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We study magnetic properties in the half-filled Hubbard model on the Ammann-Beenker tiling. First, we focus
on the domain structure with locally eightfold rotational symmetry to examine the strictly localized confined
states for the tight-binding model. We count the number of vertices and confined states in the larger domains
generated by the deflation operations systematically. Then, the fraction of the confined states, which plays an
important role for magnetic properties in the weak coupling limit, is obtained as p = 1/2τ 2, where τ (=1 + √

2)
is the silver ratio. It is also found that the wave functions for confined states are densely distributed in the system
and thereby the introduction of the Coulomb interactions immediately induces the finite staggered magnetiza-
tions. Increasing the Coulomb interactions, the spatial distribution of the magnetizations continuously changes
to those of the Heisenberg model. We discuss crossover behavior in the perpendicular space representation and
reveal the superlattice structure in the spatial distribution of the staggered magnetizations.
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I. INTRODUCTION

Quasicrystal without translational symmetry has attracted
much interest since its first observation in the Al-Mn arroy
[1]. Among them, the Au-Al-Yb arroy with Tsai-type clus-
ters [2] is one of the interesting examples with anomalous
low temperature properties. The quasicrystal Au51Al34Yb15

shows quantum critical behavior with unusual exponents,
while the approximant Au51Al35Yb14 shows heavy fermion
behavior [3]. These experiments should clarify that electron
correlations play an important role in the quasicrystals. Fur-
thermore, the superconductivity has recently been observed in
the Al-Zn-Mn quasicrystal [4], stimulating further investiga-
tions on electron correlations and induced ordered states in the
quasiperiodic systems [5–14].

Up to now, no magnetically ordered states have been found
in the quasicrystals although it has recently been observed in
the approximants Cd6Tb [15], Au-Al-Gd [16], and Au-Al-Tb
[17]. In contrast to the experiments, there are many theoretical
works for the spontaneously symmetry breaking states on the
two-dimensional quasiperiodic lattices. Among them, the sys-
tem on the Penrose tiling [18–24] has been examined, where
the magnetically ordered states [12,25–29], superconductivity
[11,13,14], and excitonic insulator [30] have been discussed.
The Ammann-Beenker tiling [31,32] (see Fig. 1) is another
example for two-dimensional quasiperiodic structures, where
the superconducting [33] and higher order topological states
[34] have recently been examined. The magnetic instability
has been discussed in the Hubbard [35], Heisenberg [36,37],
and Anderson lattice [38] models. However, the system size
treated is not large enough to discuss magnetic properties
inherent in the quasiperiodic lattice. In particular, the role
of the strictly localized states, which should play a crucial
role in the weak coupling limit, has not been discussed up to
now. Therefore, it is instructive to examine the confined states

and to clarify magnetic properties in the Hubbard model with
larger clusters.

In the paper, we study the half-filled Hubbard model on
the Ammann-Beenker tiling. First, we focus on the macro-
scopically degenerate states in the noninteracting case. By
examining the domain structures generated by the deflation
operations systematically, we obtain the fraction of the con-
fined states in the thermodynamic limit. To clarify the effects
of the Coulomb interactions, we apply the real-space Hartree
approximation to the system and calculate the local magne-
tization at each site. We reveal that the superlattice structure
appears in the weak coupling case. Mapping the spatial dis-
tribution of the magnetization to the perpendicular space,
we also discuss the crossover in the antiferromagnetically
ordered state.

The paper is organized as follows. In Sec. II, we intro-
duce the half-filled Hubbard model on the Ammann-Beenker
tiling. In Sec. III, we study the confined states with E = 0,
which should play an important role for magnetic proper-
ties in the weak coupling limit. Counting the number of the
confined states in the domains systematically, we exactly ob-
tain their fraction. We discuss how the antiferromagnetically
ordered state is realized in the Hubbard model in Sec. IV.
The crossover behavior in the ordered state is addressed, by
mapping the spatial distribution of the magnetization to the
perpendicular space. A summary is given in the last section.

II. MODEL AND HAMILTONIAN

We study the Hubbard model on the Ammann-Beenker
tiling, which should be given by the following Hamiltonian,

H = −t
∑
(i j)σ

(c†
iσ c jσ + H.c.) +

∑
i

U

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(1)
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FIG. 1. Ammann-Beenker tiling and six types of vertices. The
shaded regions represent the corresponding Voronoi cells. e0, e1, e2,
and e3 are projection of the fundamental translation vectors in four
dimensions, n = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0,0,0,1).

where ciσ (c†
iσ ) annihilates (creates) an electron with spin

σ (=↑,↓) at the ith site and niσ = c†
iσ ciσ . t is the transfer

integral and U is the onsite Coulomb interaction. Since the
Hubbard model on the Ammann-Beenker tiling is bipartite,
the chemical potential is always μ = 0 when the electron
density is fixed to be half filling.

The Ammann-Beenker tiling is composed of squares and
rhombuses, which is schematically shown in Fig. 1. There ex-
ist six types of vertices. In the paper, the vertices are denoted
as A, B, . . ., and F for the coordination number 3, 4, . . ., and
8, respectively. Since the vertex lattice is bipartite, it is naively
expected that the introduction of the Coulomb interactions
induces the magnetically ordered state with the staggered
moments. According to the Lieb’s theorem [39], the half-filled
Hubbard model on the bipartite lattice has the total spin Stot =
1
2 |NA − NB| in the ground state, where NA and NB are the
numbers of sites in the A and B sublattices. Therefore, the im-
balance in their numbers yields the ferrimagnetically ordered
state, e.g., Lieb lattice [40]. In our model, one can prove that
the antiferromagnetically ordered state is realized without uni-
form magnetizations, considering the deflation rule. Figure 2
shows the deflation rule for the directed squares and rhom-
buses, where the open and solid circles at the corners represent
the distinct sublattices. By applying the deflation operations to
the squares and rhombuses, their numbers are changed as⎛

⎜⎜⎜⎜⎝

Sn+1
↑

Sn+1
↓

Rn+1
↑

Rn+1
↓

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 2 2 2

2 1 2 2

0 2 2 1

2 0 1 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Sn
↑

Sn
↓

Rn
↑

Rn
↓

⎞
⎟⎟⎟⎠, (2)

where Sn
σ (Rn

σ ) is the number of squares (rhombuses) with
spin σ at iteration n, whose spin is defined by spins connected
by the arrows in Fig. 2. It is known that in the thermodynamic
limit (n → ∞), the numbers of squares and rhombuses τ 2

times increase for each deflation process and S/R = 1/
√

2,

FIG. 2. Deflation rule for directed square (a) and rhombus (b) in
the Ammann-Beenker tiling. Solid (dashed) arrows represent the
directed squares and rhombuses with spin σ (σ̄ ). Open and solid
circles at the corners represent the distinct sublattices.

where S = ∑
σ Sσ , R = ∑

σ Rσ , and τ (=1 + √
2) is the silver

ratio [31,32]. From the above relation Eq. (2), we obtain that
Sσ = S/2 and Rσ = R/2 in the thermodynamic limit. Since
the number of squares and rhombuses are independent of spins
in the thermodynamic limit, the vertices are also independent.
Its proof is explicitly shown in Appendix A. Then, we can say
that the antiferromagnetically ordered state without uniform
magnetizations is realized in the thermodynamic limit.

On the other hand, the magnetization profile may not be
trivial since in the quasicrystals, each lattice site is not equiv-
alent, in contrast to the conventional lattice with translational
symmetry. In particular, in the weak coupling limit, magnetic
properties strongly depend on the noninteracting density of
states (DOS) at the Fermi level. Figure 3 shows the DOS in
the tight-binding model on the Ammann-Beenker tiling [33].

FIG. 3. Density of states in the tight-binding model on the
Ammann-Beenker tiling with N = 1 049 137. The inset shows the
integrated density of states.
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FIG. 4. (a), (b), and (c) are the domains D1, D2, and D3, respec-
tively. Solid triangles, squares, pentagons, and circles represent C,
D, E, and F vertices. Shaded regions represent the D1 domains. For
clarification, the lattice constants are not rescaled (see Fig. 2).

We find the delta-function-like peak at E = 0, meaning the
existence of the confined states. When magnetic properties
are studied at half filling, the confined states should play an
essential role in understanding magnetic properties. In the fol-
lowing section, we focus on these macroscopically degenerate
states with E = 0.

III. CONFINED STATES IN THE TIGHT-BINDING MODEL
ON THE AMMANN-BEENKER TILING

In the section, we focus on the confined states in the
tight-binding model. As seen in Fig. 3, the eigenstates are
macroscopically degenerate at E = 0, which means that the
corresponding states are exactly localized in certain regions.
This is similar to the model on the Penrose tiling [12,18,23].
The key of the confined states is the fact that the Ammann-
Beenker tiling has the eightfold rotational symmetry. Here,
we focus on the F vertex with locally eightfold rotational
symmetry, which is closely related to the confined states, as
discussed later. Due to the matching rule of the Ammann-
Beenker tiling, there always appear eight squares and sixteen
rhombuses around each F vertex, as shown in Fig. 4(a). For
convenience, when the local eightfold rotational symmetry is
satisfied in the domain shown in Fig. 4(a) and is not satisfied
outside, we define this domain composed of seventeen sites
(the boundary sites are excluded) as D1. By applying the defla-
tion operation to the domain D1, a new domain is generated, as
shown in Fig. 4(b). If one focuses on the F vertex at the center,
the rotational symmetry is satisfied in the domain with larger

lattice sites, which is bounded by the regular octagon shown
as the dashed line in Fig. 4(b). This domain is denoted as D2.
Repeating the deflation operations, we obtain the Di domains.
Then, we can define the F vertex at the center of the domain Di

as Fi. Figure 4 shows the domains D1, D2, and D3, where F1,
F2, and F3 vertices are located at their centers, respectively.
In the D3 domain, we find sixteen D1 domains with the F1

vertices. We wish to note that there does not exist the D1

domain at the center because of its definition. This allows us
to uniquely determine Fi as the center site of the domain Di. It
is known that, in each deflation operation, Fi (i > 1) vertices
are generated from the Fi−1 vertices and the F1 vertices are
generated from half of the C vertices, and D and E vertices
(see Fig. 4). Then, in the thermodynamic limit, the fraction of
the Fi vertices is obtained as

pFi = 2τ−(2i+3), (3)

since pF1 = ( 1
2 pC + pD + pE)/τ 2 = 2τ−5 and pFi+1 = pFi/τ 2,

where pα is the fraction of the α(=A, B, C, D, E,
and F) vertex [32]: pA = τ−1, pB = 2τ−2, pC = 2τ−3, pD =
2τ−4, pE = τ−5, pF = τ−4. Since the Fi vertex is defined as
the center vertex of the domain Di, the fraction of the domain
Di is given as pi = pFi .

By counting the numbers of all vertices up to the domain
D11 numerically, we obtain the domain profile, as shown in
Table I. Its fraction pα

i (=Nα
i /Ni ), where Nα

i is the number of α

vertices and Ni(=
∑

α Nα
i ) is the number of sites in the domain

Di, is shown in Fig. 5. From these data, one finds relations
between the number of vertices. For example, NC

i+1 = 2NA
i ,

ND
i+1 = NB

i , NE
i+2 = NA

i , and NF
i+1 = NC

i /2 + ND
i + NE

i + NF
i .

Estimating the general terms for NA
i , NB

i , and Ni as

NA
i = 2

√
2[(−τ )1−i − τ i−1] + 4[τ 2i−1 − τ 1−2i], (4)

NB
i = 8[τ 2i−2 + τ 2−2i − δi1], (5)

Ni = 1 + 2
√

2[(−τ )−i − τ i] + 4[τ 2i + τ−2i], (6)

we obtain the general terms for all vertices in each do-
main. Namely, the domain D∞ can be regarded as the
Ammann-Beenker tiling in the thermodynamic limit and
we have confirmed that the fraction for each vertex pα

∞ =

TABLE I. Profile of each domain Di. pi is its fraction, Ni is the number of vertices, and Nα
i is the number of α vertices in the ith domain,

where the sites on the boundary are excluded. Ni1 is the number of the D1 domain structure in the ith domain. N tot
i is the total number of the

confined states and Nnet
i is the net number of the confined states in the ith domain (see text).

i pi Ni NA
i NB

i NC
i ND

i NE
i NF

i Ni1 N tot
i Nnet

i

1 2τ−5 17 8 8 0 0 0 1 1 2 2
2 2τ−7 121 48 48 16 8 0 1 0 6 6
3 2τ−9 753 312 272 96 48 8 17 16 44 12
4 2τ−11 4 521 1 872 1 584 624 272 48 121 104 324 20
5 2τ−13 26 673 11 048 9 232 3 744 1 584 312 753 632 2 110 30
6 2τ−15 156 249 64 720 53 808 22 096 9 232 1 872 4 521 3 768 12 938 42
7 2τ−17 912 593 378 008 313 616 129 440 53 808 11 048 26 673 22 152 77 112 56
8 2τ−19 5 323 593 2 205 104 1 827 888 756 016 313 616 64 720 156 249 129 576
9 2τ−21 31 039 313 12 856 904 10 653 712 4 410 208 1 827 888 378 008 912 593 756 344
10 2τ−23 180 937 273 74 946 672 62 094 384 25 713 808 10 653 712 2 205 104 5 323 593 4 411 000
11 2τ−25 1 054 644 657 436 848 120 361 912 592 149 893 344 62 094 384 12 856 904 31 039 313 25 715 720
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FIG. 5. Symbols represent the fractions of the α vertex pα
i and

bars represent the fraction of confined state pconf
i in the ith domain.

On the right edge of the figure, the corresponding fractions in the
thermodynamic limit are shown (see text).

limi→∞ Nα
i /Ni is reduced to the well-known value pα [32] (see

Fig. 5).
Now, we consider the confined states in each domain with

the eightfold rotational symmetry. In the domain D1, there
are two confined states. Since the confined states satisfy the
Schrödinger equation H� = 0 with U = 0, it is always possi-
ble to choose each eigenstate such that it can be described by
the irreducible representation of the point group D8. Table II
shows a part of the irreducible characters of the dihedral group
D8, where there exist four one-dimensional irreducible repre-
sentations. Namely, the confined states �1 and �2, which are
schematically shown in Fig. 6, are described by the irreducible
representation B1 and B2, and 〈�1|�2〉 = 0. We wish to note
that these confined states are always exact eigenstates even
when the system does not have eightfold rotational symmetry
outside of the domain D1. We also find that the amplitudes of
the wave function �1 are finite only in the sublattice B, and
the others are in the sublattice A when the sublattice for the
center site is regarded as the sublattice A. This is in contrast
to the case in the vertex model on the Penrose tiling [18,23],
where finite amplitudes appears in one of the sublattices in the
cluster defined in Ref. [12]. This should induce distinct spatial
distribution of the magnetization in the weak coupling limit,
which will be discussed in the next section.

In the domain D2, there is the structure of the domain
D1 around the center. Therefore, in the domain D2, �1 and

TABLE II. A part of the irreducible characters of the dihedral
group D8. E is an identity operator, C8 is a rotation operator of π/4,
and Iy is a reflection operator about the y axis.

E C8 Iy IyC8

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

FIG. 6. Two confined states in the domain D1 for the tight-
binding model on the Ammann-Beenker tiling. The number at the
vertices represent the amplitudes of the confined state.

�2 located there are the confined states. Furthermore, we
find four confined states �3, �4, �5, and �6, as shown in
Fig. 7. It is found that these confined states are described by
the irreducible representations A2, B1, A1, and B2. Namely,
�1 and �4 (�2 and �6) are described by the same irre-
ducible representation B1 (B2), but there is no overlap in their
wave functions [41]. In the domain D3, in addition to the
six confined states shown above, we find six confined states
�7, �8, . . ., and �12, which are explicitly shown in Fig. 8.
These are described by the irreducible representations A2, B1,
B1, B2, A1, and B2. We note that, in the domain D3, there exist
sixteen D1 domains (shown as the shaded regions in Figs. 4
and 8), where two confined states �1 and �2 exist locally.
Therefore, in the domain D3, the net number of the confined
states Nnet

3 = 12, and the total number of the confined states
N tot

3 = Nnet
3 + 16Nnet

1 = 44, with Nnet
1 = 2.

To count the number of the confined states in larger do-
mains systematically, we perform the exact diagonalization
method for the tight-binding Hamiltonian. Some details are
discussed in Appendix B. The results up to the domain
D7 are shown in Table I. The net number of the confined
states is evaluated by taking into account the smaller domain

FIG. 7. Four confined states in the domain D2 for the tight-
binding model on the Ammann-Beenker tiling. The number at the
vertices represents the amplitudes of confined state.
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FIG. 8. Six confined states in the domain D3 for the tight-binding
model on the Ammann-Beenker tiling. For clarity, the quarter of the
domain D3 is shown. The shaded areas represent the D1 domains
inside of the domain D3 and the F1 vertex is located in each do-
main D1. The number at the vertices represents the amplitudes of
confined state.

structures, as

Nnet
i = N tot

i −
i−1∑
j=1

Ni jN
net
j . (7)

Namely, Ni j satisfies the relations as Ni+1, j+1 = Ni j , Ni1 =
NC

i−1/2 + ND
i−1 + NE

i−1, and NF
i = ∑

Ni j , where Nα
i is the

number of the α vertex in the domain Di. Since the net num-
ber of confined states should be given as Nnet

i = i(i + 1), we
obtain the fraction of the confined states in the tight-binding
model on the Ammann-Beenker tiling as

p =
∑

i

piN
net
i = 1

2τ 2
∼ 8.579 × 10−2, (8)

where pi is the fraction of the Di domain. We have also
confirmed that it corresponds to the ratio in the domain D∞,

p = limi→∞ N tot
i /Ni, where the general term for the total num-

ber of the confined states is given as

N tot
i = 4 + 2

√
2[(−τ )−i − τ i]

+ 2(τ 2i−2 + τ 2−2i ) + i(i + 1). (9)

In the following, we consider electron correlations in the
Hubbard model to discuss how the antiferromagnetically or-
dered state is realized in the Ammann-Beenker tiling. In the
weak coupling limit, it is, in principle, possible to evaluate the
magnetization by means of the Gram-Schmidt orthogonaliza-
tion for the confined states at E = 0 since their degeneracy
should be lifted by the introduction of the Coulomb inter-
actions. However, the confined states are densely distributed
in the lattice. Figures 6–8 show that the confined states have
amplitudes in almost the whole of the domain. In addition,
the amplitudes of confined states in a certain domain D some-
times appear on the smaller domains inside of D, where some
confined states exist locally. For example, in Fig. 8, the wave
function �11 has amplitudes in each domain D1 (the shaded
areas) with the local wave functions �1 and �2. Therefore,
the wave functions for confined states multiply overlap in the
space, which should induce fractal behavior in the magnetic
pattern. This is in contrast to the Penrose-Hubbard model,
where there exist a finite number of confined states in a certain
region “cluster” and the seventy percents of magnetizations
are exactly obtained in the thermodynamic limit [12]. Figure 9
shows the local magnetizations up to D7 domain. When we
focus on the D1 domain, there are two confined states �1

and �2 which has finite amplitudes in eight sites for each.
Therefore, there appears only the magnetization m = 1/16.
In the larger domains, it is found that the distribution of the
magnetization is classified into some groups. The group with
large magnetizations is mainly contributed from the A and
B vertices around the F vertex, which originates from the
confined states �1 and �2 (see Fig. 6). In the paper, we apply
the simple mean-field theory to the Hubbard model to discuss
magnetic properties inherent in the Ammann-Beenker tiling
[35].

IV. ANTIFERROMAGNETICALLY ORDERED STATE

In the section, we consider the Hubbard model with finite
U . When the half-filled Hubbard model on the bipartite lattice
is considered, the quantum Monte Carlo (QMC) method is one
of the powerful methods to discuss ground-state properties.
On the other hand, to discuss magnetic properties inherent
in the quasiperiodic structure, the real-space Hartree approx-
imation has an advantage in treating the large system size,
which is crucial to clarify the superlattice structure in the
magnetization pattern, as discussed later.

The mean-field Hamiltonian (1) is reduced to

HMF = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) + U

∑
iσ

〈niσ̄ 〉niσ , (10)

where 〈niσ 〉 is the expectation value of the number of elec-
tron with spin σ at the ith site. In our calculations, we use
the open boundary condition and examine finite lattices with
N = 180 329 and 1 049 137, where the largest domains are
D6 and D7, respectively. The lattices are generated by the
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FIG. 9. Local magnetizations in each domain for the Hubbard
model on the Ammann-Beenker tiling in the limit U → 0.

deflation operations to the D1 domain [shown in Fig. 4(a)]
and therefore have the global eightfold rotational symmetry.
For given values of mean fields, we numerically diagonalize
the mean-field Hamiltonian HMF and update the mean fields,
and iterate this self-consistent procedure until the result con-
verges within numerical accuracy.

We show in Fig. 10 the spatial pattern of the magnetization
mi(=〈ni↑〉 − 〈ni↓〉)/2 when U/t = 1.0 × 10−7. It is found that
finite staggered magnetizations are induced even in the limit.
This is due to the existence of the confined states, as discussed
above. We note that the F vertices are also magnetized except
for the F vertex at the center of the system. This originates
from the fact that the amplitude of the confined states at the Fn

vertex is zero in the Dn domain, while it should be finite in the
larger domains, as discussed before. Therefore, it is naively
expected that, in the thermodynamic limit, each lattice site
has a finite magnetization even in the weak coupling limit.
This is in contrast to the systems with delta-function peak in
DOS such as the Lieb and Penrose lattices, where there exist
a finite density of nonmagnetic sites. A remarkable point is

that eight A and B vertices around the F vertex have large
magnetizations with m ∼ 1/16 and the other A and B vertices
are less magnetized, as shown in Fig. 10. Then, the Ammann-
Beenker tiling with the larger lattice constant τ 2 is formed in
the spatial distribution of the magnetizations if the F vertex
and adjacent A and B vertices with large magnetizations are
regarded as its “unit cell.” This may imply the superlattice
structure (fractal behavior) in the magnetic profile, which will
be discussed later.

Increasing the Coulomb interactions, the magnetizations
monotonically increase and finally the system should be de-
scribed by the Heisenberg model in the strong coupling limit.
To clarify the crossover in the ordered state between weak
and strong coupling regimes, we show in Fig. 11 the dis-
tribution of local magnetizations in the system with N =
180 329. When U/t → 0, a finite distribution appears in the
magnetization, where the average of the staggered magneti-
zation m̄0 ∼ 0.043. This originates from the existence of the
macroscopically degenerate states discussed above and the
staggered magnetization should be given as 1/4τ 2 in the ther-
modynamic limit. The increase of the Coulomb interactions
monotonically increases the absolute value of local magneti-
zation m̄i ∼ m̄i0 + ciU , where m̄i0 is the local magnetization at
U → 0 and ci is the constant. This U dependence differs from
that in the conventional bipartite system, where the staggered
magnetization usually increases as m ∼ exp(−a/U ), where a
is constant. On the other hand, this behavior is common to that
in the bipartite systems with the macroscopically degenerate
states at the Fermi level such as the Lieb [40] and Penrose
[12] lattices. Increasing the interaction strength, the distribu-
tion of local magnetizations gradually changes. At last, when
U/t � 2, the magnetizations are classified by some peaks.
This classification is closely related to the coordination num-
ber for each site, which is different from the weak coupling
case. Therefore, the crossover occurs in the antiferromagnet-
ically ordered state around U/t ∼ 1.5. Namely, in the strong
coupling regime, the larger magnetization appears in the A
vertices with smaller coordinations. This should be consistent
with the QMC results in the strong coupling limit [36,37],
where the Hubbard model is reduced to the Heisenberg model,
although in the mean-field treatment, quantum fluctuations
originating from intersite correlations are underestimated.

Finally, let us study the spatial profile of the magnetiza-
tions characteristic of the Ammann-Beenker tiling. To this
end, we map it to the perpendicular space. The positions in
the perpendicular space have one-to-one correspondence with
the position in the physical space. Each vertex site in the
Ammann-Beenker tiling is described by the four-dimensional
lattice points 
n = (n0, n1, n2, n3) labeled with integers nm (see
Fig. 1). Their coordinates are the projections onto the two-
dimensional space:

r = (x, y) = (
n · 
ex, 
n · 
ey), (11)

where ex
m = cos(mπ/4) and ey

m = sin(mπ/4). The projection
onto the two-dimensional perpendicular space has informa-
tion specifying the local environment of each site,

r̃ = (x̃, ỹ) = (
n · 
̃ex, 
n · 
̃ey), (12)
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FIG. 10. Spatial pattern for the staggered magnetization in the Hubbard model on the Ammann-Beenker tiling when U/t = 1.0 × 10−7

(essentially the same as U = 0), 1, 2, and 5. The area of the circles represents the normalized magnitude of the local magnetization. Bold lines
represent the Ammann-Beenker tiling with the lattice constant τ 2.

where ẽx
m = cos(3mπ/4) and ẽy

m = sin(3mπ/4). Namely, six
kinds of vertices have the corresponding regions in the per-
pendicular space, as shown in Fig. 12(d). Since vertices in
both sublattices are uniformly distributed in the corresponding
regions of the perpendicular space, the absolute value of mag-
netization is shown in Fig. 12. In the weak coupling limit, we
find the detailed structure in the perpendicular space, meaning
that the magnetization is not classified by the kinds of vertices.
Therefore, this magnetic profile is reflected by the spatial
structure of the macroscopically degenerate confined states,
where large magnetizations appear in the A and B vertices
around the F vertices, as shown in Fig. 12(a). Increasing the
Coulomb interactions, interesting detailed structures smear in
the perpendicular space. When U/t = 5, the magnetizations
are almost specified by the vertices, where large magnetiza-
tion appears in the A vertices and small magnetization appears

FIG. 11. Distribution of local magnetizations as a function of the
Coulomb interaction U/t in the system with N = 180 329. Dotted
lines represent the sublattice average m̄.

in the F vertices. This tendency should be consistent with the
results obtained from the quantum Monte Carlo simulations
[36], as mentioned above.

Before summary, we wish to comment on fractal behav-
ior in the magnetic properties in the weak coupling case.
In the spatial distribution, A and B vertices around the F
vertex have large magnetizations and these units form the
Ammann-Beenker tiling with the lattice constant τ 2, as shown
in Fig. 10. This superlattice structure in the magnetizations
allows us to consider the perpendicular space for the F vertex
lattice. Figure 13(a) shows the magnetization profile for the
F vertices in the weak coupling limit, which is the same as
that of the F vertex part in Fig. 12(a). The average of the
staggered magnetizations for the F vertices m̄F

0 ∼ 0.005 is
much smaller than its bulk average m̄0 ∼ 0.043, and therefore
the magnetic profile for the F vertices may be invisible in
Fig. 12(a). Figure 13(a) clearly shows that the magnetizations
are not classified by the kinds of F vertices (Fn), which are
octagonally distributed in the perpendicular space, as shown
in Fig. 13(b). Instead, we find the detailed structure in the dis-
tribution, where “A” and “B” vertices around “F” vertex have
large magnetization in the Ammann-Beenker tiling with the
lattice constant τ 2. This is similar to that in the original lattice
shown in Fig. 12(a). Therefore, we can say that a similar mag-
netic profile is found in this scale. This may expect a further
nested structure in the perpendicular space. Considering the
Fi (i � 3) vertex lattice in the Ammann-Beenker tiling with
the lattice constant τ 4, we show the magnetic profile in their
perpendicular space in Fig. 13(c). We find a similar detailed
structure in the staggered magnetizations although the number
of the corresponding vertices are not large enough and the
absolute value of the magnetization is much smaller. Then,
we can say that fractal behavior appears in the magnetization
profile, in particular, in the weak coupling limit.
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FIG. 12. Magnetization profile in the perpendicular space (x̃, ỹ) for the Hubbard model when (a) (U/t, N ) = (1.0 × 10−7, 1 049 137),
(b) (1.5, 180 329), and (c) (5.0, 180 329). (d) Each area bounded by the solid lines is the region of one of the six types of vertices shown
in Fig. 1. Shaded areas bounded by the dashed lines represent the regions of certain A and B vertices, which are the nearest-neighbor and
next-nearest-neighbor sites for the F vertices, respectively.

V. SUMMARY

We have investigated magnetic properties in the half-
filled Hubbard model on the Ammann-Beenker tiling.
Considering the domain structure with locally eightfold ro-
tational symmetry, we have examined the strictly localized
confined states. We have then obtained their exact fractions
in the thermodynamic limit. In contrast to the vertex model
on the Penrose tiling, the wave functions for confined states
are densely distributed in the lattice and thereby the in-
troduction of the Coulomb interactions should induce finite
staggered magnetizations in each site. Increasing the inter-
action strength, the spatial distribution of the magnetizations
continuously changes to those of the Heisenberg model. Map-
ping the magnetization profiles to the perpendicular space,
we have clarified that the superlattice structure appears in the
magnetization profiles. In the realistic quasiperiodic systems
realized by the microwave resonators [42] and ultracold atoms

FIG. 13. Magnetization profile in the perpendicular space for the
system with N = 1 049 137 when U/t = 1.0 × 10−7 (essentially the
same as 0). The results for the F [Fi (i � 3)] vertices are shown in
(a) [(c)], and (b) [(d)] each part is the region of Fi vertices.

[43,44], the hopping integral and/or longer range interactions
along the diagonal of the rhombuses with the shortest distance
should play an important role in low temperature properties.
These interesting problems are now under consideration.
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APPENDIX A

Here, we prove that the number of the α vertex is inde-
pendent of the spin. In the main text, we have proved that
the numbers of squares and rhombuses are independent of the
spin, Sσ = S/2 and Rσ = R/2. Now, we consider the inflation-
deflation process for the vertices [31,32]. Each vertex with the
spin σ is transformed under the inflation process as

Aσ → 0
Bσ → 0

C1σ → 0
C2σ → Aσ

Dσ → Bσ

Eσ → C1σ

Fσ →

⎧⎪⎨
⎪⎩

C2σ

Dσ

Eσ

Fσ

,
(A1)

where 0 means that the vertices vanish under the inflation pro-
cess. Since there are two kinds of the C vertices in the tiling,
we have introduced C1 and C2 vertices. Under the deflation
process, a C1σ vertex is not changed from any vertex but is
generated inside of each square with spin σ̄ , Sσ̄ , as shown in
Fig. 2. Therefore pC1σ = pSσ̄ /τ 2 = 1/2τ 3, where the fraction
of the squares with spin σ is pSσ = Sσ /

∑
σ ′ (Sσ ′ + Rσ ′ ) =

1/2τ . Another C2σ vertex is always generated from the Aσ

vertex, pC2σ = pAσ /τ 2. Note that C1 and C2 vertices always
appear as the nearest-neighbor pair in the tiling, as shown
in Fig. 4. Therefore, we can say that the C2 vertex is also
independent of spin. Since the C2σ vertex is always changed
to the Aσ (Eσ ) vertex under the inflation (deflation) process,
pAσ = pA/2 (pEσ = pE/2). Two Bσ vertices are generated
inside of each square Sσ and each rhombus Rσ , as shown in

115125-8



SUPERLATTICE STRUCTURE IN THE … PHYSICAL REVIEW B 102, 115125 (2020)

FIG. 14. Quarter of the domain D4. Shaded regions represent the
D1 domains and octagon regions bounded by the solid lines represent
the D2 domains.

Fig. 2. This implies that the fraction of the B vertex is inde-
pendent of the spin, pBσ = pB/2. All Bσ vertices are changed

to the Dσ vertices under the deflation process. Therefore, the
D vertex is also independent and immediately we find that
the F vertices are also independent. Then, we can say that all
vertices are independent of spins. Namely, the Fi vertices are
also independent since the Fiσ vertices are generated from the
Fi−1,σ vertices and the F1σ vertices are changed from the C2σ ,
Dσ , and Eσ vertices under the deflation process.

APPENDIX B

We clarify how the net number of the confined state for
each domain is obtained numerically, by considering the D4

domain as an example. The quarter of the D4 domain is
schematically shown in Fig. 14. It is clearly found that, in the
D4 domain, there exist 104 D1 domains and 16 D2 domains
(N41 = 104, N42 = 16, and N43 = 0). The total number of the
confined states in the D4 domain is obtained as N tot

4 = 324 by
means of the exact diagonalization. Then, we obtain the net
confined state for the D4 domain as

Nnet
4 = N tot

4 − N41Nnet
1 − N42Nnet

2 − N43Nnet
3 = 20. (B1)
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