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Quantum criticality in the spin-isotropic pseudogap Bose-Fermi Kondo model: Entropy, scaling,
and the g-theorem
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We study the behavior of the entropy of the pseudogap Bose-Fermi Kondo model within a dynamical large-N
limit, where N is related to the symmetry group of the model. This model is a general quantum impurity model
that describes a localized level coupled to a fermionic bath having a density of states that vanishes in a power-law
fashion near the Fermi energy and to a bosonic bath possessing a power-law spectral density below a cutoff
energy. As a function of the couplings to the baths, various quantum phase transitions can occur. We study how
the impurity entropy changes across these zero-temperature transitions and compare our results with predictions
based on the g-theorem. This is accomplished by an analysis of the leading and subleading scaling behaviors.
Our analysis shows that the g-theorem does not apply to the pseudogap Bose-Fermi Kondo model at the large-N
level. This inapplicability originates from an anomalous contribution to the scaling function in the hydrodynamic
regime where kg7 > fiw which is absent in the quantum coherent regime, i.e., for kg7 < fiw. We also compare
our results with those obtained for the Sachdev-Ye-Kitaev model.

DOI: 10.1103/PhysRevB.102.115124

I. INTRODUCTION

Quantum phase transitions (QPTs) have been a central
topic of condensed-matter research [1,2]. This is due to a
number of reasons. There is, e.g., mounting evidence of
a close link between unconventional superconductivity as
observed in the cuprates, iron selenides, or 4 f-based heavy-
electron compounds and the occurrence of the so-called
strange metal behavior at elevated temperatures in these su-
perconductors. This strange metal phase is characterized by
a linear-in-temperature relaxation rate and a logarithmically
[in temperature (T')] increasing specific heat [3,4]. Moreover,
aforementioned unconventional superconductivity is com-
monly found at the border of magnetism. This observation
has led to the speculation that the strange metal out of which
superconductivity emerges is caused by a quantum critical
point (QCP) hidden under the superconducting dome. There is
also an increasing amount of evidence that quantum criticality
in strongly correlated metals defies a description in terms of an
order-parameter functional [5,6]. Moreover, at least for rare-
earth-based intermetallics it has been demonstrated that the
general phase diagram of this materials class can be organized
around the different possible QCPs [7-10].

QPTs are phase transitions that take place at zero T and
that can be accessed through some control parameter like
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pressure, chemical doping, or magnetic field. In contrast to
classical phase transitions which occur at nonzero 7 and are
driven by the competition of internal energy and entropy,
QPTs are a ground-state property. The T = 0 entropy is tied
to the ground-state degeneracy, which is expected to vanish
as required by the third law of thermodynamics. An increase
of the entropy at finite 7 in the vicinity of a continuous
QPT may, however, still be expected due to the competition
of the phases that brings about the QCP. This in turn may
promote the emergence of novel order, e.g., superconductiv-
ity, in order to avoid the accumulation of entropy associated
with proximity to the QCP. A situation that appears to be
realized in CeRhlns, a heavy-electron compound, where a
QCP with critical Kondo destruction is hidden beneath the
superconducting dome [11]. CeCug_,Au, is a rare-earth inter-
metallic compound that undergoes a Kondo-destroying QPT
atx =~ 0.1 which separates a magnetic from a Kondo-screened
paramagnetic phase. The multidimensional entropy landscape
of CeCug_,Au, above the QCP and its relation to quantum
critical fluctuations has recently been mapped out [12] which
demonstrated a direct link between quantum criticality and the
entropy accumulation at finite 7 near the QCP. Such entropy
accumulation in the vicinity of quantum criticality may form
the basis for dedicated cooling devices in terms of adiabatic
processes across the critical coupling [13].

In generic bulk systems, one expects the residual (7 = 0)
entropy to vanish identically in accordance with the third
law of thermodynamics. The situation is different in quantum
impurity systems which may possess intermediate coupling
fixed points that are characterized by a finite residual entropy.
Quantum impurity models capture the interplay between a
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local and discrete quantum mechanical degree of freedom,
e.g., a magnetic moment, that hybridizes with a continuous
and gapless bath of fermionic or bosonic modes and thus
forms an important testing ground for understanding that in-
terplay. A well-known example is the isotropic two-channel
Kondo model which possesses a residual entropy +/2 which is
understood in terms of a Majorana zero mode [14-16]. Here,
this impurity entropy is defined as the difference between
the entropies of the full quantum impurity model and that of
the gapless host in which the impurity is embedded, i.e., the
bath. As such, it is per se not bound by thermodynamic re-
quirements and could, e.g., even increase as T decreases. The
impurity entropy S can in principle be measured in systems
with sufficiently low concentrations of quantum impurities,
such that contributions to S beyond the lowest, nontrivial order
in the concentration can be ignored.

In this paper, we address the behavior of the impurity
entropy of a class of quantum impurity systems that fea-
ture critical Kondo destruction. Among the simplest quantum
impurity system that can undergo a Kondo-destroying QPT
is the pseudogap Kondo model [17]. In this model, a QCP
separates a Kondo-screened local Fermi-liquid phase from a
phase where the local moment remains unquenched down to
T = 0. The critical properties of this model have been studied
extensively using numerical and other renormalization group
approaches [18-20], as well as, e.g., dynamical large-N [21],
local moment [22,23], and Monte Carlo methods [24,25].
Physical realizations of this model include certain quantum
dot structures [26] and disordered metals containing contain-
ing low concentrations of magnetic moments [27].

II. MODELS OF CRITICAL KONDO DESTRUCTION

The Bose-Fermi Kondo model (BFKM) is a quantum
impurity model that has been introduced in the context of
Kondo-destroying quantum criticality which occurs in cer-
tain rare-earth-based heavy-electron intermetallics like, e.g.,
CeRhlIns, CeCug_,Au,, or YbRh;Si; [5,28,29] (see also [30]).
Kondo-destroying quantum criticality has been attracting con-
siderable interest as it defies a description in terms of an
order-parameter functional [5,6,9,10,31]. This is most clearly
reflected in the Fermi volume jump observed in YbRh,Si,
and from thermodynamic and transport properties at finite 7
above the QCP and which are indicating a linear-in-7" relax-
ation rate [32—-34]. This linear-in-T relaxation rate has been
interpreted in terms of w/T -scaling of the magnetic response
as, e.g., observed in CeCug_,Au,. More recently, /T -scaling
in the charge response of YbRh;Si, has been detected in
the vicinity of the magnetic QCP [35]. As nontrivial w/T -
scaling is not expected within the standard Landau-Ginzburg
framework for magnetic criticality [1,36], it can serve as
a diagnostic tool for unconventional criticality. It has been
demonstrated that the spin-isotropic BFKM displays w/T -
scaling at its Kondo-destroying QCP [37,38]. In the BFKM,
Kondo screening becomes critical due to the competition with
a singular bosonic bath. Its properties have been investigated
using a range of methods. The large-N limit of the BFKM
has been considered in Ref. [37] while renormalization group
(RG) methods have been used in Refs. [39,40]. The model
has also been addressed using numerical renormalization

group (NRG) generalizations to include bosons [41,42]. The
spin-anisotropic BFKM includes the spin-boson model as a
limiting case. The BFKM arises within the extended dynam-
ical mean field or EDMFT approach to quantum criticality in
rare-earth intermetallics which maps the Kondo lattice model
to a BFKM augmented with a self-consistency condition [5,9].
The model also arises in quantum dot structures attached to
ferromagnetic leads [43,44].

In the pseudogap BFKM, gapless bosonic and fermionic
baths are coupled to a local moment. The dynamics of this
model is described by

Hpeprrm = Hpain + Hp—s, (D
—f =
Hyan = ZEkC,:aCk,a + qu(bq(bq,
k,o q

JL
Hy s = JLS's% + TK(SH; + 8575

TS5+ 00) +" DS (40" + @),

i=x,y

@)

where Hy,p denotes the bath part and H,_g describes the
coupling between bath and impurity degrees of freedom. Ji¢
and J Ig are the transversal and longitudional Kondo exchange
coupling constants between the local moment S and the spin
density of the fermionic bath at the impurity location, given
by s% = Zk,k’(CZTCkT - CZ¢Ck¢)’ st=30 CZTCH, and s~ =
(sT)T. g* and g are the transversal and longitudinal couplings
between the local moment and the bosonic bath, and w, (&)
is the bosonic (fermionic) bath dispersion. The pseudogap
density of states (DOS) of the fermionic bath is characterized
by a power-law dependence as the Fermi energy (er = 0)
is approached, i.e., ) , 8(w — &) ~ |w|"O(D — |w|), while
the bosonic spectral density is characterized by a sub-Ohmic
behavior at low energies, i.e., Zq[S(a) —wy) — 8w+ wy)] ~
|o|'~“sgn(@)O(A — ||).

The pseudogap BFKM model contains as special cases
the pure pseudogap Kondo model (gt =gl =0) and the
Bose Kondo model (r = 0). Each of the two allow to criti-
cally destroy Kondo screening either through the depletion of
fermionic screening states or via the coupling to a singular
bosonic bath that can compete with spin-flip scattering be-
tween fermionic bath and local moment. The combination of
the two possibilities of Kondo screening suppression in the
pseudogap BFKM thus allows to study the interplay of both
effects near critical Kondo destruction. As a result, the general
phase diagram of this model is correspondingly rich. So far, it
has been studied using perturbative RG in the spin-isotropic
case, e.g., for gl = g” and J,Jg = J,ﬂ [45,46] and in the easy-
axis case (gt =0 and Jg = J,@) using NRG [47,48], and
continuous-time quantum Monte Carlo (CT-QMC) methods
[48,49]. Here, we will study the SU(2)-symmetric pseudogap
BFKM in a dynamical large-N limit, where the SU(2) sym-
metry group is enlarged to SU(N).

The dynamical large-N method is not capable of cap-
turing the local Fermi-liquid fixed point and instead results
in an intermediate coupling fixed point that corresponds to
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an overscreened multichannel Kondo ground state possess-
ing non-Fermi-liquid properties [50,51]. This shortcoming
notwithstanding, the large-N method yields controlled results
for the critical properties of the pseudogap Kondo model and
sub-Ohmic BFKM that are in line with those obtained using
NRG and CT-QMC [24,38,52].

In quantum impurity models with a bulk component that
is conformally invariant, a conformal mapping can be found
to obtain boundary correlators at temperatures 7 > 0 from
their 7 = O counterparts [53,54]. A two-point correlator of a
primary conformal field ¢ with scaling dimension A exhibits
at T =0 a power-law decay (®(z,7 =0) ®(0,T =0)) ~
7722, This gives rise to a scaling form [55]

7T 2A
) 3

Xoo(T, T) = (©(z, T) ©(0,T)) ~ (m

at T # 0. The Fourier transform of Eq. (3) implies an
w/T-scaling form of x¢¢(w, T), provided 0 < 2A < 1 (see
Appendix D). For the boundary entropy of conformally in-
variant systems, a relation known as the g-theorem exists,
linking the boundary contribution to the fixed-point entropy
with the renormalization group (RG) flow [53]. According
to this theorem, the boundary entropy decreases along RG
trajectories. A proof of the g-theorem has been provided in
Ref. [56].

The pseudogap BFKM does not possess conformal invari-
ance. Both the pseudogap DOS of the fermionic bath and
the sub-Ohmic spectral density of the bosonic bath break
conformal invariance. Interestingly, a scaling behavior as in
Eq. (3) for t — B/2 at sufficiently large B has been reported
to emerge near quantum criticality in a range of models
which can be viewed as special cases of the pseudgap BFKM
[24,25,38,57].

The emergence of the scaling form (3) is confined to the
scaling regime of the associated QCP and does in itself not
imply the applicability of the g-theorem. It is thus not a priori
clear if it is at all possible to relate the boundary entropy to the
RG flow. In this paper, we are primarily concerned with the
fate of the g-theorem of the pseudogap BFKM in the so-called
large-N limit specified below. In contrast to earlier results
[46], we find that the g-theorem is not fulfilled in the pseu-
dogap BFKM model. We benchmark our approach against the
pure Kondo model which is conformally invariant as well as
against the so-called Sachdev-Ye-Kitaev (SYK) model in the
large-N limit.

In the following, we introduce the Hamiltonian of the pseu-
dogap BFKM in Secs. III and IV discusses the dynamical
large-N limit and the evaluation of the impurity entropy. In
Sec. V, we present our results for the scaling function in
and t and the boundary entropy at the various fixed points.
This leads us to conclude that in the pseudogap BFKM the
boundary entropy does not always decrease along the RG
flow. We trace back this breakdown of the g-theorem to an
anomalous contribution to the t7T-scaling function present at
all intermediate fixed points. A summary recapitulates our
findings and puts them in perspective. Appendices A-F con-
tain supplementary results and details.

(a)

Uy

T r=20 Jr O<r<re Jx > Te
MCK I MCK c
C
LM M & LM M - & LM LM g

FIG. 1. (a) Sketch of the BFKM. (b) Flow diagram for different
values of r and 0 < € < 1. For the case considered in this paper (k =
M/N = %) one finds . & 0.3115. For details, see main text.

III. SU(N) x SUM) MODEL

We study the large-N version of the multichannel BFKM,
featuring a quantum spin (S) coupled to gapless fermionic (c)
and bosonic (®) excitations, as illustrated in Fig. 1(a). In the
large-N version of the model the SU(2) degree of freedom is
generalized to SU(N) and the fermionic fields transform under
the fundamental representation of SU(N) x SU(M ), where M
represents the number of degenerate charge channels of the
fermionic bath. Likewise, the N-component bosonic vector
fields transform under SU(NV). The system is thus described
by the Hamiltonian

— i T
H = ZSka(kaaa + Za)qCDqCDq
koa q

JK 8 -
+ ESse 4+ Y S8 + ), (4)
N /N ; q 9q

where o and « are, respectively, the SU(N)-spin and SU(M )-
channel indices and p, ¢ are momentum indices. The total c-
electron spin-density at the impurity site is

Se = Z Zc;aatclr,a’cp’a’a- (%)

a,0,0' p,p

In this equation, the generators of su(N) in the fundamental
representation are referred to as t/ (i=1, ... ,N2 —1). The
large-N limit is taken in such a way that the ratio k = M/N
is kept fixed while N — oo and M — oo. Note that the
fermionic and bosonic baths are fully characterized by their
local spectral properties. For the fermions we consider a den-
sity of states (DOS) of the form

Ac(@) = Ao (D — |w))]wl’, (6)

where D is a high-energy cutoff. Ay is fixed through
f dwA.(w) = 1. In what follows, we focus on r € [0, 1[. The
pseudogap Kondo model with negative r has, e.g., been stud-
ied in Refs. [58,59]. The bosonic spectral density is taken to
be of the form

As(@) = Ag,sign(@)0 (A — w)]w|' ™, (N
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where A is a high-energy cutoff, € € [0, 1[ character-
izes the sub-Ohmic DOS, and Ag, is chosen such that
[} doAgy (@) = 1.

AtT = 0, the phase space of the pseudogap BFKM encom-
passes a number of fixed points. The nature of the fixed points
and the structure of the flow diagram depend on the values of
rand €. For 0 < r <1 and 0 < € < 1 there are three cases
that need to be distinguished [see Fig. 1(b)].

For r = 0, the standard Bose-Fermi Kondo model is ob-
tained [5,39]. Its large-N version possesses an over-screened
multichannel Kondo phase (MCK) at small g/J which is
separated from a critical local moment phase, controlled by
(LM'), by an unstable critical point (C’) that features critical
Kondo destruction [37]. The unstable trivial fixed point (LM)
corresponds to the fully decoupled impurity.

In the presence of a pseudogap, i.e., r > 0, the suppression
of the electronic DOS at the Fermi energy makes the MCK
fixed point less stable and leads to the appearance of a further
critical point (C). Beyond a critical value of r, i.e., r > r,
the suppression of the electronic DOS is so effective that the
MCK fixed point disappears leading to a phase diagram where
LM’ is the only stable fixed point. Note that the standard
Kondo problem corresponds to M =1 and N = 2. In this
exactly screened case, the MCK gives way to single-channel
Kondo physics which is governed by a strong coupling fixed
point (Jx — o0) and displays Fermi-liquid signatures. Within
the large-N description adopted in this paper, this strong cou-
pling fixed point is out of reach.

The characterization of each phase and the scaling laws
for the different quantities were obtained in [37-39] both by
perturbative RG and large-N methods. In particular, it was
found that the T = 0 scaling properties in the characteristic
quantum critical fan are in line with dynamical w/T -scaling
(see below) [2,37,39].

IV. METHODS

A. Dynamical large N

We resort to a pseudofermion representation of the local
spin, i.e., S'=Y", . fitl . f,. Here, ti(i=1,...,N> = 1)
forms an antisymmetric ’representation of su(N) fixed by
imposing the constraint Q = Y fIf, = ¢N. A dynamical
Lagrange multiplier A enforces the constraint within the func-
tional integral formalism. We have chosen ¢ = % in this work.

The imaginary-time action for the pseudogap BFKM (4) is

given by

SN = - f (Chao8c ' Char + P83 Pg + f87 ' fo)

T

J
+ / [ﬁKf;fa’czg/ack’aa_)"qON

8 iy i it i
+ﬁf;fa,fm,(q>q +c1>q)}, ®)
with g.(iw,) = (iw, — €)~" and go (iv,) = (v, — w,)~" are,
respectively, the fermionic and bosonic degrees of freedom
of the bath modes where iw, = 27i(n + 1/2)/8 and iv, =

2min/B, n € Z are the fermionic and bosonic Matsubara fre-
quencies. The bare pseudofermion Green’s function is defined
as gr(iw,) = (iw, — A)~ L

In the following, we employ a dynamical large-N pro-
cedure [21,37,50,60] briefly described in Appendix A and
summarized below for convenience. The procedure consists of
introducing a bosonic Hubbard-Stratonovich field B to decou-
ple the fermionic interacting term. This allows us to integrate
out the bath degrees of freedom and to recover an action solely
in terms of local fields. The interacting terms in the action are
subsequently decoupled with the help of two sets of bilocal
fields W and Q.

For the impurity contribution to the free energy N
associated with Eq. (8), we write finp = FPIN _ £k, Where
Jfoulk denotes the bath contribution defined as the free energy
associated with Hp,y, [Eq. (4)] for Jx =0 =g. As shown
in Appendix A, the impurity contribution of Eq. (8) can be
written as

fDLN

Foy = / [O(1)O(—1) + W (—TW (1) — go()]

+TkTrin (= Gg') = TTrin (= G;'),  (9)

where G;' = ¢;' — Spand G;' = ¢;' — Ty and

Xp(1) = — g(=1)Q(7),
2p(1) =0(v) + gW () + gga(T)W (7).

Note that the definition of the Hubbard-Stratonovich fields is
slightly different to that used in Refs. [24,37,50,60]. As shown
below, this change in the Hubbard-Stratonovich fields does
not affect the self-energy values at the saddle point but is more
convenient in the present context. The decoupling scheme
chosen here avoids the generation of a temperature-dependent
Jacobian, related to g.(7) and g¢(7), which would need to be
properly taken into account when evaluating the impurity en-
tropy. Formally, both definitions of the Hubbard-Stratonovich
fields are equivalent and lead to identical values for the self-
energies and impurity entropy but the choice adopted here is
more convenient when explicitly evaluating the temperature
dependence of the impurity entropy.

The partition function in Eq. (9) is suitable for a saddle-
point approximation

(10)

8 fimp

=0, 11
X (11)

where X represents Q, Q, W, W, A. The propagators for f and
B are determined by the saddle-point equations which relate
proper self-energy contributions to the bilocal fields. In the
limit of N, M — oo (while « is kept constant), the saddle-
point approximation

0(t) = =Gy(7), (12)
O(t) = —kGp(T)ge(T), (13)
W(r) = —gGy(1), (14)
W(r) = —gG(t)go(—1) 15)

becomes exact [21,37,50,60].
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FIG. 2. Leading-order contribution. Each vertex contains factor

of \/; . Summation is assumed for all o, @ which makes the diagram
order N.

This procedure yields the following self-consistency equa-
tions (for details, see Appendix A):

Tp(1) = B(r) + BH(1) (16)
= —kGp(1)g(1) — G (1)80(7),
Tp(1) = Gp(1)ge(—T) (17)

with 24(7) = g¢(7) + go(—7). This redefinition is equiva-
lent to extending the sum over ¢ from positive w, to negative
values with w_;, = —w,. The local spin susceptibility at the
saddle point is given in terms of the pseudoparticle propagator
Gy as

x(1) = Gp()Gy(=7) (18)

while the local 7-matrix is obtained as the convolution of
G¢(w,T) and Gp(w, T) from

T(t) = G(1)Gp(—7). 19)
At the saddle point, the free energy is given by

Simp =/[KGB(T)gc(T)Gf(T)+82Gf(_f)g<l>(f)Gf(T)]

+TiTrln (= Gg') = TTrln (= G;') —hgqo (20)
and f;, naturally assumes the form
Jimp = PGy, Gp, Al =T TeGy Xy + Tk TrGpXp
+ Tk Trln (—G3') = T Trln (=G, ") — Ago. (21)

Recognizing ® as the Legendre transform of fin,, the sta-

tionary condition in Eq. (11) translates to

i )y B 22

3G, ~ Mo a (a=f,B), (22)
where ny =1 and ngp = —1. Equation (22) identifies &,
depicted in Fig. 2, as the corresponding Luttinger-Ward func-
tional. Our derivation shows that a rigorous large-N limit is
equivalent to a conserving approximation in the Kadanoff-
Baym sense [61-63] (see also Appendix C). Identifying
Luttinger-Ward functionals through associated saddle-point
limits is one way of constructing such functionals in a non-
perturbative manner [64].

The relation between G, and %, is given by the Dyson
equation G, ! = g-! — ¥, with a = B, f and where the bare
propagators are given by gp = —Jx and gy = ﬁ As B is
a Hubbard-Stratonovich decoupling field, its bare part only
depends on the coupling constant and any dynamics has to be
acquired through interaction effects. In addition to Egs. (16)
and (17), Gy has to respect the constraint Gy(t — 07) = qo,
which is enforced through the Lagrange multiplier 1. For the

relation between the free energy and the saddle-point action §
one finds f = §/B. From the entropy

deLN
ar

we can split off the impurity contribution, defined by sim, =
Stull — So, Where sgy; is the total entropy of the system and s
is the contribution of the bath in the absence of the impurity.
Note that, defined as a difference, sim, does not need to obey
the second law of thermodynamics. In the remainder, we
will omit the subscript on $imp, i.€., § = Simp. As detailed in
Appendix B, we obtain

Stal = — N (23)

== ir_w{arnbw)x im{In[ - Gj'(@)]}

+ np(0)kIm[—Gp(w)drA(w)]
+ rnp(@)m{In[ — G;' ()]} (24)
+ 1y (0)Im[G s ()37 B(w)]

1
+ 8Tnf(w)lm[2}(w)Gf(w) + EEf(w)Gf(w)} }
where the imaginary parts of drA(w) and d7 B(w) are

da)/ U /

Im o7 A(w) = / — Gy (o)
b4
x gi(w' — w)dr[ng(@) — np(@ — w)], (25)

dv , ,

Im 37 B(w) = / —£&()

X G;ﬁ(a) —v)or[ns(v — o) + np(v)] (26)

and the reals parts are obtained through Kramers-Kronig rela-
tions.

B. Scaling

Asymptotically exact results for the frequency behavior
of Gy and Gp in the T = 0O limit can be obtained through a
scaling ansatz. Following Parcollet et al. [S0], we set

Gr(r) = —Ay (%)af —Az(%)a} + -, 27
Gp(r) = —Bl<%)% — Bz(%)a;g +- (28)

valid at T = 0 and for T > 1y, where g is a short-time cut-
off. The real-frequency counterpart of these expressions is
obtained via analytic continuation of the Fourier transform
as outlined in Appendix D. For G,(7) = —(%)"‘” (a=f or
a = B), one finds in the T = 0 limit,

op

.+ jTTO B ag—1
Gpw+i0", B — 00) = — X, |o|*77, (29)
[(ap) **
+ ”Tgf f 1
G 0", 8 —> 00) = — X “r 30
rl@+i07, B ) T(a)) P (30)
where  XB =tan (") +isgn@)  and X[ =

— cot (%)sgn(a)) + i [see (D7) and (D8)].
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TABLE 1. Scaling exponents of G and G/ at the various fixed
points.

C r+oar=1—oag
MCK K=%

(ol o =€/2,ap=1—(r+€/2)
LM’ af=¢€/2,ap=1+(r+¢€/2)

Inserting these expressions into the saddle-point equations
(12)—(15), one obtains oy and ap (see Appendix E). For
the special case r = 0, similar results have been reported in
[37,43]. Our results for o and op reduce to those of Ref. [21]
for the pure pseudogap Kondo model at large N. Moreover,
the large-N exponent for the 7-matrix of the pseudogap Kondo
model at the multichannel Kondo fixed point agrees with
that of the SU(2)-symmetric pseudogap Kondo model at its
strong coupling fixed point [18,65]. Our results for the leading
behavior, i.e., oy and ap, are summarized in Table I. From
the scaling ansatz for G; and G one also obtains y(w) ~
lw]? ! and T (@) ~ |w|* T~ to leading order.

In the pseudogap BFKM, both fermionic and bosonic baths
break conformal symmetry but for = 0 and in the absence of
a bosonic bath (g = 0), the Hamiltonian possesses conformal
symmetry. The resulting invariance can be used to extend the
leading-w behavior scaling ansatz to the leading-7 depen-

dence. One obtains
ol \¥
G.f-(r,m:(. > ) +o- 31)
sinmtT

and likewise for Gg. The ... in Eq. (31) stand for sublead-
ing corrections. This form for Gy and Gg, fully determines
low-energy properties, in particular, the fixed-point (or
zero-temperature) entropy [50]. Equation (31) implies w/T -
scaling, i.e.,

G, T)=TY "' ®s(@/T)+ - (32)

in the scaling regime, provided oy < 1 which is necessary
for the Fourier integral to converge [corresponding state-
ments apply to Gg(w, T)]. It follows from Egs. (31) and (32)
that Gf(w, T =0) ~ %~ and Gi(w=0,T)~ T~ The
marginal case oy = 1, which is, e.g., relevant for the standard
Kondo problem, where the strong coupling fixed point is
described by a boundary conformal field theory, requires an
extra energy scale in order to regularize the Fourier transform
(see Appendix D). This energy scale can be identified with the
Kondo temperature Tx. As a result, a somewhat trivial w/T -
scaling ensues in this case in the limit 7 <« Tx and o < Tk.

In what follows, we will pay particular attention to the
terms represented by the ellipses in Eq. (31). The 7 =0
form of these subleading terms can be determined from the
saddle-point equations in a fashion analogous to the leading
behavior (see Appendix E). As far as the extension to 7 # 0
is concerned, a form reminiscent of Eq. (32) may apply to
the subleading terms as well, albeit with a different scaling
exponent a} > ay. Even in that case will the sum of leading
and subleading terms together not be of the form of Eq. (32).
In other words, the subleading terms necessarily break the
/T -scaling form of Eq. (32).

C. Numerical solutions

A numerical solution of the large-N equations (12)—(17)
for given set {r, ay, Jx, g D, A} of parameters can be ob-
tained iteratively at 7 # 0 and all w. This is accomplished by
Fourier transforming the saddle-point equations to Matsubara
space followed by analytic continuation to real frequencies.
The self-consistent equation for the self-energies follow as

" oe d'x /" //
Yi(w) = —« / —Gp(0)g (@ —2)[np(x) +ny(x — w)]
_ T

400 d
_2g2/ ;xg’c’b(x)G}(w —X)
x [np(x) + np(x — w)], (33)

" oo dx u /!
Zh00 = [ ZGHmg = vl = e = )l

o0

(34)

In order to resolve the T = 0 power-law divergences of
G¢(w, T) and Gg(w, T'), a logarithmically dense energy mesh
is used. To improve convergence of the self-consistency prob-
lem, a modified Broyden’s scheme is employed [66]. In this
work, the criterion used for convergence is that the frequency
integral over the absolute value of the difference of two solu-
tions of two consecutive iterations has to be less than 1075.
Once convergence has been reached, the impurity entropy
s(T), t-matrix T (w, T), and local spin susceptibility x (w, T)
can be obtained from G¢(w, T) and Gg(w, T).

D. Zero-temperature entropy

As our goal is to test the validity of the g-theorem for
the pseudogap BFKM, the fixed-point value of the entropy is
required at all fixed points across the phase diagram. The ex-
pression in Eq. (24) simplifies in the 7 = 0 limit provided the
local Green functions, i.e., Gy and Gg, display w/T -scaling,
in which case the only contribution to the impurity entropy
comes from the logarithmic terms in Eq. (24). As will be
demonstrated below, the local Green functions indeed obey
G w,T)=T%%'®,(w/T) (a = B, f in this equation distin-
guishes between the bosonic and fermionic Green function) at
all fixed points except the weak coupling fixed point (LM).

In this case, the leading part of the free energy, for small 7',
is given by

Jimp = K¢ /0 df[alg($> —ap(—00) + 2Knb(—w)a3($)}

O dw w w
+ /,Oo 7[%‘(7) —ap(=00) = 2”f<—“’>“f(?)]f
(35)
with
T — G}(a),T)
asp(w/T) = arctan m
Gi(w,T)

aB(a)/T) = arctan m
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In terms of these functions, the 7 = O limit of the entropy
follows as

0 P
§ = — / 70)[/(613((’2)) — KaB(_OO) + ZKnb(_d))aB((b)

—00

+ap(®) — ap(—00) = 2np(—d)ar(®)], (36)

where ng and ny are the bosonic and fermionic distribution
functions.

V. RESULTS

We now turn to a discussion of the numerical results,
obtained from a self-consistent solution of the saddle-point
equations (16) and (17) for T # 0.

A. Green functions

The local Green functions Gp and Gy display power-
law behavior at 7 = 0 and low frequency, i.e., Gy p(w, T =
0) ~ w5~ near the fixed points (C, C', LM’, MCK). ap
and oy can be obtained from the scaling ansatz [Egs. (27)
and (28)] and are listed in Table I. In the following we
focus on a representative set of k, r, and € to discuss our
results. We choose k = &, r = i, and € = % which corre-
sponds to exponents oy = (0.052, 0.2, 0.2,0.338) and ap =
(0.698, 0.55, 1.45, 0.412) for fixed points (C, C’, LM’, MCK),
respectively. At T # 0, by transforming Eq. (3) into real fre-
quencies (see Appendix D), one obtains

272\* 7! o T« iBow o iBw
Grw) = — = gl L _PE 2 P
7(@) (5) fo [2 2 2+27'[:|

x| — cot Tey sinh ﬁ—w + icosh ,B_a) , 37
2 2 2

2 0{371 . .
oan=—(3) o222
B

o o .. Po

X (tan 5 cosh > + isinh > ), (38)
where B(x,y) is the Euler beta function and a numerical
prefactor, equivalent to A; of Eq. (E1) and B of Eq. (E2) has
been set to one. Equations (37) and (38) can be compared with
the numerical solution of the saddle-point equations (16) and
(17) for T # 0. First, we establish that the low-T behavior
of Gf(w, T) and Gg(w, T) is in line with the results obtained
from the scaling ansatz for 7 = 0 and w — 0.

Figure 3  displays Im[G/(w,T = 10°D)] and
Im[Gs(w, T = 107°D)] [D is defined in Eq. (6)] near
the intermediate coupling fixed points. Evidently, both
Green functions display power-law behavior for v > T and
below some high-energy cutoff 7 which can be identified
with min[A, T,?], where TI? is the Kondo temperature
associated with the Kondo model with g =0, »r =0 and
all other parameters left unchanged. It follows from the
Kramers-Kronig relation that the real parts of Gy and Gg
feature corresponding power-law behavior. Clearly, the
numerical results confirm the conclusions drawn from the
scaling ansatz.

From the numerical results we can obtain the 7 behavior of
the Green functions Gy and G and consequently obtain the

— (a) — (b) MCK: ~x0:59 -

& & 108 LM'; ~x045 -

o 18— o C': ~x045

I T C: ~x0:30 -

= =

34004 C: ~x'g':g 3

= C"; ~x0- 3 o

9 LM'; ~x 080 -~ 1 S.o-

E MCK: ~X—0.66 . E

- 1078- I. ) T - - T ) L}
1010 105 100 1010 105 100

w/D w/D

FIG. 3. Numerical results of Green’s function with leading
power-law fitting at different fixed points. (a) Im[Gj(w, T =
107°D)], (b) Im[Gp(w, T = 107°D)].

static susceptibility from yg.(7) = Re[x(w =0, T)]. Fig-
ure 4(a) shows the T dependence of G;(w = 0, T'). Power-law
behavior is found in the scaling regime associated with each
of the intermediate coupling fixed points. The observed power
law in T is compatible with the w behavior of Gf(w, T = 0)
and points toward w/T-scaling. This is indeed observed as
shown in Fig. 4(b) for G, and Fig. 4(c) for G near the fixed
points C, C’, LM/, and MCK. In each case, we find that the
Green function G,(w, T) (a = f or B) obeys

Gy, T) =T '@ (w/T) (39)
to leading order and with a scaling exponent that agrees within
numerical uncertainty with the corresponding exponent from
Table I. From the scaling behavior of G and Gp one can infer
a related scaling for 7 and yx. This is explicitly demonstrated
in Fig. 5 for the critical point C'.

10124 (2) C: ~x0-95 -

0)]

Im[Gf(w

= 24
= 10
3
O, 1041
E
3
10101 e :
= MCK: ~X0'41'1
T T T T * T . T
100 10° 1010 100 10° 1070
w/T w/T

FIG. 4. (a) Temperature dependency of Im[G(w = 0)] and the
power-law fitting at different fixed points. (b), (¢) w/T -scaling be-
havior of G(w) and Gg(w) with the exponent obtained from scaling
ansatz.
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(@) =0.20 (b) ._ a=0.55
o~ A = 1001 b
|_“ 10 N er-1 - |_h / ~\<o<—1 -
3 \ 3 / N
~ \ ~ / N
— \ 0 1654 / ™.
] \ 10 / L
‘£ 10°7 \\ % / :
3 T/D=10" — N | 5 / ot —
z 10 N |2 1ot o
Tiond 107 N F T/D=10
1010 10* 102 108 10710 104 102 108
w/T w/T
1 (O
— 10° S
= /,’
3 /
<107 /
E E
Z o] /101 — e T/D=10"1 —
= 10 ~ 107
T/D=10° - , , 109 .
T T T T 107 T T T T
1010 104 102 108 1010 104 102 108
w/T w/T

FIG. 5. Numerical results of w/T-scaling at C' fixed point for
(a) Gy(w), (b) Gg(w), (c) x(w), (d) G(w). The parameters are r =
1 2 1

pETSHH=a

The imaginary-time (7) dependence of the various correla-
tion functions is obtained from

T

O(e.1) = =1 [ do——Imi@(+i0". ). @0
e -1

where 0 <7 < 1/T and n=— (n=+) for a fermionic
(bosonic) correlation function. The t dependence of G¢(t, T')
and Gp(t, T) at the intermediate fixed points C, C’, LM’, and
MCK is shown in Fig. 6. It follows that the Green functions
Gy(t,T) and Gg(t, T') collapse in terms of 77/ sin (T at
the intermediate fixed points C, C’, LM/, and MCK. It follows
that local multiparticle correlators display a related scaling
due to a Wick-type decomposition of higher correlation func-
tions, valid at the saddle point, in terms of G(tr,T) and
Gp(t, T). The observed scaling to leading order is compatible

103 10° 10°

— . \510—10 - /’/
O g / C:~X0'052 - / C:~X0'697
C"~XO'199 - C':~XO'553 —]
LM':~x°-2°4 -] LM": ~x1:450
/7 MCK:i~x0336 - 10767 7 MCK:~x0413 -

T T ) ]
1010 105 100 1010 _10*5 100

nT/sin(mTT) nT/sin(mTT)

FIG. 6. Numerical results of Green’s function with leading
power-law fitting at different fixed points. (a) G¢(z, T'). (b) Gp(z, T')
at the intermediate fixed points C, C’, LM’, and MCK. The dashed
lines indicate the leading power-law behavior. The exponent is in
line with oy and a from Table 1.

with

ntyl

¢
Ga(1) = —( ) O<t<1/T) (@)

sin(wtT)
for a = f, B and with the scaling exponent 0 < ¢ < 1 such
that the results of Appendix. D apply. Such scaling collapse
is reminiscent of the one expected for a boundary conformal
field theory and would suggest that the boundary entropy
in the pseudogap BFKM respects the g-theorem. As will be
discussed in the next section, we do, however, observe an
extra contribution to Eq. (41) in the dissipative regime, i.e.,
for T > w, which is compatible with w/T -scaling but affects
G,(t,T) near t = 1/(2T). As a result, the g-theorem is vio-
lated in the pseudogap BFKM.

B. Boundary entropy

Having established the behavior of G; and Gg in the
vicinity of the intermediate fixed points C, C/, LM/, and
MCK, we are in a position to obtain the boundary entropy
at the various fixed point and assess the applicability of the
g-theorem to the pseudogap BFKM at the large-N level. This
theorem addresses the behavior of the impurity entropy along
RG trajectories and states that the value of s decreases along
the RG flow which has been rigorously proven for boundary
conformal models [53,56]. An earlier study of the pseudogap
BFKM in the limit of large N concluded that the g-theorem
is obeyed [46]. In contrast, our analysis reveals that the g-
theorem does not apply to this model.

The results of Ref. [46] are based on Eq. (36) and the
conformal scaling form, Eq. (41), which together result in

. Ydu 2 K Tag
s = — >~ — arctan [ucot (—)]
o ™ ur—1 u 2

TR oy
4+ K arctan [cot <T>] 4+ u arctan [u cot (T)]

— arctan [cot (%)] } 42)

for the T = 0 boundary entropy at a fixed point with expo-
nents oy and op for G and Gg, respectively.

Before turning to our results for the fixed-point entropy at
the various intermediate fixed points, we will discuss several
benchmarks to demonstrate the reliability of our evaluation
which is based on Eq. (25).

The degeneracy of the weak coupling fixed point LM
at Jy =0=g, N!/(Q!(N — Q)!) is tied to the constraint
associated with the totally antisymmetric representation
Zg’:l fif, = Q. The associated boundary entropy is thus
stm = In2 as we have chosen Q = N/2. For the special case
r=0, g=0, as discussed by Parcollet et al, the strong
coupling fixed point of the model is amenable to a confor-
mal field theory description which, for Q = N/2, results in
s{v[:COK ={0+0fd+«)—2f(2+ 2«)]/m, where

/X
fx) = / du In(sin u) 43)
0

(see Ref. [50] for details).
Figure 7 shows that our evaluation of s(7) in the special
case with (r =0, g = 0) of the (pseudogap) BFKM indeed
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Jk/D, K
074 — 04,05
E
o 0-6
0.5
L} L]
104 102 100

T/TR

FIG. 7. The impurity entropy s(T) for r = 0 and g = 0 vs T /T
for r = 0. The fixed-point values at MCK [s(T =0)] and LM
[s(T/ T,? — 00)] are recovered independently of the value of Jg.
s(T = 0) depends on k = M/N (see Ref. [50]).

reproduces sy and sfv[:é’K for given «, independently of Jx. A
further test is provided by evaluating the entropy in the large-
N version of the Sachdev-Ye-Kitacv (SYK) model, which
is defined by X(t) = —J?>G(—1)?, together with the Dyson
equation, linking G and ¥ and where J is a coupling constant.
As discussed in detail in Appendix F, our calculation of the
entropy ssyk (7") in the SYK model reproduces the analytical
prediction for 7 = 0 and high T [67]. Appendix F also con-
tains a discussion of the scaling properties of G and X.
Having established the reliability of Eq. (25) in evaluating
the boundary entropy, we can apply it to the generic peudogap
BFKM with r # 0, € # 0 and arbitrary Jx and g. In Fig. 8§,
we show typical results for r = }T, €= % K = % and a range
of coupling constants that lead to flows to different fixed
points. One can infer from the results shown in Fig. 8 that
fixed-point LM’ is characterized by an impurity entropy that
is considerably larger than that associated with the other fixed
points. A comparison of the values of s(7T = 0) with Fig. 1
implies that the RG flow toward LM’ is in contradiction to
expectations based on g-theorem. The same is true for, e.g., the
RG flow from C to C'. Thus, we conclude that the g-theorem is
not fulfilled in the pseudogap BFKM. As both the pseudogap
DOS and the power spectral density of the bosonic bath (with
short-ranged coupling constants Jx and g) break conformal

0.7

(). (b)
0.8 T —
—LM --C™
— 0.754 LM" -~ MCK _ '
= = 0.69- —C-- !
& C & LM C
074 —
0654 =T i
-"_I. ....... ) T ) 068 L} T T T
108 106 10* 102 108 106 10* 102
T/D T/D
FIG. 8. (a) Boundary entropy of the pseudogap BFKM model
for r=14% e=2 k=3 and coupling constants Jx and g such

that (T = 0) = sycx for Jx =0.7D,g=0, s(T =0) = sy for
Jx =0.325D,¢g=0, s(T =0) =sc for Jy =0.45D,g=0, s(T =
0) = s¢ for Jy = 0.8D, g = 0.375D, and s(T = 0) = sy for Jx =
0, g = 0.325D. (b) Same as (a) for values of s(T — 0) between 0.68
and 0.7 to show the differences between sc and sy .

0.7
(a) N0
0.65 &g . g
= s* w s*
o 0.6 - geor ? 14 - geor
—=0.55 =
€N » 0.8
0.59
L 1
045 L T ) ) 06 ) ) L} T
0 005 0.1 0.15 0.2 0.25 0.1 02 03 04 05 06
r 13

FIG. 9. Comparison of different approach of determining the
residual boundary entropy, labeled by s, s*, and s*". The specifics of
each of these approaches are given in the main text. (a) » dependence
of s, s*, and s°" at the MCK fixed point and (b) € dependence of s,
s*, and 5s°" at the LM’ fixed point with difference €.

invariance of the Hamiltonian, this conclusion may not be
completely unexpected.

C. Scaling function and entropy flow

Can we understand why Eq. (42) is inappropriate to evalu-
ate the residual boundary entropy of the pseudogap BFKM? In
Fig. 9, we show s*, obtained from evaluating Eq. (42) together
with s(T — 0) based on expression Eq. (25), and s°°" which
is obtained from a correction scheme to be outlined below.
In Fig. 9(a), this comparison is shown as a function of r
for the pseudogap MCK fixed point while Fig. 9(b) contrast
s(T — 0) and s°" with s* as a function of €. Clearly, the
difference between s* and s(T — 0) grows with » for MCK
and with e for LM'.

In order to trace the origin of this difference, we
G (,T)
consistently determined G, and with the analytically contin-
ued Fourier transform of Eq. (41), determined in Appendix D,
for the pseudogap MCK and the LM’ fixed points. It is worth
noting that this comparison is parameter free. As shown in
Fig. 10 there is by and large good agreement for G near the
pseudogap MCK fixed point for » = 0.2, shown in Fig. 10(a)
and near LM’ for € = 0.5, depicted in Fig. 10(b). This overall
good agreement is also implied by the results shown in Fig. 6.
The deviations occurring for large argument, i.e., for v > T,
are caused by the high-energy cutoff of the scaling regime and
are also visible in Fig. 4. Outside of the scaling regime, a
no longer shows w/T-scaling. A further difference becomes
visible when zooming into the quantum dissipative regime
where w < T, as shown in Fig. 10(c) for MCK and Fig. 10(d)
for LM'. This deviation grows with r [see Fig. 10(c)] and
with € as demonstrated in Fig. 10(d). Our conclusion that this
difference underlies the discrepancy between s(7' — 0) and
s* is further corroborated by using the numerical as(w/T)
and ap(w/T) in Eq. (36) and ignoring the part outside of the
scaling regime for w >> T'. This leads to an estimate for the
residual boundary entropy which is called s°°" in Fig. 9 and
which agrees well with s(T — 0).

The correction to Eq. (41) shown in Fig. 10(c) for MCK
and Fig. 10(d) for LM’ is confined to the quantum dissipa-
tive regime where T >> w. This suggests that this correction

compare as(w/T) = arctan evaluated with the self-
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FIG. 10. Comparison of arctan [Re{G;}/Im{G}] obtained from
Eq. (41) and denoted by black dashed-dotted lines with results ob-
tained from self-consistent solutions of the saddle-point equations.
(a) Comparison for r = 0.2 at the MCK fixed point. (b) Comparison
for € = 0.5 at the LM’ fixed point. (c) r-dependent comparison at
the MCK fixed point at low T and for w < T. (d) e-dependent
comparison at the LM’ fixed point at low 7 and forw < 7.

vanishes as T — 0. At T # 0, it does, however, lead to a
linear-in-7' contribution to the free energy and thus a con-
tribution to the residual boundary entropy s. For this reason,
we will refer to the contribution for @ < T shown in Fig. 10
as anomalous. The results from the scaling ansatz which,
strictly speaking, operates at 7 = 0 but its results apply to
the quantum coherent regime, i.e., where w >> T are in line
with this conclusion. As discussed in Appendix E, where
the scaling ansatz is extended to the next leading order, no
anomalous term appears in the T = 0, @ — 0 solution of the
self-consistency equations.

In order to understand the effect of the anomalous contri-
bution on G(7), it is useful to notice that the kernel of Eq. (40)
for = 1/(2T) is equal to {2 cosh [w/(2T)]}~".

Thus, G(tr = 1/(2T)) is primarily determined by G(w, T)
in the hydrodynamic regime. For a function G that displays
w/T-scaling, i.e., G(w, T)= T”“ldD(a)/T), it followg from
Eq. (40) that G(z, T) = T*®(zT). In Fig. 11, we plot ®(zT)
as a function of [/ sin(wt7T)]*. Figure 11(a) shows that in
terms of x = [/ sin(mwtT)]*,

d(x) ~ x (44)

in the scaling regime except for the region near x =~ m“
which_corresponds to 7 ~ 1/(2T), where a tiny deviation
from ®(x) ~ x occurs as shown in Fig. 11(b). For comparison,
we provide a plot similar to Fig. 11 for MCK in the confor-
mally invariant r = O case (see Fig. 14). It is the deviation
from ®(x) ~ x that corresponds to the anomalous contribu-
tion shown in Fig. 10(b). For T — 0%, corresponding to large
x, Gy(7) is fixed by the constraint so that the 7 dependence

40 1.5
(a) a=0.2 // (b) a=0.2
_ 34TD=10° — ] T/D=105 — yd
l_.. 1 0-7 /’ l_.. 1 - 1 0-7
Lol % 109 = Lol 109 -
— - '// —
g) X/ g) 054 X7 ,/;/
— % = -7
104 4 s
7 pd
0 /,k ) T 0 Z ) ) )
0 40 80 0 1 2 3

[/sin(mTT)|* [/sin(mTT)|*

FIG. 11. The behavior of G,(t) of LM’ fixed point with € = 0.4.
(a) The temperature dependency and (b) near /2 regime.

in Fig. 11(a) for large values of x has to be ~7*. The part in
Fig. 11, on the other hand, that obeys ®(x) ~ x, is compatible
with the scaling of Eq. (41).

D. T # 0 behavior of the boundary entropy

Having analyzed the fate of the g-theorem in the pseudogap
BFKM and traced back the origin of the inapplicability of the
g-theorem to the scaling function, we turn to the ramifications
for the T' # 0 behavior of the boundary entropy.

Generically, one expects an entropy accumulation near a
QCP, i.e., tuning the system across the critical coupling g =
g on an isentropic Ty_const(g) at low but nonvanishing 7' one
expects a minimum close to g.. If the g-theorem is fulfilled,
one expects that s(7") decreases as T is lowered while models
that defy it show an increase in s(7') as T decreases [56,68].

In Fig. 12, the boundary entropy s(7') is shown at nonzero
T across the phase diagram of the pseudogap BFKM. As
shown in Fig. 12(a), where s(T = 1077D) is shown as a
function of the coupling constants Jx and g, LM’ gives rise
to a phase with an enhanced s compared to the value of s near
MCK and the separatrix between MCK and LM’, where it is
controlled by the flow to C'. Consequently, due to the inappli-
cability of the g-theorem for g # 0, one does not observe an
entropy accumulation above C'. Instead, as the system flows
from the vicinity of C" at an elevated T to LM’ as T — 0,
the boundary entropy (7 ) increases. In contrast, for g = 0, the
pseudogap BFKM fulfills the g-theorem and this is reflected
in the finite-7' values of s vs Jg, which is demonstrated in
Fig. 12(c). For completeness, Figs. 12(d) and 12(e) show the
boundary entropy s(7') vs T and Jx near MCK [in Fig. 12(d)]
and T and g near LM’ [in Fig. 12(e)].

VI. SUMMARY

We have studied the impurity entropy of the spin-isotropic
pseudogap Bose-Fermi Kondo model in a dynamical large-N
limit. Our primary focus in this study has been the applica-
bility of the g-theorem which relates the residual boundary
entropy to the RG flow to the pseudogap Bose-Fermi Kondo
model. For the g-theorem to be valid, the boundary entropy
has to decrease along RG trajectories. The pseudogap Bose-
Fermi Kondo Hamiltonian lacks conformal invariance due
to the pseudogap density of states of the fermionic bath as
well as the sub-Ohmic spectral density of the bosonic bath
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FIG. 12. (a) Boundary entropy s(Jx, g, Tp) at Ty =

0.5
J/D
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1077D as a function of J; and g. (b) s(J, g, T) across C’ at J,? =08Dvsgand T.

() s(Jxk,g=0,T)across Cvs Jy and T. (d) s(Jx =0, g, T) near LM’ vs gand T. (e) s(Jx, g = 0, T) near the MCK of r = 0 case vs J; and

T. (f) Flow diagram for 0 < r < r, case.

which would otherwise guarantee that the model fulfills the
g-theorem.

We addressed the problem by evaluating the impurity en-
tropy at the large-N level directly from the free energy in
that limit and showed that this method is equivalent to a
Luttinger-Ward-based approach. The correctness of our en-
tropy evaluation is substantiated by applying it to the large-N
limits of the standard SU(N) x SU(M) symmetric Kondo
model and the Sachdev-Ye-Kitaev model where exact results
for the impurity entropy are available.

In the pseudogap Bose-Fermi Kondo model, energy-over-
temperature (w/T) scaling is found at all intermediate fixed
points. We also found a scaling form in 77 for local, i.e.,

impurity correlators which implies w/T -scaling and appears
to be compatible with that obtained from boundary conformal
field theory and which is, e.g., shown in Fig. 6.

On top of scaling form in t /8 we also identified an anoma-
lous contribution in the regime where fiw < kgT, i.e., in the
so-called hydrodynamic regime and which is absent in the
quantum coherent regime (hw > kgT'), where the asymptot-
ically exact scaling behavior is amenable to the scaling ansatz
summarized in Appendix E. This contribution is present at
all nontrivial fixed points except for the multichannel Kondo
fixed point for r = 0 but is largest for LM'.

Our main conclusion is the finding that the g-theorem is
not obeyed in the pseudogap Bose-Fermi Kondo model at the
large-N level. We traced this violation back to the anomalous
contribution to the large-N scaling functions. As a result,
entropy accumulation is generally not observed at the critical

[}
1
100 2
(@) / (b)
—~ 159T/D=10° —
Cg — 102 — 7
Cq Cs - 0 / F 10-9
E / = 44 10
2 a2 U\ X“v“v%Wv}eP (5_ . /T/D 105— éD ~x =
\ 1077 / 107 — 7
C3 / 1079 0.5 7
CQ -Q _ s
Vs 1/(AX®+2) P
106 T T 0+ T T T T T
105 100 0o 1 2 3 4 5
nT/sin(rtTT) [/sin(mTT)]*
FIG. 14. Behavior of G,(t) for the r = 0 MCK fixed point case.

FIG. 13. The contour C = c¢| + ¢; + ¢3 + ¢4 + ¢s5 + ¢6 used to

evaluate the integral (D4).

(a) Gy(7) at Various temperatures. The black dashed line is the fitting

regime.
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fixed point located at intermediate couplings (C’ in our nota-
tion and located at J§, g*) as the residual boundary entropy at
LM’ is larger than that at C’ (see, €.g., Fig. 8). Instead, we are
able to observe an impurity entropy decrease as temperature
rises for certain parameter ranges of the model.

The results reported here are based on the large-N method
and anchored around N — oo. How our results generalize to
finite values of N is not only a relevant but also a largely open
question. Where a comparison is possible, the direct compar-
ison of the leading behavior between the SU(NV)-symmetric
large-N limit utilized here and the SU(2) case indicates that
the large-N limit is regular and yields results that are close
to those of the SU(2) case, at least for r = 0 [38]. On the
other hand, no anomalous correction to the scaling function
of Eq. (41) of the type we discussed here appears in essen-
tially exact Monte Carlo studies of the finite-N counterparts
[24,25,38,48].

One possibility to reconcile these two observations could
be that the singular behavior is subleading. After all, the
issue of singularities within the large-N approach is delicate
and cases are known where the leading-order behavior in N
appears to be regular while subleading corrections turn out
to be singular [69]. This possibility is also in line with the
following observation: The critical point C’ for » = 0 and
€ —> 17 describes the critical Kondo destruction observed
in a class of heavy electron materials within the extended
dynamical mean field approach [5,9,10]. The residual entropy
s in the easy-axis and SU(2)-symmetric cases of the r =0
Bose-Fermi Kondo model is known to vanish in the limit
€ —> 17 [70]. In contrast, at the large-N level, longitudinal
fluctuations are subleading and s remains finite as e —> 1.

An interpretation of the g-theorem in a quantum infor-
mation theory context has recently been provided [71]. In
light of this interpretation, the results of Ref. [72] appear to
be consistent with the conclusion that the g-theorem is not
fulfilled even in models of critical Kondo destruction away
from the large-N limit investigated here.
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APPENDIX A: DYNAMICAL LARGE N

The overall strategy of the dynamical large-N approach is
to cast the action into a form § = NS¢ so that the saddle-point
approximation becomes exact in the limit N — oco. We start
from the action of the SU(N) x SU(M)-symmetric pseudogap

BFKM [Eg. (8)]

SPIN = — / Chuo8c Chas + ®hee' @y + flg,' £
T

Jx

: N

+ iNf;,"fa/r;(,f(@i;" + ).

N

+ f;fa’czg/ack’aa - )‘CION

(AD)

Introducing a bosonic Hubbard-Stratonovich field B to decou-
ple the Kondo interaction and integrating out the ¢ and &
fields leads to

SPLN — / DO g @ NS
L1 , ,
+ /;t/ ;BQ(T)ES(T -7 )Ba(r )

+ f Z [Ba(nf; > %ﬂfau/w;(rb}

kk'

+ f ,gNZZfJ (Ofo ()= go(T. NS for(0)

qgoo’

1
+(N*=DTrIn(—g5') —MTr an— —qu/A(r)
K T

—g2Q§Z/ go(t,T)—NMTrIn(—g.'). (A2
q 7,7’

Additional Hubbard-Stratonovich fields Q and W are intro-
duced to decouple the two quartic terms in the previous
expression. Thus,

SPLN =/ NO(, r’)Q(r’,r)+/ NW (T, W (r, 7))
+ /”,ZB;(I)(—GEI(I, 1)) Bo(t')
+ / J,ij(r)(—G;‘(r, 7)) fo (') — qoN / 1)
+(N*—=DTrIn(—g3') —MTr 1ni

K

—g2q52/ go(t, 1)~ NMTrIn(—g'), (A3)
q 7,7’

where G;l and GEI are defined as

Gil(t. 1) =g/ (. 1) = O(r, 7) — ggo(z, W (7, T)
—gW(r, 1),

1
Gy'(r,7) = —7-8( - ) +g.(t, 0T, 7). (Ad)
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Integrating out B and f fields leads to

§PLN =/ NO(x, r/)Q(r/,r)+/ NW (&, ©)W(r, )

+MTrin(—Gz')—=NTrin(-G;') —MTr I
K

+(N* = DTrIn(—g3') — qu/k(t)

— 2 Z/ go(t, 1)~ NMTrin(—g.")
q 7,7

= NSes. (AS)

Upon discarding terms independent of B, f, and A, one is led
to

Seff = f O(t, THYoE, t) + W', t)W(r, ')
+ %Tr In(—Gy'(z, 1))

—Trin(—G;'(z, 1) —qO/A(r). (A6)

This form of the action is suitable for taking the saddle-point
limit 8y g w.w 1Sett = O which results in a set of equations

0(t) = =Gy(7),
0(t) = =k Gp(1)ge(1),

which become exact in the limit N — oo. This set of equa-
tions is augmented by the constraint G¢(t — 07) = ¢ that
results from the fully antisymmetric representation of the im-
purity spin algebra. Note that at the saddle-point level, A is
independent of .

APPENDIX B: DETAILS OF THE BOUNDARY ENTROPY
CALCULATION

In this Appendix, we detail the derivation of Eq. (24) for
the boundary entropy. From the definition of the impurity
entropy s, we have

_ dfimp _ 8fimp Z (Sfimp aXi

= , B
dT oT 8X; oT

i

where X; runs over the set {Q, Q, W, W, A}. The saddle-point
conditions imply that the sum over X; vanishes. Thus, we
can obtain s without considering the 7 dependence of the set
{0, Q, W, W, A}. Starting from

Fimp = f 0(x)0(=1) + W (=T)W(2) — qoi(r)

+TkTrIn(—Gg')—TTrIn(-G;'), (B2

f

(A7) and transforming to real frequencies, one can take perform the
W(r) = —gGy (), derivative with respect to 7' on the distribution functions once
W(r) = —8G(1)ga(—T), Gp and G have been expressed in terms of {0,0,W, W, A
As a result,
|
d _ -
sPIN — / ?“’ar{nb(w)x Im[In (—G3'(®))] + ny(w)Im[In (—G;‘(w))] + ny()Im[Q(w)Q(@)] — ny(@)Im[W (w)W ()]}
do(d
=- / 7“’{ ’Z’;“’)Klm[ln (—G5' ()] + np(@)k Im[—Gp(@)dr (Q(T)ge(— 1)), ]
dns(w) 1
+ 7 Im[In (=G (@))] + np(@)Im[—G (0)dr (gW (t)ga(7))w]
dns(w) - _ dns(w) _
t—r Im[Q(w)Q(w)] qT Im[W(w)W(w)]}- (B3)

The saddle-point condition implies Q(t) = G¢(t), W(7) =
—gGr(1), O(z) = 2}(r), and W(r) = 2}(1)/2, in terms of
which Eq. (B3) reduces to Eq. (24).

APPENDIX C: EQUIVALENCE OF THE DYNAMIC
LARGE-N LIMIT WITH AN ASSOCIATED CONSERVING
KADANOFF-BAYM SCHEME

In this Appendix we explicitly demonstrate the equiva-
lence of the dynamical large-N approach with that based on
a conserving approximation regarding the calculation of the
impurity entropy. Conserving approximations are invariant
with respect to a set of symmetry transformations and re-
spect the related Ward identities which link vertex corrections

(

and self-energies at each order of perturbation theory. Within
the Kadanoff-Baym approach, conserving approximations are
constructed through the stationary condition of an associated
Luttinger-Ward functional ®. ® derivability of an approxima-
tion is often taken to be tantamount to it being conserving
[61]. It was pointed out in Ref. [73] that a principal difference
exists between the Kadanoff-Baym and a true large-N scheme.
It was already shown in Eq. (21) that the saddle-point free
energy at the dynamical large-N level naturally assumes the
form of the Legendre transform of a Luttinger-Ward func-
tional. Given the importance of a faithful determination of
the residual boundary entropy for assessing the validity of
the g-theorem, we derive explicitly Eq. (24) from the large-N
equations.
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At leading order in N, the Luttinger-Ward functional ®(G)
is given by

®(G) = —/dr{v*[GBm ® G (—1) ®g.(1)lv
FW'G/(0) ® GH(—1) @ go(DIw)  (C)

with vZ2% = 1/v/Nby, 0,80 and w}, = gii /+/N to-
gether with the constraint Gy(t — 0—) = g1 [the set {1}
(1,... N* — 1) was defined in Eq.(5)] [see also Eq. (21)]. The
constitutive relation §®(G) = —T Tr[X§G] together with the
assumption that G, Gy, g, and g4 are diagonal in their
respective indices, results in Egs. (16) and (17). The impurity
contribution to the free energy is given by
fop =T{Tr[cIn (= G') —In (- G;")]} — 2q0

mp
+ [ drlelg' (o - G5 oGt
— 7' = G;' (]G (-D)} + ®(G)  (C2)

computed at the extremal points where § fimp/6G, = 0 and
0 fimp/9A = 0. When taking the derivative of fin,, with respect
to T, we can ignore the dependence of G, Gp, and A on T by
virtue of these stationary conditions (see Appendix B). The
impurity entropy is thus given by [62,63]

dwd
KB — _ ?a)d—r;f’{/c[lm In ( — Ggl) + ImEBReGB]
~ dl’lf 1
— ReEq;Imgq;} + ﬁ[lm In ( — Gf ) + ImX/ReGy
—K Reflchngc], (C3)
where the auxiliary quantities $.(0)=NZ.(7) =
—Gp(—1)Gs(r) and Eo(r) = 3 Zo(1) = &G/ (1)G/ (1)
are used. By construction, the constitutive relation reproduces

the dynamical large-N equations of Eq. (A7). From the
identity

npy(V)[ng(w) —np(w —v)] = —ng(@ng(—o +v) (C4)

it follows that

nb(V)d—T[nf(w) —ny(w—v)]
= _dn;(w)nf(—w +v) — nf(a))—dnf(;;) V)
_ dr:;;V)[nf(w) —ny(w — )], (C5)

by taking the derivative with respect to 7. This further implies
dv
;nb(V)K Im[G(v)drA(w)]

dv [d <
_ / ;"{%M[Kgg(v)zgm+G;é<v>2}/<v)]

dny(v)
dT

Gg<v>zg<v>} (C6)

and
dv
— / ?nf(v)lm[Gf(v)aTB(a))]

dvd -
= [ g 0E0)

w dT

dvdns(v) _, ,
~ / — W ()G )

dvdns(v) _, "
+/; a7 gw (v)Gf(v).

(C7)

These last two equations can be used to establish the equiva-
lence of Eq. (C3) with Eq. (24).

APPENDIX D: FOURIER TRANSFORMATION OF
__mm_y¢
(Feineer)
This Appendix provides details of performing the Fourier
transform of

T Ty
Bsin (/)

which is required in the discussion of the entropy results and
the scaling ansatz solution. In Eq. (D1), 7y acts as a short-time
cutoff and has units of inverse energy. The parameter a dis-
tinguishes between bosonic (@ = b) and fermionic functions

(a=f),ie.,

¢
ga(f)=—( > O<t<p) (D1)

Ga(t) = —nGa(t + B) (D2)

for -8 <17 <Owithn=—1fora=bandn =1fora = f.
We consider 0 < ¢ < 1. For fixed t it follows that in the
zero-temperature limit (8 — 00) G,(t) = —(10/7)"*. The
definition of the Fourier transform of Eq. (D1) is

B
Ga(ie) = f dr ¢ G,(v), (D3)

0
with the Matsubara frequencies ? = 2n7 /B and Wl = Q2n+

/B forn =0, 1,42, .... Equation (D1) can be cast into
the form

2ritg\* [F ... .
Ga(iw“) — _( NIB”'O> /0 dt ezw,,r+zn§r/ﬁ[62nzr/ﬁ _ 1]—5.

Performing the substitution s = ¢***/# maps the integral onto
the contour labeled c; in Fig. 13. The integrand is singular at
s =0 and 1 and we choose to put the connecting branch cut
on the real s axis. Thus,

2mi\¢! e
E—(%) % ygdzZ Fole-n =0,
C

where m, = Bw?/m and the contour C = ¢| + - - - + c¢ is de-
picted in Fig. 13. As long as ¢ < 1, the contribution along c;
and cg vanishes as the radii of these two arcs goes to zero.
Similarly, as the radius of the circle ¢4 shrinks to zero, the
contribution to the contour integral along c4 vanishes provided

(D4)
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m > —¢. Thus,

-1
Ga(iwy) = —2<2§> %

m=-(5) s
G(w+i8) = — ? B

sin (71_{) a=>b
B(’"—H 1 — §) 2/ (D5)
) . <ﬂ§> _
icos| —|), a=f
2
Lo, +£(a)+za>)
tan (71_2{) cosh < ) -+ isinh <,82a)) =b
x e 5 (D6)
—cot(z)mnh(z)—}—lcosh(z) =f
¢
Gylw +i8, B — 00) = _;(_T;O) [tan (%)w“ +isgn(w)|w|“], (D7)
{ (E)sgnww“ + i|w|“] (D8)
') 2 ’

. LA
Gi(w+id,,p — 00) = ——— | —cot

where B(x, y) = [~ dt *~'(1 — 1)~ is the Euler beta func-
tion. In going from Eq. (D5) to (D6) analytical continuation
has been performed. Equation (D6) is a function only of
the combination Bw. In the zero-temperature limit (8 — 00),
G,(w) displays power-law behavior. Equations (D7) and (D8)
are obtained from Eq. (D6) using the relation between the beta
and the gamma functions, as well as the asymptotic expansion
of the gamma function for Sw > 1:

BoNL(E_ BN Lo pop B\
F<2+2n>r(2 lzn)_zm (27‘[) re,

where = indicates the leading-order term. Therefore, the
Fourier transform of Eq. (D1) displays w/T -scaling of the
form T4~ 'G,(w) = ®(w/T).

If ¢ > 1, the radius z; of the segments labeled ¢, and
cg cannot be contracted to zero. As a result, additional
terms, controlled by 7, contribute to the Fourier transform
of Eq. (D1).

The case ¢ =1 is realized for the strong coupling fixed
point of the standard Kondo model where we identify 7§ with
1/Tk. Indeed, as Tx — o0, a trivial w/T-scaling is found.

APPENDIX E: SCALING ANSATZ: LEADING AND
SUBLEADING BEHAVIOR

In the limit of vanishing temperature 7 = 0, the large-
N equations allow for an asymptotically exact solution

J

(

for o — 0. Following Ref. [50], we make the scaling

ansatz
Gy(r,T =0) = _Al<%>af —AZC—O)af 4o, (ED
Gp(t, T =0)=—B; (E)% — 32<E>a5 R (E2)
T T

for the T = 0 solutions of the saddle-point equations at ¢ = %
with o) < ap and B; < B,. It follows from Egs. (D8) and (D7)
that

A "'T(a
G (@ +i0%, T = 0) = — 2L L) ey
XC(/ T[TO
o =20y Xf
Ax Do)l (ay) 7y I+, —2a
S lol T (E3)
Aj F(af) T (X )
_ . By T(ag), 1
G,' 0+,T=o=—; 1=as E4
p (Wi ) XE 71th| | (E4)
ap—2ap XB
B_;F((XB)I—:((YB) Ty a32| |1-',-ozl’q—20tg7 (E5)
By T(ay) b4 (Xag)
where X2 = tan (%) + isgn(w) and X/ =
—cot (%5*)sgn(w) +i. From the saddle-point equations

we obtain for £ s(w + 0", T =0) and Tp(w +i0", T = 0)

up to and including subleading terms

TAoA Lt r+a raj—1 rta
Sp(@) = o B(r + 1 )X g 7 ol rsen(ew) + 2042 g4y X! foa 0 oo sgn(w),
I(ay) I(a f>
1 nKAOBl B r+ﬂ1 1, rtagp rtap=1, | ria;
Zf(a)) = o) —— B+ 1,ap)XZ,_ T |w| sgn(w) — ! ) B(r+1 aB) A lw| T¥Esgn(w),
ap
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and

KZA
I'(ay)
KZA,
I'(a } )

Siw) = —ng

.

which, together with the Dyson equation

G/l (@) =0+ - Zi(), (E6)

Gy'() = Jg' = Zp(w), (E7)
results in a set of conditions for af, ag, a}, oy as well as the
leading and subleading amplitudes at the various fixed points
(except the trivial one at Jx = 0 and g = 0). B(x, y) in the self-
energy expressions denotes the Euler beta function B(x, y) =
FOT@)/Tx +y).

Specifically, we find the following:

(i) The multichannel Kondo and the pseudogap Kondo
fixed-point exponents are obtained as solutions of

af+ag=1-—r,
. (1 — ay)tan (JTOlf/Z)
T U taptanlr(r+ a2

where the first equation results from equating the leading
exponents while the second follows from equating the ampli-
tudes. In a similar fashion, the subleading exponents have to
obey

df —ap+2up=1-—r

10°](a)
=
F 102
S
104 - T T T T
10'f‘ 100 10'j‘ 100
nT/sin(rtTT) nT/sin(rttT)
— | () — . ] (d)
|—_ 10047 -_-_"\ ¢10
3 \ §10°- a
9,024 al i
‘E‘IO H E H
— {02
& T/J:10'g ) 10 T/J=1o-g
i 10° ; 10"
[ 10'4' 10-7 — |l 10_4_ 10-7 J—
104 100 10% 104 100  10%
w/T w/T

FIG. 15. Numerical solution of (a) G(t) and (b) X(7) at differ-
ent temperature. w/T-scaling of ImG(w) and Im¥(w) at different
temperature.

1
B2 — €, O‘f)Xf—af—l 7,

B2 — €, a})XéB_a}_

o/l sgn(w)

7 ol sgn(w),
Ay I'(ayr) : 2A0A2B
o[22 Ol/f :K%B(r—i-l,ag)
Ay Do) I'(a)T (o)
B 2y f
XXV—‘rDté (XOtff) /Xa}’
2
B, T 2A0A>B
Bl _ TR )
B I'(ay) F(otf)F(aB)
f B\2 ,yvB
XerLa} (XOlB) /XOKE;'

(ii) For the critical point C’, one finds for the scaling
exponents in leading order ay =€/2 and ap =1—7r —¢€/2
while the subleading behavior is characterized by oz} = e and
ap=1—r.

(iii) The leading scaling exponents of the LM’ fixed points
are oy = €/2 and ap = 1 + r + €/2. Likewise, we conclude
that the subleading exponents are o, = e anday = 1 +r + €.

In the special case r = 0 and g = 0, a simple expression
for Gy(z), valid at any T, has been found to describe our
numerical results for G(7):

(E8)

—t+—] .
( %/ )af q0
sin (wt/pB)

which is in line with the results of Ref. [50]. Figure 14 shows
a comparison of Eq. (E8) with the numerical solution of the
large-N equations for the particle-hole-symmetric case, i.e.,
qo = % For Gp(t), no equivalent expression valid at all T
and 7 has been found.

0.354

Ssyk

0.254

T 1
104 1072 100
T

FIG. 16. Temperature dependence of the entropy of the SYK
model. Our result interpolates between the analytical known results
for SSYK(T = O) and SSYK(T > J)
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APPENDIX F: SCALING AND ENTROPY IN THE SYK
MODEL

The large-N equation of the SYK model is
(1) = —J*G(=1)’, (F1)

together with the Dyson equation

1
G j n = 9
(on) = o)

(F2)

where iw, (n = £1, £3,...) are fermionic Matsubara fre-
quencies and J is a coupling constant. The strong coupling
limit of the SYK model is known to possess an emergent
conformal invariance and the 7' = 0 residual entropy has been
obtained using analytic methods. One can also show that
the entropy approaches 1/2 In2 at high T [67]. From the
Luttinger-Ward functional,

=T 1 —G(w)™!
F = 71n2 + 7 /da)f(a)){lm[ln (——Go(a))—‘ )i|

2
+ Im[Z(@)G(@)] - JZ / G(r)“}, (F3)

the entropy follows as

SSYK = %]nZ — L dwm{lm In |:G0(a)):|

o dT G(w)
+Im[ () IRe[G()] } . (F4)

Applying the scaling ansatz
o= a2 ()@

to the SYK model yields « = 0.5 and o’ = 2. We solve the
self-consistent equation in real frequency space and obtain
G(w), G(t) as well as the entropy ssyx (7). The resulting
scaling properties of G(t), X(t) and the complementary w/T -
scaling of G(w) and X(w) are shown in Fig. 15. The entropy
ssyk (T"), shown in Fig. 16, flows from the weak coupling fixed
point at high T, to the strong coupling fixed point at 7 = 0.
Our results for ssyx (7') and the exponents (o« = % = 0.5) for
G(w) and G(7) agree well with analytical prediction [67].
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