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Hidden spin-orbital hexagonal ordering induced by strong correlations in LiVS,

L. Boehnke,' A. 1. Lichtenstein,>* M. I. Katsnelson®,2 and F. Lechermann’
VI Institut fiir Theoretische Physik, Universitit Hamburg, D-20355 Hamburg, Germany
XInstitute for Molecules and Materials, Radbound University Nijmegen, NL-6525 AJ Nijmegen, The Netherlands

® (Received 30 May 2020; revised 26 August 2020; accepted 26 August 2020; published 10 September 2020)

We develop a versatile first-principles many-body scheme for multiorbital lattice susceptibilities including full
frequency-dependent local vertex effects and investigate the different instabilities in the metallic phase of the
quasi-two-dimensional compound LiVS,. Application of such advanced correlated electronic structure methods
for the #,, subspace reveals a highly entangled spin-orbital hexagonal ordering bringing about an inherently
intersite order parameter for the trimerization transition. The importance of such nontrivial ordering towards the
formation of intriguing insulating phases at low temperatures is discussed.
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I. INTRODUCTION

At low-enough temperature 7, most solid-state systems
enter a long-range ordered phase due to various instabilities.
While the characterization of these ordered phases is in many
cases obvious and an order parameter may be readily identi-
fied, for some materials a microscopic specification remains
nebulous. Apart from the canonical magnetic, charge, orbital,
structural, and superconducting types of ordering, more com-
plicated phenomena have been discussed in certain materials.
The famous ‘hidden order’ state in the heavy-fermion com-
pound URu,Si, [1-3] stands out as a prominent example
thereof. As we will show, physics prevalent in the vanadium
sulfide LiVS, [4] can harbor hidden order with the need for
a manifest multisite description. This is due to the nature
of interacting 3d electrons stemming from multiorbital sites
on a geometrically frustrated lattice. Such systems with par-
tially occupied f,, orbitals on triangular lattice have a strong
tendency to form spin-singlet trimer clusters due to strong
intersite antiferromagnetic exchange interactions [5].

From model-Hamiltonian studies it is known that quantum
S = % spins on a frustrated lattice may give rise to many
different stable phases, ranging from (anti)ferromagnets to
(resonating) valence-bond solids [6]. Adding itinerancy and
further orbital differentiation entangles charge, orbital, spin,
as well as lattice degrees of freedom in an intriguing way and
allows for unusual metallicity with proximity to unconven-
tional ordering modes.

The physics of the effective triangular-lattice compound
LiVS;, [7] naturally addresses this sophisticated entangle-
ment of different degrees of freedom. Within the LiVXs,
X=(0,S,Se) series (see Appendix A and Refs. [8-19] for a
qualitative phase diagram) the oxide is an insulator exhibiting
an ordering transition at a critical temperature 7, ~ 500 K.
The selenide has metallic character throughout the studied
temperature regime. Upon cooling only the sulfide displays a
metal-insulator transition (MIT) at Tyt ~ 310 K from a para-
magnetic metal to an insulating state with vanishing uniform
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magnetic susceptibility [4,20]. In the insulator, a spin-Peierls-
like lattice distortion occurs [4], leading to a trimerization
in the quasi-two-dimensional arrangement of VS¢ octahedra
[21]. Orbital ordering has long been suggested to be a vi-
tal ingredient of the low-temperature phase in many layered
vanadates [22] and experimental evidence appeared recently
[23,24]. Profound questions exist in view of the T -dependent
electronic states and in general concerning the interplay of the
various degrees of freedom in vicinity to the MIT in the case
of LiVS,. Namely the role of excitations and possible finger-
prints of the ordered state within the metallic regime is of vital
importance for the general understanding of metal-insulator
transitions beyond the traditional Mott- and Slater-type sce-
narios. Moreover the VS,-layer building block is also an
object of interest in the context of novel time-dependent elec-
tronic structure studies [25].

II. METHODS

It is important to realize that the MIT in LiVS, may
not readily be understood from a weak-coupling nesting
picture. At elevated temperatures large local V moments
are revealed in the paramagnetic phase of LiVO, by x-
ray-absorption spectroscopy [26]. After finding anomalous
metallicity above the ordering transition, Katayama et al. [4]
categorized the sulfur compound as a correlated paramagnetic
metal at high 7. Strong local Coulomb interactions within
the nominal 34> valence of the V3* ion are therefore a main
driving force behind the materials’ phenomenology. Previ-
ous studies for these systems from the model many-body
viewpoint were based on low-order perturbation arguments
[22], on exact-diagonalization investigations [22,26,27] as
well as on classical Monte-Carlo and Hartree-Fock exam-
inations [28]. The first-principles electronic structure has
also been addressed by density functional theory (DFT),
and static strong-correlation aspects therein via the DFT+H
Hubbard U methodology [27,29]. For the intricate low-
temperature trimerized phase of LiVS;, the model approaches
favored two possible orbitally-ordered spin-state candidates
that both account for the vanishing spin susceptibility. First, a
trimer singlet state connecting to the experimentally revealed
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(a)

FIG. 1. (a) Low-energy interacting DFT+DMFT spectral func-
tion of LiVS, slightly above the transition temperature with
comparison to the DFT bands (full lines) shown along the path
through the Brillouin zone noted in the left inset. The represented
spectral weight differentiates between the three correlated-subspace
contributions using an subtractive color scheme based on the color
coding for the Wannier functions, which is shown in the right inset.
(b) Low-energy degenerate t,,-like Wannier functions (with specific
color coding: magenta, yellow, cyan).

dominant high-spin § = 1 multiplet for the V ion in the
metallic phase [22,26]. Second, a trimer state with low-spin
S = 0 for each V ion, i.e., violating Hund’s rule [28]. Note
that the latter proposition is different from a weak-coupling
band-insulating state with unpolarized bonding orbitals.

In order to have a full account of the realistic quantum
many-body problem, we go beyond the model perspective
as well as static strong-correlation investigations. We show
that by lowering T for LiVS, the optimal compromise be-
tween multiorbital correlations driven by Hubbard U and
Hund’s Jy as well as the given hopping processes on the
effective triangular lattice is provided by an even more chal-
lenging ordering beyond these suggestions. Namely, by means
of advanced first-principles many-body theory a spin-orbital
hexagonal ordering is identified to originate from the metallic
high-symmetry phase. Therewith for multiorbital frustrated
lattice systems a conclusive connection is drawn between a
local high-spin phase at elevated 7 and a global low-spin
phase at low T'.

Details of the density functional and dynamical mean-
field theory (DFT4+DMFT) [30-32] calculations are given in
Appendix B. Figure 1 displays band-narrowing transfer of
spectral weight as well as lifetime effects in the one-particle
spectral function A(K, w) due to the rotational-invariant multi-
orbital Coulomb interactions on each V site. Especially along
'K and the corresponding AH direction at k, = 7 in the
Brillouin zone (BZ) the renormalization leads to intricate
many-body states close to . Notably the electron pocket at I'

and the hole pocket at K get shifted towards the Fermi level.
The Wannier-function character contribution varies strongly
in the in-plane k directions and bandlike coherency is quickly
lost away from the Fermi level, specifically in the unoccupied
higher-energy region.

III. RESULTS

DFT+DMFT describes a strongly correlated metal at ele-
vated temperatures. A large local magnetic moment on the V
ions associated with (Slzoc) ~ 1.96 is retrieved. As outlined, by
lowering 7 an intriguing MIT scenario sets in that involves
nearly all available system degrees of freedom. It remains
the challenge to shed light on the LiVS, ordering. We will
see that this relies on the combination of nonlocal physics,
i.e., real-space order parametrization that involves correlations
among different lattice sites, with manifest multiorbital de-
grees of freedom. To tackle this we advance the DFT+DMFT
approach by appending a two-particle-susceptibility formal-
ism that includes generic multiorbital vertex contributions.
This enables us to study quantum fluctuations leading to
nonlocal ordering tendencies in the correlated metallic high-
temperature regime above Tyr. In principle, this is achieved
without breaking translational symmetry in real or recipro-
cal space. Hence instead of addressing the broken-symmetry
phase directly, we remain in the metallic state and examine
multiorbital two-particle response functions upon lowering
the temperature. That approach is indeed adequate in the
present context, since diffuse scattering hinting towards pre-
cursive manifestations of the ordered state has been noticed in
the electron-diffraction pattern of metallic LiVS,; [4].

In general, phase transitions are indicated by a divergence
of the static susceptibility associated with the underlying
order parameter and with a wave vector corresponding to
the real-space pattern of the ordered phase. Beyond former
single-band studies [33,34], our approach allows access to
the complete three-orbital particle-hole susceptibility tensor
x2S, (Q, @) at finite temperature, with full generality con-
cerning its frequency-dependent structure [35]. It allows an
evaluation of all experimentally measurable susceptibilities
and even explicit determination of the order parameter [36].

In the case of models with a single correlated orbital per
site, the longitudinal particle-hole channel allows for two
susceptibilities, namely the (q-dependent) spin and charge
response [35]. For a three-orbital #,, shell however, there are
18 such independent possible susceptibilities and not much
problem-tailored physical insight may be gained by monitor-
ing all of those. A much more promising route to examine
susceptibilities in multiorbital materials is to focus in a first
step on the eigenvalues/modes of the susceptibility tensor
Xap in the product basis @ = {omm’} and B = {o'm"'m"} with

m,m'm”’, m" =\,/,—and o, ¢’ =%, |. From such an analysis

x“mwpm=<ﬁEZWK@§jv?m»
a B

= (T.VO @V (@) M
is the /th eigenvalue and V) = - vg,flm,c"'f;c;, is the
corresponding eigenmode (v is the /th eigenvector of the
susceptibility tensor x.g). This makes V™ the dominant

115118-2



HIDDEN SPIN-ORBITAL HEXAGONAL ORDERING ...

PHYSICAL REVIEW B 102, 115118 (2020)

<80

Il 70 Do) 'ZG'K 20

L@é 60 - MHE15
d50 |

= oy

Zdol ° *H10

g 30 5

=3

=20 g 0

Z 10k

(] | | |

a0 () :

T 0 200 400 600 800 1000

T(K

FIG. 2. Temperature dependence of all particle-hole-based sus-
ceptibility eigenvalues at the K point. The inset shows the largest
eigenvalue throughout the Brillouin zone, emphasizing that rele-
vant susceptibilities reside at the K point. The vertical line marks
T =260 K as the temperature used for the inset and for all other
calculations throughout the work, if not stated otherwise.

fluctuating excitation upon approaching the phase transition
and 0 = (V™) a natural order parameter for the transition.

Figure 2 shows the eigenvalue evolution of xqg(K, w=0)
with temperature. The prominent maximum is located at the
K point, as visible from the inset of Fig. 2. A single eigen-
value diverges, indicating a phase transition at roughly T¢; ~
150 K, undershooting the experimentally observed transition
temperature Tygr ~ 310 K. However this is to be expected
[37], given the fact that our model neglects phonon contri-
butions and thus does not take into account lattice distortions
that accompany the transition [4].

The above approach assumes a spatial variation of a single-
site order parameter. But from experimental findings [4] or the
anisotropy of the three respective orbitals [compare Fig. 1(b)]
this cannot be taken for granted. Yet, it gives the right hint
towards a spinlike [V ™) (K) 3’\;“’0] K point (+/3 x +/3 su-
perlattice) ordering instability. Having uncovered this pattern,
in a second step we expand the multiorbital particle-hole sus-
ceptibility investigation by deliberately breaking translational
symmetry of the lattice two-particle Green’s function in this
way. Accordingly, we solve the supercell (SC) Bethe-Salpeter
equation (BSE) [38] for the susceptibility tensor ¥, i.e.,

¥sd (Q = X0 (Q) + ysc @
on the LiVS, triangular lattice build from a minimal tri-
angle three-site basis with superlattice wave vector Q = I'
[compare Fig. 3(b)]. All quantities in Eq. (2) carry the full
inner fermionic degrees of freedom, with a Legendre rep-
resentation replacing fermionic Matsubara frequencies [35].
This representation renders the calculation both accurate and
numerically feasible. The undistorted one-particle Green’s
function is used for the bare susceptibility ¥© to take into
account that our investigations still deal with temperatures
above the transition to the disordered phase. The constructed
irreducible supercell vertex function ysc remains site diago-
nal. We thus anticipate the translational-symmetry breaking
of the high-temperature susceptibility shown in Fig. 2.
Analysis of the 162 eigenmodes of the resulting supercell
susceptibility tensor (Nyy = 2 -9 - 9) reveals two degener-
ate dominant eigenvalues, being partners in a two-dimensional
irreducible representation of the triangular building block.

o
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FIG. 3. (a) Site-orbital resolved maximum eigenmode contri-
butions. Only the ¢ =1 part Uy is shown with m and m' the
adumbrated orbital indices on the supercell. (b) Original (red) and
superlattice (blue). The original lattice K point coincides with the
superlattices I" point. (c) The eigenbasis of the real (left) and imag-
inary (right) part of the dominant fluctuations; the length of the line
indicates the eigenvalue corresponding to the eigenvector, green for
a positive eigenvalue, red for a negative one. (d) Identified LiVS,
order at low temperature by visualizing the maximum spin-orbital
resolved eigenmode contribution v, of (a). The inset shows the
color coding of the complex values used in (a) and (d). Lines high-
light the hexagonal phase relation between the major contributions
to the order parameter.

These eigenmodes are given in Fig. 3(a) for one spin pro-
jection o =1 and orbital basis of three degenerate t,,-like

Wannier functions {m, m'} :\, , — for three different
vanadium atoms in supercell. For convenience, the latter
are rotated into the tailored basis of the two-dimensional
eigenspace, diagonalizing the 120° rotation, which results in
a complex order parameter. Only one of the two partners
is shown; the other is its complex conjugate. Also, v}’ =
— Uy s is typical for spinlike excitations. The interesting
feature is the intricate orbital degree of freedom. The large

diagonal parts with the ei3m (i.e., 120°) phase shift between
lattice sites is reminiscent of a K-point excitation on a tri-
angular lattice. The same pattern can be observed in models
without orbital anisotropy. On the other hand, the appearance
of relevant intersite elements reflects an apparent triangu-
lar supercell molecular orbital on the periodic supercell as
sketched in Fig. 3(d). A key feature of this ordering mode is
the phase relation between the different onsite and intersite
spin-orbital parts on the elementary triangle. As seen from
Fig. 3(d), we need to use a hexagon complex plane mapping
(see Appendix E) to describe the resulting spin-orbital hexag-
onal order.

This traceless hidden-excitation mode does not imprint a
finite magnetic moment to the supercell. Also applying a
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magnetic field to this robust system does not easily affect
the total supercell spin arrangement. The proposed order is
consistent with the observation of a dramatic decrease of the
uniform magnetic susceptibility in the ordered phase [4], de-
spite the large local magnetic moment in the disordered phase.
The large vanadium local moment at elevated temperature be-
comes locked in a valence-bond-like fashion within the insu-
lator, not allowing for couplings to moderate applied magnetic
fields. Note that it is important to explicitly break the transla-
tional symmetry within the BSE. An eigenmode analysis of a
three-site supercell susceptibility obtained from a single-site
BSE does not reveal the non-site-diagonal contributions.

As we concentrate on the structurally undistorted lattice,
the observed fluctuating order maintains equal occupations
of the orbitals. Orbital-symmetry breaking follows already
on the DFT level (see Appendix C for detailed discussion)
as soon as the trimerization and the accompanying lattice
distortion set in. At that point, we also observe a difference in
occupation, favoring neighboring orbitals on the triangle. The
least-filled orbital on each V atom in the insulating phase does
not have relevant non-site-diagonal elements for the order
parameter [see Fig. 3(a)]. Thus it does not participate in the
buildup of supercell molecular orbitals. We do not expect
relevant changes when going from the fluctuating excitation
to the realized broken translational-symmetry state.

The order parameter in Fig. 3(a) does not readily provide
a transparent physical interpretation. To that end, we slightly
simplify the order parameter by keeping only the twelve
largest contributions, which enables a simple interpretation
of the dominant effect (see Appendix E for more details).
Figures 3(c) and 3(d) give a visualization of the spin imprint
on the triangular building block, where red/green correspond
to 1/J spins, and lines along a side of the triangle mark
superpositions of the aligned orbitals on adjacent sites. Two
representatives of the space of readily excited states are cho-
sen. Whether this space reduces to isolated solutions upon
explicit breaking of the translational symmetry is an interest-
ing question to be investigated.

After the characterization of the obtained complex or-
dering, we also want to touch base with the ordered-state
propositions from previous works on the LiVX,, (X=0,S)
compounds. The present findings for the order parameter of
the trimerization phase transition enables us to assess the
overlap with other suggested ground states [v) by read-
ily evaluating the ordering amplitude Oy = (¥ |V ™).
Specifically, the onsite low-spin scenario proposed by Yoshi-
take et al. [28] evaluates to zero, thus does not constitute a
reasonable option. This is not surprising, because a key ingre-
dient of our ordering mode is the intact local S = 1 vanadium
spin. On the other hand, Pen et al. [26] proposed an onsite
high-spin ordered state in the form of a product wave function
of three local triplets on each equilateral triangle of V(3d?)
ions. Indeed such a state yields a nonzero expectation value
for the ordering amplitude 6yiy. But it does so solely based
on the diagonal elements v;5) of the dominant fluctuating
superlattice excitation, in line with the purely local picture.
The relevant intersite terms are missing and thus that state
serves only as an approximant to the true more complicate
order. In the model picture of Ref. [26] a strong Hund’s Jy
seems to overrule the nearest-neighbor intersite exchange Jyn
(here not simply assumed to be in the Heisenberg limit of the
Hubbard model) in a complete fashion, whereas our findings

reveal a subtle interplay between local and nonlocal exchange
processes that give rise to substantial interorbital intersite
terms in the description of the ordered state.

IV. CONCLUSIONS

The present work enriches the plethora of categories in the
physics of metal-insulator transitions. It reveals the challeng-
ing connection between a high-temperature metallic phase
with large magnetic susceptibility and a low-temperature
ordered phase with zero magnetic susceptibility in a frus-
trated multiorbital compound subject to strong correlations.
To this end, a powerful first-principles many-body analysis of
multiorbital lattice susceptibilities in the disordered state is
introduced to investigate phase transitions in correlated mate-
rials. It complements existing approaches employed directly
in the ordered phase and may be applied to further solid-state
problems of strong correlations. For LiVS,, a complex spin-
orbital hexagonal order originates in the metal and leads to a
trimerized insulator with a unique electronic structure beyond
standard Mott-insulating mechanisms. The identified phase-
sensitive SV = 0 ordered state generalizes the valence-bond
concept of single-orbital § = % systems to multiorbital § = 1
problems on a frustrated lattice. Electron or hole doping of
that new state is believed to lead to fascinating metallicity with
unique transport properties. Moreover investigating LiVS, un-
der pressure or applying directional strain most likely results
in emerging net-moment magnetism due to unlocking of spins
on the equilateral base structure.
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APPENDIX A: LiVS, STRUCTURAL PROPERTIES

The LiVS, compound has the underlying P3ml space
group (a =3.38 A, ¢/a =1.82) [7] with an 1T-type ion
stacking along the c axis; the sandwich VS, layer has ideal
triangular symmetry. Figure 4 gives a rough view on the
phases depending on the chalcogen in the system.

APPENDIX B: DETAILS OF THE MODELING

Density functional theory (DFT) calculations in the local
density approximation (LDA) implemented within a mixed-
basis pseudopotential code [8] and using crystal-structure
data from experiment [7] place the Fermi level er within
the isolated three-band manifold of dominant 3d(t,;) char-
acter and bandwidth W ~ 2.1 eV [compare Fig. 1(a) of the
main text]. These bands host the two electrons of the low-
spin V(3d?) filling. For this threefold a maximally-localized
Wannier-function (WF) basis [9,10] may be derived with the
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FIG. 4. Sketch of the generic LiVX,, X=(0,S,Se) phase diagram
(based on Ref. [4]) with the P3m1-LiVS, crystal structure in the
metallic state as an inset.

low-energy WFs directed along the canonical directions to-
wards neighboring vanadium ions [see Fig. 1(b) of the main
text]. The nearest-neighbor (NN) hopping within this degen-
erate basis amounts to tny = —290 meV along the facing
orbitals of the respective axes.

To include realistic electronic correlations beyond the
static limit we continue the investigation in the state-of-
the-art density functional and dynamical mean field theory
(DFT+DMEFT) framework [30-32,38] by utilizing the derived
WF basis as the correlated subspace. The resulting orbital-
dependent strong electronic correlations significantly modify
the LDA-derived electronic structure [Fig. 1(a) of the main
text]. Interestingly, since there are two electrons in three or-
bitals, LiVS, falls in the category of a Hund’s metal where
besides the Hubbard U the local interorbital (Hund’s) ex-
change Jy has a dominant influence on the strong-correlation
physics (see, e.g., Ref. [11] for a recent review).

For the DMFT part an hybridization-expansion
continuous-time (CT-Hyb) [12,13] quantum Monte Carlo
(QMC) impurity solver as implemented in the TRIQS
package [14,15] is utilized. Therein advantage is taken of
the Legendre representation of the Green’s function [35]. We

B 5 B B (T Gl 1)) ™+ Z(ivn) = G (i)

> 5 > 5
Gk, iv,) = ivy,

Vs S5

S ——

-1
o G+ @0+ i) Gaclin)) = o ()

= X (a0

FIG. 5. Flow of the calculations for the generalized susceptibil-
ity in the local irreducible vertex approximation. The green cycle
(DMFT) is calculated until self-consistency, followed by an evalua-
tion of the lattice susceptibilities as indicated by the blue flow.
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FIG. 6. Local t,, LDA density of states of the insulating struc-
turally distorted low-temperature compound. Local orbital ordering
via the dominant occupation of the yellow and the cyan orbital (for
the choice of the V site adumbrated in the inset) is observable.

consider the most general form for the rotational invariant
Coulomb interaction [16], restricted to the 5, subspace, where
it takes the Slater-Kanamori form [17]

N -1 Ju,, 5
2

2 N

2Ju4S > L°+ 2N
where N is the total charge operator, S the spin-, and L
the angular momentum operators. We chose U = 3.5 eV and
Ju = 0.7 eV, appropriate for vanadium sulfides [18].

At DMFT self-consistency, the full multiorbital suscepti-
bility tensor is also evaluated in a DMFT-like approximation,
e.g., assuming the locality of the two-particle particle-hole
irreducible vertex in the Bethe-Salpeter equation (BSE) in
this channel (see Fig. 5), as valid in the infinite-dimension
limit [19]. This approximation has successfully been used for
(effective) single-orbital problems [33,34]. Note that already
on the latter level the calculations are numerically demanding.
The inversion of the BSE requires the Monte-Carlo accumu-
lation, and the handling of the two-particle Green’s function
with its four orbital dependencies and full account of also
the inner fermionic Matsubara frequencies is challenging. For
the latter, we employ the Legendre representation [35], as its
improved convergence properties are beneficial in solving the
superlattice BSE [Eq. (2) in the main text]. In the BSE, the
longitudinal and the transversal susceptibilities are decoupled,
allowing an independent investigation of the longitudinal
components (orbitally resolved S. and #-like excitations).

. N
Hyyy = (U —3Jn)

APPENDIX C: THE DISTORTED LATTICE PROBLEM

LDA calculations in the low-temperature /3 x +/3 phase
with the experimentally observed lattice distortion on the
quasi-two-dimensional triangular VS, lattice [20] indeed re-
veal an insulating state (see Fig. 6). This nonmagnetic band
insulator in LDA displays a band gap of the order of
200 meV. On each V site of the isolated triangles, respec-
tively, the #,, orbitals pointing along the triangle edges are
most strongly occupied with a difference in occupation n , =

n__ ~ 0.83,n, ~ 0.35. However this effective single-particle
band-insulating solution is motivated from the sole observed
symmetry reduction from the structural distortion. It cannot
give a full picture, since, e.g., the sophisticated fate of the
high-T" paramagnetic local spin degree of freedom close to
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and in the ordered phase is left unexplained from this simplis-
tic viewpoint and thus fails to reveal the electronic mechanism
behind the trimerization.

APPENDIX D: SUPERCELL SUSCEPTIBILITY

The matrix of supercell two-particle susceptibility with
three different vanadium atoms has the following site depen-

dent structure (55(?) 5{/(2) %(S)\

~(0) ~(0) ~(0
Xsc — X(J; X(>X(§?

o o
o

o
CN-J

\séf;? xR )

where diagonal elements depend on one of three different
h,-like Wannier functions for three sites in the supercell, and

J

—0.40 0 0

0 —-040 0

0 0 -—-040

0 0 0

S =RV —Vis)=| 0 0 0
0 0 0

0 0 0

0 -0.10 0

0 0 0

—0.23 0 0

0 -0.23 0

0 0 -—-0.23

0 0 0

Ssms =SV —visy=| 0 0 0
0 0 -0.12

0 0 0

0 0.06 0

0 0 0

which leads to only eigenvectors of the simple form

nondiagonal elements connect the corresponding two neigh-
bors.

APPENDIX E: THE FLUCTUATION EIGENBASIS

The paper gives a representation of the fluctuation in terms
of the t,, states of the supercell sites (Fig. 6). The structure
of this has been discussed with the most prominent one be-
ing the off-diagonal components connecting facing orbitals
between different sites of the supercell. Going beyond the
general remark that these components describe cluster states
as opposed to site states, this section will give a quantitative,
yet approximate, evaluation of the eigenbasis of the dominant
fluctuating mode.

To simplify the interpretation of this eigenbasis, it is con-
venient to restrict the matrix in Fig. 3(a) of the main text to the
diagonal elements and the six largest nondiagonal ones. This
discards site-diagonal orbital-off-diagonal elements, which
would obfuscate the relevant structure of eigenstates of the
dominant fluctuating mode by introducing small admixtures
of the different orbitals of the same site. With those aside,
the task comes down to finding the eigenbases of the real and
imaginary part of the complex eigenmode

0 0 0 0 0 0

0 0 0 0 -0.10 0

0 0 0 0 0 0
0.40 0 0 0.10 0 0
0 0.40 0 0 0 0

0 0 0.40 0 0 0
0.10 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0.06 0

0 0 —-0.12 0 0 0
-0.23 0 0 0.06 0 0
0 -0.23 0 0 0 0

0 0 -0.23 0 0 0
0.06 0 0 0.46 0 0
0 0 0 0 0.46 0

0 0 0 0 0 0.46

cos(oz)eoo + Sin(a)oo.e.

and of course rotated versions of those, which leads to the depiction in Fig. 3(c) of the main paper.

Each line in that figure represents one eigenvector, encod-
ing all its information. The orientation of the line obviously
identifies the two facing orbitals, the position on the edge
of the triangle encodes the phase of the superposition, going
from o = O if full relative weight is on one of the orbitals to
a = 7 for the other.

If the constituents enter with equal sign, thus forming an
evenlike superposition, the line is shifted to the outside of the
triangle, in the other case, for an oddlike superposition, the
line is shifted to the inside of the triangle. Eigenvectors that

(

are formed from just one site orbital are not shifted. Finally,
the length of the line indicates the eigenvalue corresponding
to the eigenvector, green for a positive eigenvalue, red for a
negative one. The ‘outer’ orbitals that do not have a facing
neighbor within the supercell only ever appear isolated, a
property that is also obvious from just inspecting equation (E)
and equation (E) since they do not couple to other orbitals
anymore in this approximation.

While merely illustrative due to its approximative na-
ture, Fig. 3(c) of the main text helps to clarify the notion
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of the formation of cluster-molecular-orbital-like states for
the dominant order fluctuating mode. It becomes clear
that while some states are still sitelike, the three-site or-
der parameter carries inherently nonlocal contributions. It
shows the eigenbasis of the real and imaginary part of

the complex eigenmode, therewith of two representatives
of the manifold of readily excited (and eventually self-
exciting) states. It is showing the spin imprint of the
excitation, being periodically continued on the supercluster
lattice.
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