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In this paper, a series of ν = 2/5 fractional quantum Hall wave functions are constructed from conformal field
theory(CFT). They share the same topological properties with states constructed by Jain’s composite fermion
approach. Upon exact lowest Landau level (LLL) projection, some of Jain’s composite fermion states would not
survive if constraints on Landau level indices given in the appendices of this paper were not satisfied. By contrast,
states constructed from CFT are always in LLL. These states are characterized by different topological shifts and
multibody relative angular momenta. As a by-product, in the appendices we prove the necessary conditions for
general ν = p/(2p + 1) composite fermion states to have nonvanishing LLL projection.
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I. INTRODUCTION

The strongly correlated electron system has long been a
topic of focus in condensed matter physics, especially the
fractional quantum Hall system of electrons on a 2D sur-
face, at temperature as low as several kelvins and in a high
magnetic field of several teslas. This system exhibits the frac-
tional quantum Hall effect, in which Hall resistance RH is
quantized as h

νe2 in a certain range of magnetic field, with
Planck constant h, electron charge e, and fractional filling
factor ν. The fractional quantum Hall effect, as well as integer
quantum Hall effect in which filling factor ν is an integer, can
be explained by the notion of the Landau level (LL). Under
the above experimental circumstances, energy spectra for a
single electron will form discrete energy levels known as LLs.
Completely filled LLs account for the integer quantum Hall
effect while partially filled LLs with a certain fractional filling
factor ν lead to the fractional quantum Hall effect, where
ν = Ne/N�. Here Ne is the electron number and N� is the
LL degeneracy, which is equal to the number of flux quanta
piercing the system. The most well known fractional quantum
Hall effect is the one with ν = 1/3, where one-third of the
lowest Landau level (LLL) is filled. In the regime of the frac-
tional quantum Hall effect, if we project the full Hamiltonian
of the 2D electron system in a high magnetic field onto LLL,
the single-particle kinetic energy term is quenched while in-
teraction terms remain. Still this Hamiltonian cannot be easily
solved, so physicists resort to trial wave functions, such as
the Laughlin wave function [1] for the filling factor 1/3 and
Jain’s composite fermion wave function for the series with
filling factors p/(2p + 1). Model Hamiltonians can be derived
from these trial wave functions, which are easier to deal with
on analytical grounds than most realistic Hamiltonians. When
projected onto specific LLs of interest, these Hamiltonians
usually assume forms of 1D frustration-free lattice Hamil-
tonians which, in their second-quantized forms, have been
studied thoroughly, and many properties of their zero modes
(zero-energy ground states) have been discovered [2,3]. On

the other hand, trial wave functions for the fractional quantum
Hall effect have been connected to conformal field theory
(CFT). The Laughlin wave function, as an example, can be
cast as the conformal correlator of the massless free boson
in CFT [4,5]. Later on, new wave functions were proposed
from conformal correlators, such as the famous Moore-Read
Pfaffian and Read-Rezayi wave functions, argued to possess
quasiparticle/quasihole excitation obeying non-Abelian any-
onic statistics [6,7]. The justification for the construction of
trial wave functions from CFT is that the boundary theory of
Chern-Simons theory which characterizes the quantum Hall
effect is a CFT [8], and the ground-state wave function can
be viewed as the amplitude of particle configuration in a time
slice of such a (2+1)D system.

It took a few more years for people to realize that Jain’s
composite fermion wave functions, such as that for ν =
2/5, once projected to LLL, is also a conformal correlator
[9,10]. Since Jain’s ν = 2/5 composite fermion wave func-
tion (which is our primary example for Jain states) has two
degrees of freedom associated with the two lowest LLs for
the composite fermion (more details will be presented in
Sec. II), its corresponding conformal correlator is constructed
from two independent massless free bosons. However unlike
the Read-Rezayi sequence which includes the Laughlin and
Moore-Read states, constructing the Jain states involves not
only the primary, but also descendant fields of the corre-
sponding CFT. Since there is a large degree of freedom in
the choice of the latter even when ν is fixed, there should
be a corresponding family of Jain states. Motivated by the
developments and consideration mentioned above, we have
generalized Jain’s ν = 2/5 composite fermion wave function
to cases in which the composite fermions occupy higher LLs,
while the lower one(s) may be empty. Since LLL projec-
tion is performed, they represent distinct yet legitimate LLL
states at the same filling factor. As we are going to show,
they correspond to different choices of descendant fields in
the CFT construction. Upon LLL projection, some of com-
posite fermion wave functions will vanish. Nonetheless, the
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corresponding conformal correlators, which are holomorphic
and thus reside in the LLL by construction, are nonvanish-
ing. Most importantly, we find that while these families of
Jain states share the same K matrix with the original one
constructed by Jain, many of them have different topological
shifts and other properties.

The structure of this paper is as follows: In Sec. II we
introduce Jain’s composite fermion approach and trial wave
functions in this approach, known as composite fermion wave
functions. In Sec. III, we introduce the conformal field theo-
retical construction of composite fermion wave functions. In
Sec. IV, we propose a series of fractional quantum Hall trial
wave functions of filling factor 2/5 constructed from CFT
correlators and discuss their connections with general LLL-
projected composite fermion wave functions. In Secs. V and
VI, we characterize them by two criteria: one is topological
shift and the other is multibody relative angular momentum. In
Sec. VII, we discuss two interesting states found in the process
of studying parent Hamiltonians in the form of projection
operators. One of them has filling factor ν = 3/7; the other
has ν very close to 1/2 for a finite number of particles. In
the appendices, we give the necessary conditions for a general
composite fermion state to have nonvanishing LLL projection.

II. COMPOSITE FERMION APPROACH TO FRACTIONAL
QUANTUM HALL EFFECT

The p/(2p + 1) series can be explained in a systematic way
in the framework of composite fermion (CF) theory [11]. In
this theory, two flux quanta of the magnetic field are attached
to each electron. The composite of an electron and two flux
quanta, named the composite fermion, experiences an effec-
tive magnetic field B∗ = B − 2n�0 as opposed to the actual
magnetic field B, where n is the average electron density and
�0 is the elementary flux quantum. In this composite fermion
approach, the fractional quantum Hall effect of electrons at
filling factor ν = p/(2p + 1) with integer p is mapped to the
integer quantum Hall effect of composite fermions at filling
factor ν = p. From this approach trial wave functions can be
inferred, such as the wave function of the LLL-projected Jain
composite fermion state with filling factor ν = 2/5 on a disk
[12],

PLLL

∏
i< j

(zi − z j )
2�2, (1)

where z = x + i y is the complex coordinate on the disk, PLLL

projects the wave function onto the lowest Landau level, and
�2 is the N-particle wave function at filling factor ν = 2; i.e.,
two Landau levels (LLs) are filled. The Laughlin-Jastrow fac-
tor

∏
i< j (zi − z j )2 has the effect of attaching two flux quanta

to each electron. The explicit form of �2 is

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ηn1,m1 (z1) . . . ηn1,m1 (zN )
...

. . .
...

ηn1,m N
2

(z1) . . . ηn1,m N
2

(zN )

ηn2,m N
2 +1

(z1) . . . ηn2,m N
2 +1

(zN )
...

. . .
...

ηn2,mN (z1) . . . ηn2,mN (zN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2)

in which ηn,m(z) is the single-particle wave function of angular
momentum mh̄ in the nth Landau level on the disk found by
choosing a symmetric gauge for the magnetic field B = −Bẑ.
The expression of ηn,m(z) is [13]

ηn,m(r) = (−1)n
√

n!√
2π2m(n + m)!

zmLm
n

( z̄z

2

)
e− z̄z

4 , (3)

in which the magnetic length lB = √
h̄/eB has been set to 1

and Lm
n (x) is the generalized Laguerre polynomial,

Lm
n (x) =

n∑
i=0

(−1)i

(
n + m

n − i

)
xi

i!
. (4)

Note that the maximum power of z̄ in ηn,m(r) is n, which will
be used in the following sections. For example, single-particle
wave functions in 0LL, 1LL (the first excited Landau level),
and 2LL (the second excited Landau level) are

η0,m(z) = zme−|z|2/4

√
2π2mm!

, (5)

η1,m(z) = [z̄zm+1 − 2(m + 1)zm]e−|z|2/4√
2π2m+2(m + 1)!

, (6)

and

η2,m(z)

= e−|z|2/4 [z̄2zm+2−4(m + 2)z̄zm+1 + 4(m + 2)(m + 1)zm]√
2π2m+5(m + 2)!

.

(7)

Besides the Gaussian factor, the single-particle wave function
in 0LL is analytic in z, while that in 1LL and 2LL has z̄ and
z̄2, respectively.

For �2 in Eq. (1), Jain chose two filled LLs as LLL and
1LL. The LLL projection PLLL is technically accomplished
in the following way [13]: we bring all the antiholomor-
phic coordinates z̄i to the leftmost of the wave function, and
then replace them individually with 2∂zi , where the derivative
only acts on the polynomial part of the wave function. In
Appendix C, we have also given a closed form for the
LLL-projected composite fermion wave function using an
alternative approach.

III. CFT CONSTRUCTION OF FRACTIONAL QUANTUM
HALL WAVE FUNCTION

The wave function of the LLL-projected Jain composite
fermion state of an even number of particles in Eq. (1) can
be written as a conformal correlator in CFT [9,10,14,15]. In
the framework of CFT, we introduce two independent free
massless bosonic fields φ1(z) and φ2(z) compactified on two
circles of radii

√
3 and

√
15, respectively. Their conformal

correlator satisfies 〈φi(z)φ j (w)〉 = −δi, j ln(z − w). Then we
introduce two vertex operators,

V0(z) =: ei
√

3φ1(z) : (8)

and

V1(z) =: ∂z
(
ei
√

4
3 φ1(z)ei

√
5
3 φ2(z)

)
:, (9)
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where : : means normal ordering. Here V0(z) is a pri-
mary field and V1(z) is a descendant of the primary field

: ei
√

4
3 φ1(z)ei

√
5
3 φ2(z) :. It is easy to see that these two ver-

tex operators represent two species of independent electron
operators since [V0(z),V1(w)] = 0, {V0(z),V0(w)} = 0 and
{V1(z),V1(w)} = 0 hold [9,10]. We can define the charge op-
erator as

Q = 1

2π i

∮
dzJ (z), (10)

in which the U (1) current is defined as

J (z) = i√
3
∂zφ1(z) + i√

15
∂zφ2(z). (11)

Then it is trivial to see that

[Q,Vj (z)] = Vj (z) (12)

for j = 0, 1. Thus both V0(z) and V1(z) have the correct elec-
tric charge 1 in units of electron charge e. The wave function
of the LLL-projected Jain state can be written as a conformal
correlator,

A{〈V1(z1)V1(z2) · · ·V1(z N
2

)V0(z N
2 +1)V0(z N

2 +2) · · ·V0(zN )〉}. (13)

That is, half of the electrons are represented by V0 and the remaining half are represented by V1. This correlator leads to

A

⎧⎨
⎩∂z1∂z2 · · · ∂z N

2

∏
i< j� N

2

(zi − z j )
3

∏
N
2 <k<l

(zk − zl )
3

∏
m� N

2 <n

(zm − zn)2

⎫⎬
⎭ (14)

by using the formula [16]

〈: eiα1φ(z1 ) :: eiα2φ(z2 ) : · · · : eiαN φ(zN ) :〉 =
∏
i< j

(zi − z j )
αiα j . (15)

For simplicity, in the correlator we have neglected the back-
ground charge term [6,10] which accounts for the Gaussian
factor. It has been proved [9,10] that the LLL-projected wave
function prescribed by Jain’s composite fermion approach in
Eq. (1), which is constructed from the filled LLL and 1LL, is
exactly equal to that given by the CFT correlator in Eq. (14)
up to a constant. Since the LLL single-particle wave function
has no z̄ and the 1LL single-particle wave function has z̄ to the
power of 1, which is just 2∂z in the process of LLL projection
[13], we can attribute the vertex operator V0 to LLL and V1

to 1LL since V0 contains no derivative and the power of the
derivative in V1 is 1.

IV. GENERAL CONSTRUCTION OF VERTEX OPERATOR
FOR COMPOSITE FERMIONS

As we stated in Sec. II, Jain has chosen two filled compos-
ite fermion LLs as LLL and 1LL. This raises an interesting

question: can we choose composite fermions to fill other Lan-
dau levels and obtain a new state at the same filling factor
2/5, which can still be projected to LLL? Motivated by this
question and the connection of CFT vertex operators to com-
posite fermion LLs, we can generally introduce two species
of vertex operators for the n1th and n2th composite fermion
LLs (without loss of generality, we can let 0 � n1 < n2) com-
pactified on two circles of radii

√
3 and

√
15, respectively, by

taking into account the power of z̄ in the single-particle wave
functions of the n1th and n2th LL,

Vn1 (z) =: ∂n1
z ei

√
3φ1(z) : (16)

and

Vn2 (z) =: ∂n2
z (ei

√
4
3 φ1(z)ei

√
5
3 φ2(z) ) : . (17)

It is easy to demonstrate that they still represent two indepen-
dent fermionic operators and their individual electric charge
is still 1.

Therefore we can construct a conformal correlator,

A
{〈

Vn2 (z1)Vn2 (z2) · · ·Vn2 (z N
2

)Vn1 (z N
2 +1)Vn1 (z N

2 +2) · · ·Vn1 (zN )
〉}

, (18)

which is simplified as

A

⎧⎨
⎩∂n2

z1
∂n2

z2
· · · ∂n2

z N
2

∂n1
z N

2 +1
∂n1

z N
2 +2

· · · ∂n1
zN

∏
i< j� N

2

(zi − z j )
3

∏
N
2 <k<l

(zk − zl )
3

∏
m� N

2 <n

(zm − zn)2

⎫⎬
⎭. (19)

An interesting question can be raised as to whether the state
in Eq. (19) of general choices of n1 and n2 is equal to the
LLL-projected Jain composite fermion state constructed from

the filled n1th and n2th LLs. The answer is negative unless
n1 = 0, n2 = 1. Explicitly, the LLL-projected Jain composite
fermion state on a disk constructed from the filled n1th and
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non-vanishing CFT
wave functions 

vanish if n1 and n2 do not 
satisfy constraints derived 
in appendices

The same properties
are shared when two
have the same n1 and
n2.

ν=
2

5
 unprojected

CFT wave functions

ν=
2

5
 Jain CF

wave functions

LLL projectionLLL projection

FIG. 1. The relation between wave functions obtained from Jain’s composite fermion (CF) theory and conformal field theory (CFT).

n2th LLs has the wave function

PLLL

∏
1�i< j�N

(zi − z j )
2

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

ηn1,−n1 (z1) . . . ηn1,−n1 (zN )
...

. . .
...

ηn1,
N
2 −n1−1(z1) . . . ηn1,

N
2 −n1−1(zN )

ηn2,−n2 (z1) . . . ηn2,−n2 (zN )
...

. . .
...

ηn2,
N
2 −n2−1(z1) . . . ηn2,

N
2 −n2−1(zN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (20)

as in Eq. (C1). On the other hand, the wave function con-
structed from CFT in Eq. (19) can be shown to be equal to

PLLL�CFT, (21)

where

�CFT =
∏

1�i< j�N

(zi − z j )
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z̄n1
1 . . . z̄n1

N
...

. . .
...

z̄n1
1 z

N
2 −1

1 . . . z̄n1
N z

N
2 −1

N

z̄n2
1 . . . z̄n2

N
...

. . .
...

z̄n2
1 z

N
2 −1

1 . . . z̄n2
N z

N
2 −1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(22)

up to a constant. We term this �CFT the unprojected CFT
wave functions. The only difference between the two wave
functions in Eqs. (20) and (21) is that in contrast to the
former, the latter only keeps z̄nzn+m in each ηn,m(z), where
we omit the Gaussian factor for simplicity. In Appendix C,
we have proved that there are some choices of n1 and n2

for which Jain’s ν = 2/5 composite fermion state has van-
ishing LLL projection if the constraints in Eq. (C7) are not
satisfied. By contrast, the CFT wave function in Eq. (19) is
nonvanishing for general n1 and n2. Therefore, although some
of the LLL-projected composite fermion states in Eq. (20)
vanish, we can still construct nonvanishing wave functions
by CFT from the same filled composite fermion LLs n1 and
n2. Moreover, it is easy to see that before LLL projection, the
unprojected Jain composite fermion state in Eq. (20) has the
same root patterns as those of the corresponding unprojected
CFT state in Eq. (22) (see Appendix A for the definition of

the root pattern). This strongly suggests that they have the
same topological feature. As will be seen in Sec. V, they
have the same topological shift if they have the same n1 and
n2, since the topological shift is dictated by the root pattern.
We thus term the wave function given by CFT in Eq. (19) as
the Jain n1n2 wave function. We can safely do so since wave
functions constructed from CFT correlators are described by
the same Chern-Simons field theory which characterizes the
ν = 2/5 composite fermion states. The justification for this
follows Ref. [10]: From the CFT Lagrangian characteriz-
ing wave functions in Eq. (19), we can change the basis
from massless free boson fields φ1 and φ2 to χ1 = φ2

√
3/5

and χ2 = φ1/
√

3 − φ2
√

4/15 such that the two independent
quasihole operators of charge 1/5 are eiχ1 and eiχ2 . It is easy
to check that [Q, eiχ1 ] = 1

5 eiχ1 and [Q, eiχ2 ] = 1
5 eiχ2 . After this

change of basis, we arrive at the Chern-Simons Lagrangian
characterizing the ν = 2/5 state with the K matrix (3 2

2 3)
and charge vector t = (1, 1). Note that Jain’s 2/5 composite
fermion states in Chern-Simons field theory, regardless of
which two composite fermion LLs are filled, are characterized
by the same K matrix (3 2

2 3) and charge vector (1,1) [17].
Now we can safely argue that although the LLL-projected Jain
states might vanish, we still have wave functions completely
in LLL constructed from CFT, which capture the same im-
portant features such as filling factor 2/5, fractional charge
1/5 for quasiholes, and Abelian exchange statistics for the
quasihole manifold of corresponding Jain states since these
features are dictated by Chern-Simons field theory. In fact, by
using Eq. (6.65) in Ref. [18], we find that exchanging two
quasiholes both of type eiχ1 or both of type eiχ2 induces a
phase factor ei3π/5 while exchanging one quasihole of type eiχ1

and another one of type eiχ2 induces a phase factor e−i2π/5. We
summarize the relation between the wave functions obtained
from these two approaches in Fig. 1.

V. TOPOLOGICAL SHIFT

We have obtained a series of Jain n1n2 wave functions in
Eq. (19). Now the question is how to distinguish one from
another among them. We will resort to a number called the
topological shift which can differentiate one topological state
from another. We can place the quantum Hall system on any
2D surface such as a disk or the surface of a sphere. On
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the surface of a sphere, the number of magnetic flux quanta
piercing the sphere N� is related to the electron number Ne by
the following identity:

N� = 1

ν
Ne − S, (23)

where ν is the filling factor and S is the topological shift
characterizing the state.

The topological shift has a measurable effect: it is related
to the Hall viscosity η(A) by the relation [19,20]

η(A) = 1
4Snh̄, (24)

where n is the average electron density. The topological shift
can be verified by experiments in which the Hall viscosity
is measured. Recently experimental protocols for such mea-
surements have been proposed [21–25]. Also noteworthy is
the finding that interfaces separating states with different Hall
viscosities carry electric dipole moments, which can have
important physics consequences [26].

Topological shift can be easily read off from the root
pattern of the wave function of the state on the sphere. For
example, consider the case in which only the nth LL is com-
pletely filled, where n can be any non-negative integer. Its root
pattern is 1n1n1n . . . 1n, where 1 denotes an occupied orbital.
The angular momentum of the nth LL on the sphere is N�/2 +
n. Hence the minimum and maximum angular momenta of
occupied orbitals in the root pattern are −(N�/2 + n) and
(N�/2 + n), respectively. Therefore, we have

Ne = 2(N�/2 + n) + 1. (25)

We thus get the shift 2n + 1 for the completely filled nth LL
with n = 0, 1, 2, . . ..

Another example is the 1/3 Laughlin state in LLL, whose
root pattern is 100100100...1, in which 0 stands for the
unoccupied orbital and we have neglected LL indices for
simplicity. The minimum and maximum angular momenta in
LLL on the sphere are −N�/2 and N�/2, respectively. We
have

N�/2 − (−N�/2) = 3(Ne − 1). (26)

Thus the topological shift is 3 for the 1/3 Laughlin state in
LLL.

For states constructed from CFT, the boundary terms in
their root patterns are more and more complicated as n1 and n2

increase. Their shifts are derived in the following way. Since
Jain’s composite fermion state constructed from Landau levels
n1 and n2 has the same root pattern as that of the correspond-
ing CFT state [this fact can be easily deduced from Eq. (20)

and Eq. (21)], the topological shift is the same for both states
as long as they have the same n1 and n2. So we can use the
explicit form of Jain’s composite fermion wave function to
calculate the topological shift for the state constructed from
CFT. It is known that the monopole charge Q of the ν = 2/5
composite fermion state is related to the monopole charge Q∗
of the ν = 2 integer quantum Hall state by the identity [13]
Q = Q∗ + N − 1, where N is the particle number [see also
Eq. (D13)]. Since we have the n1th and n2th LLs filled, the
particle number is

N = 2(Q∗ + n1) + 1 + 2(Q∗ + n2) + 1. (27)

The number of magnetic flux quanta is

N� = 2Q = 2(Q∗ + N − 1) = 5
2 N − (n1 + n2 + 3). (28)

Hence the topological shift is n1 + n2 + 3 for the ν = 2/5
Jain n1n2 state constructed from CFT. Now a confusion arises
that two Jain n1n2 states of the same n1 + n2 have the same
topological shift. A single topological number such as shift
is insufficient to differentiate two topologically distinct states;
we thus must resort to other topological numbers as well.

VI. MULTIBODY RELATIVE ANGULAR MOMENTUM

Quantum Hall states are also characterized by a set of num-
bers {Sn} named the pattern of zeros (PZ) [27,28]. These Sn

are the minimum n-body relative angular momentum (unit of
angular momentum is chosen as h̄) of a specific quantum Hall
state. To obtain Sn, we let zi with i = 2, . . . , n approach z1 in
the polynomial part of the wave function �(z1, z2, . . . , zN ) of
the concerned quantum Hall state and then collect the power
of λ in the leading term,

�(z1, z2 = z1 + λη2, . . . , zn = z1 + ληn, zn+1, . . . , zN )

= λSn f (z1, η2, . . . , ηn, zn+1, . . . , zN ) + O(λSn+1).

(29)

Sn of various Jain states are tabulated in Table I.
From PZ we may obtain projectors for which a specific

Jain n1n2 state is a zero-energy ground state, although not the
unique zero-energy ground state in its own sector. For exam-
ple, the minimum three-body relative angular momentum S3

of the Jain 01 state is 5, so the Jain 01 state is a zero-energy
ground state of a three-body operator P(3)

3 which projects on
the three-body antisymmetric state of relative angular mo-
mentum 3 [29]. However, the Jain 01 state is not the unique
zero-energy ground state of P(3)

3 in its own sector. In fact,
the densest zero-energy ground state of P(3)

3 is the Pfaffian
state [6,30] with filling factor ν = 1/2, which has root pattern

TABLE I. The pattern of zeros of various Jain states. In constructing these states, we let the number of composite fermions in each of two
composite fermion LLs be equal. Here we list Sn from n = 2 to 8 as these are sufficient to distinguish one state from another.

S2 S3 S4 S5 S6 S7 S8 ...

Jain 01 1 5 12 21 33 47 64
Jain 02 1 3 9 18 29 43 59
Jain 12 1 3 8 16 27 40 56
Jain 03 1 3 6 14 25 38 54
Jain 13 1 3 6 13 23 36 51
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110011001100.... The minimum four-body relative angular
momentum S4 of the Jain 01 state is 12, so the Jain 01 state
is also a zero-energy ground state of four-body projection
operators P(6)

4 , P(8)
4 , P(9)

4 , P(10)
4 , and P(11)

4 which project on
four-body antisymmetric states of relative angular momentum
6, 8, 9, 10, and 11, respectively [31]. If we choose the Hamil-
tonian as a linear combination of P(3)

3 , P(10)
4 , and P(11)

4 with
positive coefficients (this results from the fact that Pfaffian
state, being the densest zero-energy ground state of P(3)

3 , has
minimum four-body relative angular momentum 10; thus the
Pfaffian state is automatically annihilated by P(6)

4 , P(8)
4 , and

P(9)
4 ), again the Jain 01 state is not the unique zero-energy

ground state in its sector. As a by-product, we have found the
densest zero-energy ground state of the above Hamiltonian to
have filling factor ν = 3/7, which is larger than 2/5. Detailed
discussion on this ν = 3/7 state will be given in the next
section.

Similarly, the Jain 02 state is a zero-energy ground state
of P(6)

4 and P(8)
4 , although not the unique zero-energy ground

state in its sector. We have chosen a linear combination of P(6)
4

and P(8)
4 with positive coefficients as our parent Hamiltonian

and diagonalized it for up to 10 particles on the disk. The
densest zero-energy ground state of this Hamiltonian is found
to be denser than the Jain 02 state. We will also discuss this in
the next section.

Likewise, the Jain 12 state is a zero-energy ground state of
P(6)

4 , although not the unique zero-energy ground state in its
sector. In fact, the unique densest zero-energy ground state of
P(6)

4 is the Read-Rezayi Z3 state [7] with ν = 3/5.
Similar arguments can be made about other Jain n1n2 states

as well. We conjecture that it is impossible to find parent
Hamiltonians for which a Jain n1n2 state is the densest zero-
energy ground state. This has been discussed in Refs. [3,32]
for the Jain 01 state, which is exactly equal to the LLL-
projected Jain CF state constructed from CF 0LL and 1LL.
In Ref. [3], it is argued that an exact parent Hamiltonian
which can give correct edge mode counting for the Jain 01
state is nonexistent due to the reduced degree of freedom
in Landau levels after LLL projection. It has been conjec-
tured in Ref. [32] that the impossibility of finding the exact
parent Hamiltonian could be related to descendant fields in
the CFT correlator. Indeed, introducing descendant fields as
in Eqs. (16) and (17) consequently introduces derivatives to
the wave function; thus the wave function does not have the
property of heredity when the particle number of the system
increases by 1. Below we introduce the notion of heredity. In
our previous work on the Laughlin state and unprojected Jain
ν = 2/5 state [33,34], each of which is the unique densest
zero-energy ground state of a parent Hamiltonian, it is found
that the recursive formula in particle number N for the densest
zero-energy ground state of the parent Hamiltonian is of the
following form,

|ψN+1〉 ∝
∑

m

c†
n,mGrmax−m|ψN 〉. (30)

Here rmax is the maximum occupied orbital in |ψN+1〉 and
Grmax−m is some zero-mode generator which gives a new zero
mode when acting on an existing zero mode if rmax > m. If
rmax = m, G0 is defined as the identity operator. Grmax−m is

automatically set to 0 if rmax < m. Therefore, |ψN+1〉 contains
terms proportional to c†

n,rmax
|ψN 〉. We term this property of the

wave function the heredity when the particle number of the
system increases. Due to the existence of derivatives in their
wave function, all Jain n1n2 states do not possess the property
of heredity. Using the method of contradiction, the parent
Hamiltonians for these states do not exist. Otherwise, they
would have a recursive formula following the same logic as
in Refs. [33,34] and thus would have the property of heredity.

VII. THE DENSEST ZERO-ENERGY GROUND STATES
OF CERTAIN PROJECTION OPERATORS

In the previous section, we have searched for the parent
Hamiltonians of various Jain n1n2 states, based on their min-
imum multibody relative angular momenta or PZ. We find
that although general Jain n1n2 states are zero-energy ground
states of certain projection operators, they are not the densest
ones. In studying parent Hamiltonians in the form of projec-
tors, we have found two interesting states which are worth
discussing here.

We haven chosen the Hamiltonian as a linear combination
of P(3)

3 , P(10)
4 , and P(11)

4 with positive coefficients and diag-
onalized it for up to 7 particles on the disk and found one
densest zero-energy ground state at particle number 5 and 6.
The root pattern of this state is 11001001100100..., which has
repetitions of 1100100. For particle number 4 and 7, there is
an extra independent zero-energy ground state in each case,
with root pattern 1100011 and 11001001100011, respectively.
For the above mentioned ν = 3/7 state with root pattern
11001001100100..., we have found its wave function on the
disk to have the following form (Gaussian factor omitted),

ψν= 3
7

= ψb

∏
i< j

(zi − z j ), (31)

where ψb is a bosonic wave function in which every three
particles form a cluster. Its explicit form is given in the
following way. First we divide particles into clusters, with
each cluster having three particles. We then choose any two
clusters, whose particle coordinates are z3i+1, z3i+2, z3i+3 and
z3 j+1, z3 j+2, z3 j+3, respectively. We assign to these two clus-
ters an intercluster wave function

(z3i+1 − z3 j+1)2(z3i+1 − z3 j+2)(z3i+1 − z3 j+3),

(z3i+2 − z3 j+1)(z3i+2 − z3 j+2)2(z3i+2 − z3 j+3),

(z3i+3 − z3 j+1)(z3i+3 − z3 j+2)(z3i+3 − z3 j+3)2. (32)

To the cluster of particle coordinates z3i+1, z3i+2, and z3i+3, we
assign an intracluster wave function (z3i+2 − z3i+3)2. Finally,
we symmetrize the product of all intercluster and intracluster
wave functions to obtain the bosonic wave function ψb. The
pairings of the intracluster and intercluster parts of the wave
function for two general clusters are shown in Fig. 2. It is easy
to verify that ψν= 3

7
has a minimum 3-body relative angular

momentum S3 = 5 and minimum 4-body relative angular mo-
mentum S4 = 12; thus it is indeed a zero-energy ground state
of P(3)

3 , P(10)
4 , and P(11)

4 . We note that this 3/7 state is distinct
from the S3 state [35] and the Jain state at the same filling
factor ν = 3/7: both the S3 state and Jain state have integer
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3j+33j+23j+1

3i+3

z z z

zz

cluster j

cluster i

z3i+1 3i+2

FIG. 2. The pairings of the intracluster and intercluster parts of
the wave function ψb in Eq. (31) for clusters i and j. Red dots
denote particles and black dots represent clusters other than i and
j. Particles connected by one line contribute their relative coordinate
to the power of 1 to the wave function while particles connected by
two lines contribute their relative coordinate to the power of 2 to the
wave function.

topological shift while this 3/7 state has fractional topological
shift [36].

We have also chosen a linear combination of P(6)
4 and

P(8)
4 with positive coefficients as our parent Hamiltonian and

diagonalized it for up to 10 particles on disk. We find a
unique densest zero-energy ground state for 4, 5, 6, 8, and
10 particles, respectively [37]. For 7 particles, there are two
densest zero-energy ground states with the same angular mo-
mentum. For 9 particles, there are three densest zero-energy
ground states with the same angular momentum. The unique
densest state has root pattern 111000110100110011, whose
filling factor is very close to 1/2 for a finite number of
particles as seen from the root pattern. This state has min-
imum 4-body relative angular momentum S4 = 9; thus it is
indeed a zero-energy ground state of P(6)

4 and P(8)
4 . Note that

the Pfaffian state is a candidate for the zero-energy ground
state of this parent Hamiltonian [38]. If the state with root
pattern 111000110100110011 remains gapped and possesses
ν = 1/2 in the thermodynamic limit, it would be of interest
to study its properties, obtain the close form for its first-
quantized wave function, and compare it with other ν = 1/2
states such as the Pfaffian, anti-Pfaffian [39,40], and PH-
Pfaffian [41–43].

VIII. CONCLUSION AND DISCUSSION

In this paper, we have constructed a series of ν = 2/5
fractional quantum Hall trial wave functions from CFT, and
discovered their one-to-one correspondence with Jain’s com-
posite fermion wave functions constructed using different
composite fermion Landau levels (LLs). The forms of CFT
wave functions are simpler than those of composite fermion
wave functions as seen in Eqs. (20) and (22), yet the former
and the latter have the same topological properties as long as
they are constructed from the same two composite fermion
LLs. Among ν = 2/5 CFT wave functions, those correspond-
ing to different composite fermion LLs are characterized by

topological shifts and multibody relative angular momenta.
One thing we need to pay special attention to is that filling
factors of all these CFT wave functions are not exactly 2/5
for a finite number of particles. In fact, their filling factors
deviate from 2/5 for a finite number of particles and approach
2/5 only in the thermodynamic limit. Furthermore, their exact
forms are difficult to deal with for large numbers of parti-
cles due to the action of taking derivatives and subsequent
antisymmetrization. As a result, it is not easy to calculate
their excitation energies over the ground state in their indi-
vidual sector. A possible way to circumvent this difficulty is
to approximate CFT wave functions from Eq. (22) via Jain’s
approximate projection [44,45]. Thus we leave the task of
calculating their energies over the Coulomb ground state to
future work.

In the process of trying to find parent Hamiltonians for
these CFT wave functions, we have discovered two interest-
ing states. One is a ν = 3/7 state as the densest zero-energy
ground state of P(3)

3 , P(10)
4 , and P(11)

4 . Its first-quantized wave
function given in Eq. (31) involves clusters of three particles,
but the way it goes to zero when several particles come to-
gether is obviously distinct from that for the Read-Rezayi Z3

state. It will be of interest to study its CFT nature in the future.
The other one is the unique densest zero-energy ground state
of P(6)

4 and P(8)
4 , for which we only get the second-quantized

wave function for up to 10 particles. This state has root pattern
111000110100110011, with a filling factor close to 1/2 for
a finite number of particles. It is worth studying whether its
filling factor is 1/2 in the thermodynamic limit. If so, it would
be useful to study its gap and compare this state with other
ν = 1/2 candidate states.
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APPENDIX A: ROOT PATTERN

We can always expand many-body quantum Hall wave
functions in terms of Slater determinants of simultaneous
single-particle eigenstates of a one-body Hamiltonian and a
one-body operator reflecting the symmetry of the geometry
in which the quantum Hall system resides (for example, on
the disk this operator is the single-particle angular momentum
operator),

|ψ〉 =
∑
{n}

C{n}|{n}〉, (A1)

where |{n}〉 is such a Slater determinant. This Slater deter-
minant is labeled by patterns such as 1n0 01n1 1n2 0 . . ., where
1 denotes an occupied orbital and 0 denotes an unoccupied
orbital. The subscripts n0, n1 . . . are LL indices of occupied
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orbitals. Of all patterns resulting from such a Slater deter-
minant expansion, there is a special one known as the root
pattern in the sense that all patterns other than the root pattern
can be obtained from the root pattern via inward squeezing
[2,3]. Inward squeezing involves inward pair hoppings of two
particles while conserving center of mass of orbitals of these
two particles. For example, 01n1 1n2 0 can be obtained from
1n3 001n4 via inward squeezing. Note that inward squeezing

can change LL indices of occupied orbitals. Another example
is the Slater determinant expansion of the ν = 1/3 Laughlin
state of 3 particles [46] on the disk. Since this state resides
entirely in LLL, we omit LL indices below for simplicity.
Patterns of Slater determinants in the expansion are 1001001,
0110001, 1000110, 0101010, and 0011100. Here 1001001 is
the root pattern while all other patterns can be obtained from
it via inward squeezing.

APPENDIX B: THREE-BODY AND FOUR-BODY RELATIVE ANGULAR MOMENTUM PROJECTORS ON DISK

The first-quantized three-particle states of general relative angular momentum are given in Ref. [47]. Here we give the explicit
second-quantized form of operators which project onto a three-body state of relative angular momentum 3 in LLL on the disk,

P(3)
3 =

∑
3R−3∈N

Q(3)†
R Q(3)

R , (B1)

with

Q(3)
R =

∑
i1 < i2 < i3

i1 + i2 + i3 = 3R

(i1 − i2)(i1 − i3)(i2 − i3)

√
(3R − 3)!

i1!i2!i3!
c0,i3 c0,i2 c0,i1 . (B2)

R is the center-of-mass angular momentum and c0,i is a fermionic operator which annihilates a fermion of angular momentum i
in LLL. Following the way in Ref. [47], we can also easily derive the second-quantized form of operators, each of which projects
onto the four-body state in LLL on a disk of relative angular momentum 6, 8, 9, 10, and 11, respectively,

P(6)
4 =

∑
4R−6∈N

S(6)†
R S(6)

R , (B3)

with

S(6)
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 6)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 ; (B4)

P(8)
4 =

∑
4R−8∈N

S(8)†
R S(8)

R , (B5)

with

S(8)
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

f8(i1, i2, i3, i4)(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 8)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 ; (B6)

P(9)
4 =

∑
4R−9∈N

S(9)†
R S(9)

R , (B7)

with

S(9)
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

f9(i1, i2, i3, i4)(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 9)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 ; (B8)

P(10)
4 =

∑
4R−10∈N

S(10)†
R S(10)

R , (B9)

with

S(10)
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

f10(i1, i2, i3, i4)(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 10)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 ; (B10)

P(10)′
4 =

∑
4R−10∈N

S(10)′†
R S(10)′

R , (B11)
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with

S(10)′
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

f ′
10(i1, i2, i3, i4)(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 10)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 ;

(B12)

and

P(11)
4 =

∑
4R−11∈N

S(11)†
R S(11)

R , (B13)

with

S(11)
R =

∑
i1 < i2 < i3 < i4

i1 + i2 + i3 + i4 = 4R

f11(i1, i2, i3, i4)(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)

√
(4R − 11)!

i1!i2!i3!i4!
c0,i4 c0,i3 c0,i2 c0,i1 . (B14)

Coefficients f8(i1, i2, i3, i4), f9(i1, i2, i3, i4), f10(i1, i2, i3, i4), f ′
10(i1, i2, i3, i4), and f11(i1, i2, i3, i4) can be expressed in terms of

elementary symmetric polynomials in i1, i2, i3, and i4:

f8 = 3e2
1 − 8e2 − 15e1 + 70, (B15a)

f9 = e3
1 − 4e2e1 + 8e3 − 9e2

1 + 24e2 + 30e1 − 120, (B15b)

f10 = 3e4
1 − 16e2e2

1 + 20e2
2 + 4e3e1 − 16e4 − 42e3

1 + 128e2e1 − 96e3 + 321e2
1 − 656e2 − 1030e1 + 2924, (B15c)

f ′
10 = 3e4

1 − 16e2e2
1 + 16e2

2 + 16e3e1 − 64e4 − 42e3
1 + 144e2e1 − 192e3 + 285e2

1 − 640e2 − 870e1 + 2656, (B15d)

f11 = 3e5
1 − 20e2e3

1 + 24e3e2
1 + 32e2

2e1 − 64e2e3 − 60e4
1 + 292e2e2

1 − 256e2
2 − 232e3e1 + 256e4 + 553e3

1 − 1792e2e1

+ 1904e3 − 2940e2
1 + 6160e2 + 7980e1 − 20944, (B15e)

where four elementary symmetric polynomials in i1, i2, i3, and i4 are e1 = i1 + i2 + i3 + i4, e2 = i1i2 + i1i3 + i1i4 + i2i3 + i2i4 +
i3i4, e3 = i2i3i4 + i1i3i4 + i1i2i4 + i1i2i3, and e4 = i1i2i3i4.

Note that there are two independent four-particle fermionic states of relative angular momentum 10. In the above equations,
we have omitted the normalization factors of all QR, which only depend on center-of-mass angular momentum R, since we are
only interested in finding the common densest zero-energy ground state of QR of all possible R.

APPENDIX C: THE NECESSARY CONDITIONS FOR GENERAL ν = p
2p+1 CF JAIN STATES ON DISK

TO HAVE NONVANISHING LLL PROJECTION

Let us consider the simplest case in the first place, which is p = 2. We begin with the ν = 2/5 Jain state constructed from
CFs filling the n1th and n2th LLs. The number of CFs in the n1th and n2th LLs are N1 and N − N1, respectively. N1 must satisfy
the constraint 1 � N1 � N − 1. The wave function of this state is

∏
1�i< j�N

(zi − z j )
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ηn1,m1 (z1) . . . ηn1,m1 (zN )
...

. . .
...

ηn1,mN1
(z1) . . . ηn1,mN1

(zN )
ηn2,mN1+1 (z1) . . . ηn2,mN1+1 (zN )

...
. . .

...

ηn2,mN (z1) . . . ηn2,mN (zN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (C1)

We can expand the Laughlin-Jastrow factor
∏

1�i< j�N
(zi − z j )2 as

∑
i1 + i2 + · · · + iN = (N − 1)N
0 � i1, i2, . . . , iN � 2(N − 1)

Ci1,i2,... ,iN zi1
1 zi2

2 · · · ziN
N , (C2)
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where Ci1,i2,... ,iN is the expansion coefficient [48]. Since this Laughlin-Jastrow factor is symmetric in all variables, Ci1,i2,... ,iN will
be invariant under the exchange of any two indices. Then the wave function can be expanded as

∑
i1 + i2 + · · · + iN = (N − 1)N
0 � i1, i2, . . . , iN � 2(N − 1)

Ci1,i2,... ,iN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zi1
1 ηn1,m1 (z1) . . . zi1

Nηn1,m1 (zN )
...

. . .
...

z
iN1
1 ηn1,mN1

(z1) . . . z
iN1
N ηn1,mN1

(zN )

z
iN1+1

1 ηn2,mN1+1 (z1) . . . z
iN1+1

N ηn2,mN1+1 (zN )
...

. . .
...

ziN
1 ηn2,mN (z1) . . . ziN

N ηn2,mN (zN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (C3)

where we have used this symmetry of Ci1,i2,... ,iN . Now with the identity [49]

ziηn,m(z) = 2
i
2

i∑
k=0

(
i

k

)√
n!(n + m + i − k)!

(n − k)!(n + m)!
ηn−k,m+i(z), (C4)

the above expansion of the wave function can be further simplified as

2(N−1)N/2
∑

i1 + i2 + · · · + iN = (N − 1)N
0 � i1, i2, . . . , iN � 2(N − 1)

Ci1,i2,... ,iN

i1∑
k1=0

· · ·
iN∑

kN =0

(
i1
k1

)√
n1!(n1 + m1 + i1 − k1)!

(n1 − k1)!(n1 + m1)!
· · ·

×
(

iN
kN

)√
n2!(n2 + mN + iN − kN )!

(n2 − kN )!(n2 + mN )!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ηn1−k1,m1+i1 (z1) . . . ηn1−k1,m1+i1 (zN )
...

. . .
...

ηn1−kN1 ,mN1 +iN1
(z1) . . . ηn1−kN1 ,mN1 +iN1

(zN )
ηn2−kN1+1,mN1+1+iN1+1 (z1) . . . ηn2−kN1+1,mN1+1+iN1+1 (zN )

...
. . .

...

ηn2−kN ,mN +iN (z1) . . . ηn2−kN ,mN +iN (zN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (C5)

Equation (C5) can be used to obtain composite fermion wave functions projected to any LL. We can immediately see that in
order for this wave function to have nonvanishing LLL projection, each entry in the Slater determinant in Eq. (C5) must be an
LLL single-particle wave function. We then have k1, k2, . . . , kN1 = n1 and kN1+1, . . . , kN = n2.

Thus we must have the following constraints on n1 and n2,

n1 � i1, i2, . . . , iN1 , n2 � iN1+1, iN1+2, . . . , iN . (C6)

Since i1, i2, . . . , iN are arbitrary, yet simultaneously satisfy two constraints, i1 + i2 + · · · + iN = (N − 1)N and 0 �
i1, i2, . . . , iN � 2(N − 1), we immediately obtain equivalent constraints,

N1n1 + (N − N1)n2 � (N − 1)N, 1 � N1 � N − 1, n1, n2 � 2(N − 1). (C7)

We can easily generalize this analysis to the ν = p/(2p + 1) CF Jain state in which the n1, n2, . . . , npth CF LLs are filled
with N1, N2, . . . , Np CFs, respectively. The necessary conditions for this wave function to have nonvanishing LLL projection are

p∑
i=1

Nini � (N − 1)N, n1, n2, . . . , np � 2(N − 1), (C8)

where N = ∑p
i=1 Ni.

We must stress that the above conditions are all necessary conditions since terms in the expansion Eq. (C5) may cancel among
themselves to render vanishing LLL projection.

APPENDIX D: THE NECESSARY CONDITIONS FOR GENERAL ν = p
2p+1 CF JAIN STATES ON SPHERE

TO HAVE NONVANISHING LLL PROJECTION

Let us consider a quantum Hall system on the surface of a sphere of radius R, subject to a radial magnetic field B = h̄Q
eR2 r̂,

where the monopole strength Q is one-half of the flux quanta number N� piercing the sphere. The Hamiltonian of this system is

H = (px + eAx )2

2me
+ (py + eAy)2

2me
+ (pz + eAz )2

2me
, (D1)

subject to the constraint imposed by the sphere surface

x2 + y2 + z2 = R2. (D2)
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Using the gauge A = − Q
eR cot θφ̂, the Hamiltonian can be written in the sphere coordinate as [13,50,51]

H = �2

2meR2
, (D3)

where the square of the dynamical angular momentum � is

�2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

(
∂

∂φ
− iQ cos θ

)2

. (D4)

The generator of rotations about the origin which commutes with the Hamiltonian is

L = � + Qr̂. (D5)

The eigenstates of H , L2, and Lz in the nth Landau level are monopole harmonics [13,52]

〈r|YQ,l,m〉 = NQ,l,m2−m(1 − cos θ )
m−Q

2 (1 + cos θ )
m+Q

2 eimφPm−Q,m+Q
l−m (cos θ ), (D6)

where the normalization

NQ,l,m =
√

(2l + 1)(l − m)!(l + m)!

4π (l − Q)!(l + Q)!
, (D7)

Pm−Q,m+Q
l−m is the Jacobi polynomial, and θ and φ are the polar and azimuthal angles on the sphere, respectively. The eigenvalue

of L2 is l (l + 1)h̄2, with the total angular momentum l being the sum of monopole charge Q and LL index n,

l = Q + n. (D8)

The eigenvalue of Lz is m = −l,−l + 1, . . . , l − 1, l.
The N-particle wave function at ν = 1 can be written down in terms of spinor variables u = cos θ

2 ei φ

2 and v = sin θ
2 e−i φ

2 ,

�1 =
∏

1�i�N

vN−1
i

∏
1� j<k�N

(z j − zk ), (D9)

where z = u
v

= cot θ
2 eiφ .

Now let us consider the ν = p/(2p + 1) Jain state constructed from CFs filling the n1, n2, . . . , npth LLs. The number of CFs
in the nith LL is Ni. The monopole charge for the ν = p integer quantum Hall effect of CFs is chosen as Q∗, which is different
from the monopole charge Q for the ν = p/(2p + 1) fractional quantum Hall effect of electrons. The relation of Q to Q∗ will be
revealed in Eq. (D13). The wave function of this state is

�2
1 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

YQ∗,Q∗+n1,m1 (r1) . . . YQ∗,Q∗+n1,m1 (rN )
...

. . .
...

YQ∗,Q∗+n1,mN1
(r1) · · · YQ∗,Q∗+n1,mN1

(rN )
YQ∗,Q∗+n2,mN1+1 (r1) . . . YQ∗,Q∗+n2,mN1+1 (rN )

...
. . .

...

YQ∗,Q∗+n2,mN1+N2
(r1) · · · YQ∗,Q∗+n2,mN1+N2

(rN )
...

. . .
...

YQ∗,Q∗+np,mN (r1) · · · YQ∗,Q∗+np,mN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (D10)

In the same manner in which we expand the wave function on the disk in the previous Appendix, here the wave function can be
expanded as

∑
i1 + i2 + · · · + iN = (N − 1)N
0 � i1, i2, · · · iN � 2(N − 1)

Ci1,i2,···iN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v2N−2
1 zi1

1 YQ∗,Q∗+n1,m1 (r1) . . . v2N−2
N zi1

NYQ∗,Q∗+n1,m1 (rN )
...

. . .
...

v2N−2
1 z

iN1
1 YQ∗,Q∗+n1,mN1

(r1) · · · v2N−2
N z

iN1
N YQ∗,Q∗+n1,mN1

(rN )

v2N−2
1 z

iN1+1

1 YQ∗,Q∗+n2,mN1+1 (r1) . . . v2N−2
N z

iN1+1

N YQ∗,Q∗+n2,mN1+1 (rN )
...

. . .
...

v2N−2
1 z

iN1+N2
1 YQ∗,Q∗+n2,mN1+N2

(r1) · · · v2N−2
N z

iN1+N2
N YQ∗,Q∗+n2,mN1+N2

(rN )
...

. . .
...

v2N−2
1 ziN

1 YQ∗,Q∗+np,mN (r1) · · · v2N−2
N ziN

N YQ∗,Q∗+np,mN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (D11)

where Ci1,i2,...,iN is the same as that in the previous Appendix. Note that each entry in the above Slater determinant is of the
form v2N−2z jYQ∗,Q∗+n,m with 0 � j � 2N − 2. In order to project the wave function to LLL, we need to simplify each entry as a
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combination of monopole harmonics. Observe that

v2N−2z jYQ∗,Q∗+n,m = NQ∗,Q∗+n,m21−m−N (1 − cos θ )
m−Q∗+2N−2− j

2 (1 + cos θ )
m+Q∗+ j

2 eiφ(m−N+1+ j)Pm−Q∗,m+Q∗
Q∗+n−m (cos θ ). (D12)

In order to bring the above to the form of monopole harmonics, we define new monopole charge Q and new Lz angular momentum
m′,

Q = Q∗ + N − 1, m′ = m − N + 1 + j. (D13)

Using this new definition, Eq. (D12) can be written as

v2N−2z jYQ∗,Q∗+n,m = NQ∗,Q∗+n,m21−m−N (1 − cos θ )
m′−Q

2 (1 + cos θ )
m′+Q

2 eiφm′
(1 − cos θ )2N−2− jPm−Q∗,m+Q∗

Q∗+n−m (cos θ ). (D14)

Thus we need to bring (1 − cos θ )2N−2− jPm−Q∗,m+Q∗
Q∗+n−m (cos θ ) to the form of Pm−Q∗−2N+2+ j,m+Q∗+ j

Q+n′ (cos θ ), that is, to lower the

upper left index of Pm−Q∗,m+Q∗
Q∗+n−m (cos θ ) by 2N − 2 − j and raise its upper right index by j. Now with a recursive formula for

Jacobi polynomials [53]

(2n + α + β )Pα,β−1
n (x) = (n + α + β )Pα,β

n (x) + (n + α)Pα,β

n−1(x), (D15)

we can prove that

Pm−Q∗,m+Q∗
Q∗+n−m (cos θ ) =

j∑
k=0

d j,kPm−Q∗,m+Q∗+ j
Q∗+n−m−k (cos θ ), (D16)

where dj,k (which depends on Q∗, n, and m) can be obtained recursively,

d0,0 = 1,

d j,k = Q∗ + n + m − k + j

2(Q∗ + n) − 2k + j
d j−1,k + n − k + 1

2(Q∗ + n) − 2k + 2 + j
d j−1,k−1 for j � 2, 1 � k � j − 1,

dj,0 = Q∗ + n + m + j

2(Q∗ + n) + j
d j−1,0, d j, j = n − j + 1

2(Q∗ + n) − j + 2
d j−1, j−1. (D17)

With another recursive formula for Jacobi polynomials [53]

(n + α/2 + β/2 + 1)(1 − x)Pα+1,β
n (x) = (n + α + 1)Pα,β

n (x) − (n + 1)Pα,β

n+1(x), (D18)

we obtain

(1 − cos θ )2N−2− jPm−Q∗,m+Q∗
Q∗+n−m (cos θ ) =

j∑
k=0

d j,k

2N−2− j∑
k′=0

e2N−2− j,k′Pm−Q∗−2N+2+ j,m+Q∗+ j
Q∗+n−m−k+k′ (cos θ ), (D19)

where e2N−2− j,k′ (which not only depends on Q∗, n, and m, but also on k) can also be obtained recursively,

e0,0 = 1,

et ′,k′ = (n − k + k′ + 1 − t ′)et ′−1,k′

Q∗ + n − k + k′ + 1 + j/2 − t ′/2
− (Q∗ + n − m − k + k′)et ′−1,k′−1

Q∗ + n − k + k′ + j/2 − t ′/2
for t ′ � 2, 1 � k′ � t ′ − 1,

et ′,0 = n − k + 1 − t ′

Q∗ + n − k + 1 + j/2 − t ′/2
et ′−1,0, et ′,t ′ = − Q∗ + n − m − k + t ′

Q∗ + n − k + j/2 + t ′/2
et ′−1,t ′−1. (D20)

Finally we have

v2N−2z jYQ∗,Q∗+n,m = NQ∗,Q∗+n,m21+ j−N
j∑

k=0

2N−2− j∑
k′=0

d j,ke2N−2− j,k′

NQ,Q+n′,m′
YQ,Q+n′,m′ , (D21)

where Q and m′ are defined in Eq. (D13). New LL index n′ is related to old LL index n by

n′ = n − k − (2N − 2 − j − k′). (D22)

Since k � 0, k′ � 2N − 2 − j as seen from summation indices, n′ � n always holds, which is as expected.
Below we will show that on the sphere we recover the same constraint on LL indices as the case on the disk when the

thermodynamic limit is taken.
In the thermodynamic limit N → ∞, the monopole strength Q and Q∗ also go to infinity. While the magnetic field on sphere

h̄Q
eR2 is held constant, the sphere radius R goes to infinity. Consequently, the sphere is locally equivalent to the disk in this limit.
It is easy to see that in the limit Q∗ → ∞, the et ′,k′ in Eq. (D20) will vanish unless k′ = t ′. Therefore, k′ only takes the value
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2N − 2 − j in Eq. (D21). The new LL index n′ in Eq. (D22) is thus n − k, which is the same as that in Eq. (C5) on the disk.
It then follows that in the thermodynamic limit, for the ν = p/(2p + 1) Jain state on the sphere to have nonvanishing LLL
projection, the constraints on indices of filled CF LLs would be the same as those in the case of the disk as given in Eq. (C8).

By contrast, when the particle number and monopole charge are finite, the new LL index n′ is given by Eq. (D22). The
minimum of n′ in Eq. (D22) must be nonpositive in order for each entry in the Slater determinant expansion of the wave
function in Eq. (C3) to have nonvanishing LLL projection. In that case, we must have the following constraints on LL indices
n1, n2, . . . , np,

n1, n2, . . . , np � 2N − 2. (D23)

Note that the constraint on LL indices in the case of finite particle number allows more choices than those in the thermody-
namic limit.

In conclusion, the necessary conditions for general ν = p/(2p + 1) CF Jain states on the sphere constructed from
n1, n2, . . . , npth CF LLs filled with N1, N2, . . . , Np CFs (N = ∑p

i=1 Ni) to have nonvanishing LLL projection in the thermo-
dynamic limit are (1)

∑p
i=1 Nini � (N − 1)N and (2) the maximum of LL indices is no greater than 2(N − 1). When the particle

number N is finite, we only have the second constraint on CF LL indices.
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