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One-step theory of photoelectron escape time: Attosecond spectroscopy of Mg(0001)
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A theory of photoelectron escape time τ from crystals is presented that combines the one-step photoemission
theory with the Wigner delay. Equations are formally derived and illustrated with an exactly solvable model. An
ab initio implementation with the augmented-plane-wave-based scattering method is applied to emission from
Mg(0001). The theory is in reasonable agreement with streaking measurements. Lattice scattering is found to
cause rapid variations of τ with photon energy both for the valence band and for the 2p core band emission, and
a strong dependence on the initial state is revealed.
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I. INTRODUCTION

Recent experimental progress in time-resolved photoemis-
sion from solids [1–10] calls for a theory that fully allows
for three-dimensional (3D) multiple scattering and its im-
plications for photoelectron escape time—the key parameter
in both streaking spectroscopy [1–7,11–13] and RABBITT
interferometry [8–10,14,15]. Solid-state photoemission is fun-
damentally different from the well-studied isolated-atom
problem [16–18]: In the crystal, initial states are infinitely ex-
tended and the propagation of the outgoing electron is limited
by inelastic scattering, so the photoelectron “starting point”
depends on its mean-free path (MFP). Theoretical approaches
to attosecond photoemission from crystals until now have
been restricted to one-dimensional (1D) models [7,11–15,19–
23], also heuristically combined with isolated-atom calcula-
tions [5]. Measured delays are commonly interpreted (at least
partially) in terms of an effective escape depth and velocity
with which the photoelectron travels to reach the probe-field
area [1–15,22,24,25]. The semiclassical kinematics is, how-
ever, not applicable when the photoemission final state lies in
a band gap [26] or, more generally, when the final state has a
strong contribution from evanescent waves, which cannot be
ascribed a group velocity. Furthermore, in 3D crystals, more
than one propagating wave may contribute to the final state
[27]. Generally, the singularity of the atomic potential and the
multiple scattering by the 3D lattice make a phenomenologi-
cal inclusion of the band structure rather unreliable and, at the
same time, the time-dependent Schrödinger equation (TDSE)
becomes computationally forbidding. An alternative is offered
by the one-step theory [28–32], in which the photoexcitation
and escape are embodied in the time-reversed LEED (low-
energy electron diffraction) state �∗. The wave function �∗
treats on the same footing propagating and evanescent Bloch
states and naturally allows for inelastic scattering via the
imaginary optical potential −iVi [33,34]. Here, we present an
ab initio theory that combines the classical one-step theory

with the Eisenbud-Wigner-Smith (EWS) phase delay formal-
ism [35–37]. The one-step approach is standard in stationary
photoemission and was applied to pump-probe spectroscopy
in Refs. [38,39], but the escape time was not addressed there.

II. THEORY

Consider a semi-infinite crystal irradiated by a short ex-
treme ultraviolet (XUV) pulse with a vector potential

A(x, t ) = α(t )A(x), where α(t ) ≡ F (t ) cos ωXt . (1)

The envelope function F (t ) vanishes outside a subfemtosec-
ond time interval. Far from the sample, the time-dependent
density of photoelectrons n(X, t ) is an incoherent superposi-
tion of wave packets coming from all initial states ψi. The
crest of the wave packet reaches the detector at X at a time
t = X/v + τi relative to the maximum of F (t ), where v is the
group velocity in vacuum and τi is the intercept time we are
interested in.

In the theory of photoemission from atoms [16–18], the
intercept τi is related to the EWS scattering delay given by the
energy derivative of the scattering phase τ = dη/dE [35–37],
and in certain cases τi simply equals half of the EWS delay
[18]. In contrast to the isolated atom, the photoemission from
a semi-infinite crystal cannot be immediately mapped onto a
physical scattering process: First, the unperturbed wave does
not have the same asymptotics as the scattered wave because
the free motion is restricted to the vacuum half-space. Second,
the probability current is not conserved: photoelectrons are
absorbed in the interior of the crystal, which makes solid-state
photoemission surface-sensitive.

To formally derive the expression for τi for crystals, let us
calculate the “lesser” Green’s function (GF)

G+(x, t, x′, t ′) = i〈ψ̂†(x′, t ′)ψ̂ (x, t )〉 (2)
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[30,40] to the second order of the electron-light cou-
pling Ô(x, t ). The angular brackets denote the thermody-
namic average with the equilibrium density matrix: 〈Â〉 ≡
Tr[exp (−βĤ0)Â]/Tr[exp (−βĤ0)], where β is the inverse
temperature. The operator ψ̂ (x) annihilates an electron at
point x, and its time dependence is governed by the full
Hamiltonian

Ĥ (x, t ) = Ĥ0(x) + Ô(x, t ), (3)

Ô(x, t ) = α(t )â(x), (4)

â(x) = − i

c
[A(x) · ∇ + ∇ · A(x)]. (5)

The time-dependent density of excited electrons is expressed
via GF [40]:

n(X, t ) = lim
X′ → X → ∞

−iG+
2 (X, t, X′, t ). (6)

The second-order GF G+
2 is calculated from the Dyson

equation for the Keldysh contour-ordered GF G(x, t, x′, t ′) =
−i〈TCψ̂ (x, t )ψ̂†(x′, t ′)〉 [30,40,41], see Appendix A. Fol-
lowing the perturbation theory of Ref. [30], for the case
of a ground state bound to the crystal half-space and all
the excited electrons being unbound, we obtain (in units
h̄ = e = me = 1):

G+
2 (X, t, X′, t ) =

∫∫
d3x2d3x3

∫∫∫
dε dε′dE

8π3
Gr

0(X, x2, ε)ô(x2, ε − ωX − E )

× G+
0 (x2, x3, E ) ô(x3, E + ωX − ε′)Ga

0(x3, X′, ε′) exp[i(ε′ − ε)t],

where Gr
0(x1, x2, ε) = −i

∫ ∞

0
〈{ψ̂ (x1, t ), ψ̂†(x2, 0)}〉 exp(iεt ) dt, ô(x, ω) ≡ 1

2
F (ω)â(x), F (ω) ≡

∫ +∞

−∞
F (t )eiωt dt . (7)

In Eq. (7), Gr
0 and Ga

0 are the equilibrium retarded and
advanced GFs. The substitution of (7) into (6) gives the time-
dependent density n(X, t ). The perturbation theory is justified
because the XUV pulse is weak. Stationary photoemission
corresponds to F (ω) = δ(ω), cf. Eq. (14) of Ref. [30] and
Eqs. (3.13)–(3.14) of Ref. [42]. Details of the derivation are
presented in Appendix A.

Expression (7) is for a general case of a many-body sys-
tem. For noninteracting electrons at T = 0 with a one-particle
Hamiltonian Ĥ0, the explicit form of G+

0 is

G+
0 (x1, x2, E ) = 2iπ

∑
i∈occ

ψi(x1)ψ∗
i (x2)δ(E − Ei ), (8)

where ψi(x) are occupied eigenstates of Ĥ0: Ĥ0ψi = Eiψi.
Substituting Eq. (8) into Eq. (7) yields G+

2 (X, t, X′, t ) =∑
i∈occ �i(X, t )�∗

i (X′, t ), where

�i(X, t ) ≡
∫

dε

2π

∫
d3xGr

0(X, x, ε) ô(x, ε − ωX − Ei )ψi(x)

× exp(−iεt ). (9)

The function �i(X, t ) has a clear physical meaning: It is the
wave packet generated by the light pulse from the initial state
ψi(x). Equation (9) contains the same retarded GF as for a
stationary photocurrent. Its asymptotics at X → ∞ is

Gr
0(X, x, ε) −−−→

X→∞
−exp (ikX )

2πX
�k(x), (10)

where k ≡ √
2ε, k = kX/X , and �k(x) is the LEED state

[28,29,31,32], i.e., the scattering wave function for a plane
wave incident from the detector at X. Then the time-dependent
density Eq. (6) at the detector is an incoherent sum of
the densities of the wave packets of Eq. (9), n(X, t ) =∑

i∈occ |�i(X, t )|2, where

�i(X, t ) = 1

X

∫
dε Ai(k) exp i[kX − εt + ηi(k)], (11)

Ai(k) = 1

4π2
F (ε − ωX − Ei )|Mi(k)|, (12)

Mi(k) =
∫

d3x �k(x)â(x) ψi(x), (13)

where ηi(k) is the phase of the matrix element Mi(k) =
|Mi(k)| exp iηi(k). The maximum of the ith packet is situated
at the stationary phase point X = k(t − τi ) given by the con-
dition ∂[kX − εt + ηi(k)]/∂ε = 0; the intercept time is given
by the energy derivative

τi = ∂ηi(k)/∂ε, (14)

evaluated at the spectral peak of the packet Ai(k) Eq. (12).
The stationary phase formula is exact for narrow wave

packets with peaked Ai(k). According to Eq. (12), the enve-
lope Ai(k) is the envelope of the light pulse F (ω) (peaked at
ε = ωX + Ei) modulated by the matrix element Mi(k). Thus,
for an ultrashort pulse the function Ai(k) may be rather com-
plex and have more than one maximum. Then τ must be
calculated from the equation of motion for the expectation
value 〈X〉 of the position operator [18,43], see Appendix B.

Although the result Eq. (14) has the expected form of the
EWS delay [16–18] its interpretation is not fully intuitive. The
key quantity is the matrix element Mi(k) between the initial
state and the time-reversed LEED state �∗

k. First, the function
�∗

k in vacuum, apart from the wave going towards the detector
contains beams incident onto the surface, including nonspec-
ular beams due to lateral umklapp scattering. Second, inside
the solid, �∗

k contains only the waves propagating towards the
surface while the true final state �i of Eq. (9) propagates in all
directions.

III. RESULTS AND DISCUSSION

First we apply the one-step-EWS (OSTEWS) method to
a finite 1D Kronig-Penney crystal: a 96-a.u.-long chain of
24 potential wells with a jellium substrate appended on the
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FIG. 1. (a) Photoelectron escape time versus final state energy
for the Kronig-Penney crystal of Ref. [22] for Vi = 0.8, 1.7, and
2.5 eV. TDSE results (symbols) are compared with τ (E ) by Eq. (14)
(lines). Solid lines show τ (E ) broadened according to the spectral
width of the XUV pulse, and dashed line is the original curve for
Vi = 2.5 eV. Vertical dashed lines show band maxima. (b), (c) Band
structure E (k). (d) Sketch of the crystal potential, see Ref. [22] for
details.

left and vacuum on the right [19,22], Fig. 1(d). Photoelec-
trons are excited from the narrow band at −37.3 eV, and
the intercept is averaged over the entire band. Figure 1(a)
compares the escape time τ by Eq. (14) to the numerically
exact TDSE result [22] obtained from simulated streaking
spectrograms. In Ref. [22], inelastic scattering was included
as a microscopic stochastic potential, and Vi was derived from
the attenuation length. The OSTEWS curve is a convolution
with an intensity-weighted Gaussian of 6 eV FWHM, which
is the spectral width of the XUV pulse of 500 as FWHM
duration [22].

The OSTEWS theory is seen to very closely agree with
the full streaking TDSE calculations both in the nearly free-
electron (NFE) region (between 50 and 95 eV final energy)
and around the spectral gaps (at 47 and 105 eV). Well re-
produced is the counterintuitive decrease of the escape time
below the gaps, which was thoroughly discussed in Ref. [22].
At the minima, the dips are sharper in the TDSE streaking cal-
culation than in OSTEWS, which underestimates their depths
by about 50%. We ascribe this discrepancy to the interference
effects in the ultrashort excitation, which in the vicinity of
the spectral gaps lead to a complicated shape of the outgoing
packet (both spatially and spectrally [22]). As a consequence,
it propagates differently from the incoherent weighted sum
of spectrally narrow packets. Interestingly, the OSTEWS τ

values without the final-energy broadening yield the dip am-
plitudes in good agreement with the TDSE ones (dashed line
in Fig. 1). In the NFE region, OSTEWS overestimates τ by
about 6% for Vi = 0.8 eV, but the difference rapidly decreases
in coming to larger (and more realistic) values of Vi. This
slight difference is apparently due to the spatial aspect of
streaking by a screened field: The packet becomes exposed
to the laser field before it has completely left the crystal, its

spatial extent being the larger the larger is the photoelectron
MFP (the smaller the Vi). Nevertheless, the neglect of the
specific streaking mechanism in the OSTEWS theory does
not significantly modify the τ curves, and the two theories
are consistent in how they render the band-structure effects.

We now apply Eqs. (13) and (14) to photoemission from
the real Mg(0001) surface. Magnesium is free-electron-like
at low energies, so the laser field is efficiently screened [44],
which simplifies the physics of the streaking experiment [2,7].
Here, both initial and final states are eigenfunctions of a
density-functional Hamiltonian [in local density approxima-
tion (LDA)] with a realistic potential both in the bulk and at
the surface, including the Z/r singularity at the nuclei. The
LEED states are calculated with the embedding technique of
Ref. [45] using the extended linear augmented plane waves
method [46]. The calculations are fully ab initio save for
the energy dependence of the optical potential, which is as-
sumed to be a linear function Vi(E ) = 0.04E . This closely
approximates the Vi(E ) function for Al(111) derived from a
measurement of stationary photoemission [47]. In calculating
excitation energies, for the 2p binding energy we adopted
the experimental value 50 eV [2] (the LDA result 42.6 eV
is strongly underestimated). No correction is introduced for
the valence band (VB). The calculations agree well with the
measurements of stationary photoemission [7,48], in particu-
lar, regarding the energy dependence of the emission intensity
from the surface state Iss(E ), see Fig. 2(a).

The derivative of the photoelectron phase Eq. (14) aver-
aged over the 2p band τ2p and over the VB τVB are presented
in Fig. 2(a) with circles accompanied by shading, whose ver-
tical extent δτ shows the sensitivity of τ to a variation of Vi

by ±10%, δτ = 0.1 × Vi dτ/dVi. The origin of the reference
frame is 2.6 a.u. away from the outermost atomic layer, at
the edge of the electronic density at the Mg(0001) surface.
The τ (E ) curves are a convolution with the intensity-weighted
Gaussian of 4.2 eV FWHM. Crosses show the semiclassical
NFE result τNFE(E ) = 1/[2Vi(E )], for a photoelectron escap-
ing from a depth equal to its MFP [1], with MFP being
velocity times lifetime 1/2Vi [22].

The OSTEWS curves for the atomiclike 2p band and
free-electron-like VB are seen to roughly follow τNFE(E ) on
a large scale, but locally both τ2p and τVB strongly deviate
from τNFE(E ) over the whole range of 150 eV, showing reach
structure caused by the lattice scattering. The underlying con-
ducting complex band structure (CBS) Re k⊥(E ) is presented
in Fig. 2(b) as a decomposition of LEED states into partial
waves (with complex Bloch vectors). To clearly reveal the
connection to bulk bands, we used an abrupt surface barrier
[49] and a negligible Vi = 0.1 eV. Most notably, there is no
obvious relation between the escape time and the character
of the final state: Indeed, the structures in the τ2p and τVB

curves are completely uncorrelated. Furthermore, the escape
time from the surface state does not show any characteristic
behavior: Neither the sharp intensity maximum at E = 40 eV
nor the broad one at 127 eV correspond to an extremum of
τVB. At the same time, both the narrow 2p band and the wide
VB manifest rapid variations of τ , and it is the deep mini-
mum at 74–80 eV in the τ2p(E ) curve that is responsible for
the minimum of the delay curve �τ (ω) = τ2p(ω) − τVB(ω)
at around h̄ω = 129 eV in Fig. 2(c). We suggest this as the
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FIG. 2. (a) Escape time versus final state energy for normal emis-
sion from Mg(0001): blue shading for τ2p and orange for τVB. Vertical
extent of shading shows δτ = 0.1 × Vi dτ/dVi. Crosses are the func-
tion 1/[2Vi (E )]. (b) Conducting CBS for k‖ = 0. Size of the circle is
proportional to the current carried by the Bloch wave at a given E and
k⊥. Final energies of the four measured excitations are shown by blue
(2p) and red (VB) arrows. The numbers indicate the photon energies
(self-energy correction is taken into account). (c) Delay τ2p − τVB for
k‖ = 0: circles are the LDA calculation, shading shows δτ2p + δτVB.
Dashed curve is the self-energy-corrected result. Red circles are the
measurement of Ref. [7]. (d) θ -averaged delay (LDA) along �̄M̄
(black) and �̄K̄ (blue). Measurements are red circles [7] and the
orange circle [2]. Black filled curve in graph (a) is the surface-state
intensity Iss(E ). Vertical arrows indicate the Iss(E ) maxima measured
in Ref. [48]a and Ref. [7]b.

explanation of the experimentally observed drop of �τ at
124.4 and 133.7 eV [7], see Fig. 2(c).

Unoccupied LDA eigenstates are known to have some-
what lower energies than the respective true quasiparticles.
In particular, the measured surface-state intensity peaks at
h̄ω = 44 eV [48] and at 134 eV [7] occur, respectively, 2 and
5 eV higher than in our calculation, Fig. 2(a). [A very similar
energy dependence of the self-energy shift was observed for
Al(111) [47].] A correction E → 1.039E brings the Iss(E )
peaks to the measured positions and yields the dashed �τ

curve in Fig. 2(c), which is in reasonable quantitative agree-
ment with the experiment [7] except for the point at h̄ωX =

145 eV. Figure 2(d) compares angular-integrated measure-
ments with the theoretical �τ averaged over the experimental
polar angle θ aperture of 22◦ for two azimuths, �̄M̄ and �̄K̄ .
We observe a substantial θ dependence of τ : the maximum
deviation from the average is 30–40 as (depending on initial
states and on azimuth), and the root mean square deviation is
around 15 as. After the θ averaging, there remains an appre-
ciable azimuthal dependence, Fig. 2(d). Averaged values show
a much smoother h̄ω dependence than the normal emission, in
accord with the experiment. Finally, we comment on the con-
spicuous discrepancy at 145 eV. We tentatively ascribe it to the
fact that the phase shift of the streaking spectrogram may not
exactly coincide with the escape delay �τ . The latter implies
that τ is measured when the packet has completely left the
surface, whereas the actual streaking takes place right at the
surface. We have seen similar discrepancy between TDSE and
OSTEWS in Fig. 1: it is small in the NFE region but becomes
large close to a gap. For Mg(0001), the final states of the
four measured excitations are indicated by arrows in Fig. 2(b).
Note that the 145 eV photons excite the VB electrons into a
wide spectral gap, while the 2p electrons land at the bottom
of a propagating branch. At the same time, for h̄ωX = 110 eV
both final states are at the propagating branches, which may be
the reason why τVB underestimates the streaking measurement
for h̄ωX = 145 eV, while for 110 eV the agreement with the
experiment is rather good.

To summarize, we have developed an ab initio method
for calculating the photoelectron escape time. In a one-step
manner, the excitation and the scattering on the way out of
the crystal are subsumed by the matrix element Eq. (13).
The only parameters that we cannot calculate microscopi-
cally are the real and imaginary self-energy, but they were
inferred from independent experiments, so adjustable param-
eters were avoided. According to our theory, in Mg(0001)
the lattice-scattering-induced oscillations in the τ (ω) curve
greatly exceed the overall slow decrease due to the increas-
ing inelastic scattering rate and persist up to kinetic energies
above 150 eV. Their sharp and irregular shape is a con-
sequence of the strong surface umklapp scattering and the
multi-Bloch-wave composition of the � states. The streaking
phase shift may deviate from the EWS escape delay because
the latter ignores the details of the streaking at the surface.
Nevertheless, the band structure effects are consistently re-
flected in the streaking experiment.
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APPENDIX A: ONE-STEP FORMALISM FOR WAVE
PACKETS

1. General formalism

Consider a semi-infinite crystal exposed to a time-
dependent perturbation Ô. The Dyson equation for the
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Keldysh contour-ordered GF reads [30,40,41]

G(x, t, x′, t ′) = G0(x, t, x′, t ′) +
∫

d3x2

∫
C

dt2G0(x, t, x2, t2)Ô(x2, t2)G(x2, t2, x′, t ′), (A1)

= G0 +
∫

C
G0ÔG0 +

∫
C

∫
C

G0ÔG0ÔG0 +
∫

C

∫
C

∫
C

G0ÔG0ÔG0ÔG, (A2)

≡ G0 + G1 + G2 + · · ·, (A3)

where TC indicates ordering along the contour C going from −∞, passing the points t and t ′, and then returning back to −∞
[40]. The function G0 is the equilibrium GF of the system in the absence of radiation. Equation (A2) uses the compact notations
G(x1, t1, x2, t2) ≡ G(1, 2), etc.; and ∫

C
AB ≡

∫
d3x2

∫
C

dt2A(1, 2)B(2, 3).

In the following, we will denote

AB ≡
∫

d3x2

∫ +∞

−∞
dt2A(1, 2)B(2, 3).

The crystal occupies the half-space x < 0, and the electrons photoexcited above the vacuum level are detected at a point X at a
large distance from the crystal surface. The radial photocurrent j(X, t ) of electrons emitted from the target along the observation
direction is given by [30]

j(X, t ) = lim
X′ → X,

X → ∞

(
∂

∂X ′ − ∂

∂X

)
G+

2 (X, t, X′, t ). (A4)

The light pulse creates a superposition of wave packets, whose density evolution, Eq. (6), is found from the same “lesser” GF
Eq. (2). Subscript 2 means the second order of the perturbation theory with respect to Ô(x, t ), i.e.,

G+
2 (X, t, X′, t ′) =

[∫
C

∫
C

G0ÔG0ÔG0

]+
= Gr

0ÔGr
0ÔG+

0 + Gr
0ÔG+

0 ÔGa
0 + G+

0 ÔGa
0ÔGa

0, (A5)

where we have introduced the retarded and advanced GFs,

Gr (x, t, x′, t ′) = −iθ (t − t ′)〈{ψ̂ (x, t ), ψ̂†(x′, t ′)}〉, (A6)

Ga(x, t, x′, t ′) = iθ (t ′ − t )〈{ψ̂ (x, t ), ψ̂†(x′, t ′)}〉, (A7)

with {Â, B̂} ≡ ÂB̂ + B̂Â and θ (t ) ≡ (t/|t | + 1)/2 being the step function. In Eq. (A5), we have used the Langreth theorem
[41,42,50]: [∫

C
dt2A(t, t2)B(t2, t ′)

]+
=

∫ +∞

−∞
dt2[Ar (t, t2)B+(t2, t ′) + A+(t, t2)Ba(t2, t ′)], (A8)[∫

C
dt2A(t, t2)B(t2, t ′)

]s

=
∫ +∞

−∞
dt2As(t, t2)Bs(t2, t ′), s = r, a. (A9)

In the explicit form, Eq. (A5) reads

G+
2 (X, t, X′, t ′) =

∫ +∞

−∞
dt2

∫
d3x2

∫ +∞

−∞
dt3

∫
d3x3

{
Gr

0(X, t, x2, t2)Ô(x2, t2)Gr
0(x2, t2, x3, t3)Ô(x3, t3)G+

0 (x3, t3, X′, t ′)

+ Gr
0(X, t, x2, t2)Ô(x2, t2)G+

0 (x2, t2, x3, t3)Ô(x3, t3)Ga
0(x3, t3, X′, t ′)

+ G+
0 (X, t, x2, t2)Ô(x2, t2)Ga

0(x2, t2, x3, t3)Ô(x3, t3)Ga
0(x3, t3, X′, t ′)

}
. (A10)

Note that the time integration on the right-hand side is over the real axis.
The equilibrium GFs Gs

0 with s = +,−, a, r depend only on difference of their time arguments and may be expressed via
Fourier transforms:

Gs
0(t − t ′) = 1

2π

∫ +∞

−∞
Gs

0(ω)e−iω(t−t ′ )dω, (A11)

Gs
0(ω) =

∫ +∞

−∞
Gs

0(t )eiωt dt . (A12)
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Substitution of expression (A11) into Eq. (A10) gives

G+
2 (X, t, X′, t ′) =

∫∫
d3x2d3x3

∫∫∫
dεdEdε′

8π3
exp(−iεt + iε′t ′)

× [
Gr

0(X, x2, ε)Ô(x2, ε − E )Gr
0(x2, x3, E )Ô(x3, E − ε′)G+

0 (x3, X′, ε′)

+ Gr
0(X, x2, ε)Ô(x2, ε − E )G+

0 (x2, x3, E )Ô(x3, E − ε′)Ga
0(x3, X′, ε′)

+ G+
0 (X, x2, ε)Ô(x2, ε − E )Ga

0(x2, x3, E )Ô(x3, E − ε′)Ga
0(x3, X′, ε′)

]
, (A13)

where

Ô(x, ω) = â(x)α(ω), and α(ω) =
∫ +∞

−∞
F (t ) cos(ωXt ) exp(iωt ) dt = F (ω + ωX) + F (ω − ωX). (A14)

The envelope function F (t ) vanishes outside a subfemtosecond interval, before which the crystal is at equilibrium. It is
convenient to assume F (t ) = F (−t ), so it is F (ω) = F (−ω). The “lesser” function describes occupied electron states [30,40]

G+
0 (x1, x2, E ) = −2i f (E − EF)Im Gr

0(x1, x2, E ), (A15)

where f (E ) = 1/[exp(βE ) + 1] is the Fermi distribution function, which deviates from θ (−E ) in an energy interval �E ∼
1/β � |EF|, where EF = −W is the Fermi energy and W is the work function of the solid. The energy is relative to the vacuum
level. The electrons are confined within the crystal, hence, we have for the “lesser” functions:

G+
0 (X → ∞, x, E ) = G+

0 (x, X′ → ∞, E ) = 0 for E > 0.

So, only the second term is nonzero on the right-hand side of Eq. (A13):

G+
2 (X, t, X′, t ′) =

∫∫
d3x2d3x3

∫∫∫
dεdEdε′

8π3
exp(−iεt + iε′t ′)

× Gr
0(X, x2, ε)Ô(x2, ε − E )G+

0 (x2, x3, E )Ô(x3, E − ε′)Ga
0(x3, X′, ε′). (A16)

For a while, we will use the shorthand notations and drop the spatial variables. We substitute

Ô(ω) = ô(ω + ωX) + ô(ω − ωX) (A17)

into Eq. (A16) and obtain

G+
2 (t, t ) =

∫∫∫
dεdEdε′

8π3
exp[−i(ε − ε′)t]Gr

0(ε)[ô(ε − E + ωX) + ô(ε − E − ωX)]G+
0 (E )

× [ô(E − ε′ + ωX) + ô(E − ε′ − ωX)]Ga
0(ε′)

=
∫∫∫

dεdEdε′

8π3
exp[−i(ε − ε′)t]Gr

0(ε)[ô(ε − E + ωX)G+
0 (E )ô(E − ε′ + ωX) + ô(ε − E + ωX)G+

0 (E )

× ô(E − ε′ − ωX) + ô(ε − E − ωX)G+
0 (E )ô(E − ε′ + ωX) + ô(ε − E − ωX)G+

0 (E )ô(E − ε′ − ωX)]Ga
0(ε′). (A18)

In Eqs. (A18), the integration is only over positive ε and ε′,
because only electrons with energies higher than the vacuum
level can escape from the target:

Gr
0(X → ∞, x, ε) = Ga

0(x, X′ → ∞, ε′) = 0 for ε < 0.

Now we note that for sufficiently long duration Dx of the XUV
pulse, the Fourier transform of the envelope function F (ω)
has a sharp maximum at ω = 0 [F (ω) = δ(ω) for a stationary
photoemission], and its width estimated from the uncertainty
relation �ω ∼ 1/2Dx is several eV. Thus, in the first two
terms of Eq. (A18), the integration over E is, in fact, restricted
to the interval ε + ωX − 1/2Dx < E < ε + ωX + 1/2Dx. The
XUV photon energy ωX is of the order of 100 eV, so the argu-
ment E of the “lesser” function in the two terms is well above
the Fermi energy, E > ε + ωX − 1/2Dx > 0 > EF , so this
function vanishes (cf. the analysis of Eq. (13) in Ref. [30]).
The fourth term vanishes because E > ε′ + ωX − 1/2Dx >

0 > EF . Thus, only the third term in Eq. (A18) survives.

Restoring the explicit notation for the arguments of all func-
tions we arrive at Eq. (7).

The substitution of expression Eq. (7) into Eqs. (6) and
(A4) gives the time-dependent probability density and the
total photocurrent. The stationary case corresponds to F (ω) =
δ(ω) [cf. expression Eq. (14) for the photocurrent in Ref. [30],
and see also Eqs. (3.13) and (3.14) in Ref. [42]]. Note that the
derivation of Eq. (7) from Eq. (A5) holds for the general case
of a many-body Hamiltonian Ĥ0 in Eq. (3).

2. Noninteracting electrons

For a non-interacting system, the explicit form for G+
0 is

G+
0 (x1, x2, E ) = 2i f (E − EF)π

∑
i

ψi(x1)ψ∗
i (x2)δ(E − Ei ).

(A19)
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We substitute Eq. (A19) into Eq. (7) to obtain

G+
2 (X, t, X′, t )

= 2iπ
∑

i

f (Ei − EF )
∫∫∫

dε dε′dE

8π3

×
∫

d3x2 Gr
0(X, x2, ε)ô(x2, ε − ωX − E )ψi(x2)

×
∫

d3x3 ψ∗
i (x3)ô(x3, E + ωX − ε′)Ga

0(x3, X′, ε′)

× δ(E − Ei ) exp −i(ε′ + E )t,

which in terms of the final states �i(X, t ) given by Eq. (9)
reads

G+
2 (X, t, X′, t ) = i

∑
i

f (Ei − EF)�i(X, t )�∗
i (X′, t ).

(A20)

Now, following Ref. [28], we use the Dyson identity

Gr
0(X, x, ε)

= g(X − x, ε) +
∫

dnx′ g(X − x′, ε)V (x′) Gr
0(x′, x, ε),

(A21)

into which we now substitute the free particle GF for asymp-
totically large X and finite x for the n-dimensional space:

g(X − x, ε) = 1

ik

( −ik

2πX

)(n−1)/2

exp[ ikX − ikx ], where

k ≡
√

2ε and k = kX/X. (A22)

This leads to the asymptotic expression (10) for Gr
0(X, x2, ε)

as X → ∞, which yields the density and the photocurrent in
terms of the LEED states:

�k(x) = e−ikx +
∫

d3x′e−ikx′
V (x′)Gr

0(x′, x, ε). (A23)

By substituting the asymptotic form Eq. (10) of Gr
0(X, x, ω)

into Eq. (9), we obtain the expressions Eqs. (11)–(13) for the
true final state �i(X, t ).

APPENDIX B: TIME DELAY IN PHOTOEMISSION

It follows from Eqs. (6) and (A20) that the density in vac-
uum reduces to an incoherent superposition of wave packets
generated by the light pulse from the initial states

n(X, t ) =
∑

i

f (Ei − EF )|�i(X, t )|2. (B1)

For a spectrally very narrow wave packet with Ai(k), Eq. (12),
sharply peaked around some energy ε0, the maximum of the
packet at a time t is situated at the stationary phase point X
given by the condition Eq. (14). For an ultrashort pulse, the
realistic function Ai(k) may be rather complex, e.g., it may
have several peaks. Then the average time delay should be
found from the equation of motion for the position expectation
value 〈X〉.

Here we present a calculation of 〈X〉 for a 1D system. The
expression Eq. (A22) for n = 1 gives the 1D GF asymptotics

Gr
0(X, x, ε) −−−→

X→∞
− i exp[ikX ]

k
�(x, k), (B2)

and the 1D LEED states are

�(x, k) = e−ikx +
∫

dx′e−ikx′
V (x′)Gr

0(x′, x, ε). (B3)

Instead of Eqs. (11)–(13), for a one-dimensional system we
obtain

�i(X, t ) =
∫

dεAi(k) exp i[kX − εt + ηi(k)], (B4)

Ai(k) = 1

2π

F (ε − ωX − Ei )

k
|Mi(k)|, (B5)

Mi(k) =
∫

dx �(x, k)â(x)ψi(x) = |Mi(k)| exp iηi(k), (B6)

where ηi(k) is the phase of matrix element Mi(k).
Now we calculate the position expectation value

〈X 〉 = B
∑
i∈occ

∫ ∞

−∞
XdX

∫ ∞

0
k′dk′

∫ ∞

0
kdk Ai(k

′)

× exp[−i(k′ − k)X ]Ai(k)

× exp

{
−i[ηi(k

′) − ηi(k)] + i
k′2 − k2

2
t

}
, (B7)

where B is the normalization constant

B =
[

2π
∑
i∈occ

∫ ∞

0
k2A2

i (k)dk

]−1

. (B8)

In Eqs. (B7) and (B8), we have assumed that f (E − EF) ≈
θ (EF − E ). The integration over X in Eq. (B7) gives∫ ∞

−∞
X exp[−i(k′ − k)X ]dX

= −i
∂

∂k

∫ ∞

−∞
exp[−i(k′ − k)X ]dX = −2π i

∂

∂k
δ(k − k′).

Finally, we obtain

〈X 〉 = 2π iB
∑
i∈occ

∫ ∞

0
k′Ai(k

′) exp

[
−iηi(k

′) + i
k′2

2
t

]

× ∂

∂k

{
kAi(k) exp

[
i

(
ηi(k) − k2

2
t

)]}
k=k′

dk′

= 2πB
∑
i∈occ

∫ ∞

0
[kAi(k)]2k[t − η̇i(k)] dk ≡ k̄t + b

≡ k̄(t − τ ), (B9)

k̄ ≡ 2πB
∑
i∈occ

∫ ∞

0
[kAi(k)]2k dk, (B10)

b ≡ −2πB
∑
i∈occ

∫ ∞

0
[kAi(k)]2τi(k)k dk, (B11)

τ = −b

k̄
. (B12)
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