power-law (T/T ∗)−0.023 quantum
critical scaling in temperature, as shown in the dashed line in
Fig. 16(b).

FIG. 16. (a) Temperature dependence of the local magnetic sus-
ceptibility χloc(T )/N at different values of ξ . (b) Critical scaling of
local susceptibility in the quantum critical regime is plotted in the
logarithmic scale. T ∗ is the crossover temperature to the quantum
critical region. (c) Uniform magnetic susceptibility χuni(T )/N at dif-
ferent values of ξ . (d) Temperature dependence of CV /NT at different
values of ξ . (e) Shows the entropy per spin flavor, S/N , with different
values ξ , for N = ∞ (black), N = 10 (red), and 20 (blue).

Entropy and specific-heat coefficient. The finite-N specific-
heat coefficient and entropy per spin flavor are illustrated in
Figs. 16(d) and 16(e), respectively. The qualitative behav-
ior of the specific coefficient either at ξ > ξc and ξ < ξc

shows a close resemblance to the infinite-N results: a plateau
at low temperatures for ξ > ξc associated with a linear-in-
temperature entropy, i.e., S/N ∝ T , a monotonic shrink of
the range of the plateau as ξ approaches ξc from the Kondo
side, and a “Schottky” peak above the FL region. More-
over, a weakly first-order jump at the QCP from the peak
temperatures (solid circles in Fig. 6) is also observed in the
finite-N results. The collapse of energy scales from both sides
as the QCP is approached is clearly seen in the color map
of the specific-heat coefficient (Fig. 6) with a fan-shaped
quantum critical region. While including finite-N fluctuations,
we found that the residual entropy in Fig. 16(e) still survives
though is slightly decreased. We therefore suspect that this
is more likely due to the local approximation rather than the
neglect of 1/N corrections.
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FIG. 17. The imaginary part of Gχ exhibits ω/T scaling behavior
near the QCP (TK/JH = 0.517) for N = 10 and K = 2. Inset: ImGχ

without being scaled near the QCP.

ω/T scaling. The stability of the infinite-N results against
the finite-N correction is further supported by the ω/T scaling
of the critical fluctuation of the Kondo correlation in Gχ

at the QCP for N = 10, i.e., G′′
χ (ω, T ) = −T −0.535 f (ω/T )

with f (ω/T ) being a universal function (see Fig. 17). Aside
from the quantitative changes in f (ω/T ) and the value of
the critical exponent, the qualitative behavior of f (ω/T ) for
N = 10 is almost identical to the infinite-N case [see
Fig. 3(e)]. Moreover, ω/T scaling of ImGχ strongly suggests
Kondo breakdown to occur at the QCP for the finite-N case.

In summary, we have performed self-consistent calcula-
tions of the Kondo-Heisenberg lattice model with finite values
of N via including 1/N fluctuations. The global phase di-
agram, the ω/T scaling, and various physical observables
we obtained here are in close resemblance to the infinite-N
results except for some minor and quantitative changes. We
thus conclude that the large-N approach we used here is a
well-controlled method by 1/N corrections and the large-N
results are able to correctly describe the qualitative features of
the global phase diagram.
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