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A cardinal obstacle to understanding and predicting quantitatively the properties of solids and large molecules
is that, for these systems, it is very challenging to describe beyond the mean-field level the quantum-mechanical
interactions between electrons belonging to different atoms. Here we show that there exists an exact dual
equivalence relationship between the seemingly distinct physical problems of describing local and nonlocal
interactions in many-electron systems. This is accomplished using a theoretical construction analog to the
quantum link approach in lattice gauge theories, featuring the nonlocal electron-electron interactions as if
they were mediated by auxiliary high-energy fermionic particles interacting in a purely local fashion. Besides
providing an alternative theoretical direction of interpretation, this result may allow us to study both local and
nonlocal interactions on the same footing, utilizing the powerful state-of-the-art theoretical and computational
frameworks already available.
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I. INTRODUCTION

The phenomenon of strong electron correlations [1]—
deeply related to what in chemistry is known as the mul-
ticonfigurational problem—is widespread in materials with
transition metals from the 3d series, lanthanides, actinides, as
well as in organic matter [2,3]. The need for explaining the
spectacular emerging behaviors of strongly correlated systems
[1]—such as the Mott metal-insulator transition, [4] high-
temperature superconductivity [5,6], and magnetism—has led
to the development of powerful theoretical frameworks, which
are typically referred to as quantum embedding (QE) theo-
ries [1,7]. Well-known examples are dynamical mean field
theory (DMFT) [8–11], multiorbital generalizations of the
Gutzwiller approximation (GA) [12–20], density matrix em-
bedding theory (DMET), [21] rotationally invariant slave
boson theory (RISB) [22–25], and the respective combi-
nations of these approaches with MF methods. Moreover,
promising QE methodologies based on quantum-chemistry
approaches have recently emerged [26,27]. The key idea un-
derlying all MF + QE methods consists of separating the
system into (1) a series of local fragments (called impurities),
which require a higher-level treatment due to the presence
of strong-correlation effects (e.g., the d open shells of tran-
sition metals) and (2) their surrounding environment, which
is treated at the mean-field level. The fundamental reason un-
derlying the predictive power of the MF + QE methodologies
is that they describe the local electronic interactions beyond
the mean-field level. Therefore, these theoretical frameworks
capture the characteristic atomic energy scales emerging in
strongly correlated matter, which are at the basis of many of
the properties of these systems [1].

However, at present, the problem of describing beyond the
mean-field level the nonlocal electron-electron interactions
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of realistic large molecules and solids is still very difficult.
Indeed, this is a key limitation to our ability of understanding
and simulating quantitatively strongly correlated systems, as
the nonlocal interactions decay slowly with the interatomic
distance and, in fact, they are often so large that they influence
dramatically the electronic structure and generate emerging
phenomena, such as charge ordering [28–33]. Remarkably,
the nonlocal effects are of the utmost importance in organic
systems also. A well-known example are the so-called London
dispersion interactions, which affect the electronic structure of
essentially all large condensed-phase systems [34], including,
e.g., the noncovalent bonds that determine the double-helical
structure of DNA [35].

Therefore, treating beyond the mean-field level both lo-
cal and nonlocal interactions is very important. This has
stimulated intensive research and led to the development of
extensions of DMFT [36–41] and the GA [42–48]. Never-
theless, the systematic inclusion of the nonlocal Coulomb
interaction remains a serious challenge.

Here we derive a mathematically exact reformulation of
the problem, where the nonlocal electronic interactions are
replaced by local interactions with auxiliary fermionic de-
grees of freedom. This result establishes a rigorous “dual”
relationship between the seemingly distinct physical problems
of describing local and nonlocal interactions. Furthermore, it
may allow us to describe both of these effects with the QE
theoretical frameworks already available, in combination with
the rapidly evolving technological developments [49–61] for
speeding up this type of calculation.

II. LOCALITY OF INTERACTIONS
IN EFFECTIVE THEORIES

When there are large energy scales that are well separated
from the low-energy sector, the observables at one scale are
not directly sensitive to the physics at significantly different
scales. In some cases, such scale hierarchy constitutes a great
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simplification, as the physics of the low-energy sector can
be formulated in terms of an effective theory constructed
in an exponentially smaller Hilbert space. This perspective
is typically referred to as top-down. For example, the laws
underlying the physics of ordinary solids, molecules, and the
whole chemistry are essentially encoded in quantum electro-
dynamics, whose formulation does not require us to introduce
particles such as the Higgs or W bosons. A complementary
perspective is the so-called bottom-up approach, where one
starts from a low-energy model and attempts to work up
a chain of more and more “fundamental” effective theories
consistent with the known low-energy physics, but valid also
at higher energies.

A cardinal observation—at the core of the present paper—
is that low-energy effective theories can involve nonlocal
interactions even if the original underlying theory is purely
local [62–65]. Here we are going to turn this problem into
an advantage. In fact, we will show that it is possible to
formulate the physical Hamiltonian of a general multior-
bital extended Hubbard model—containing the “troublesome”
nonlocal interactions present in all solids and molecules—as
the low-energy model of an underlying effective bottom-up
fermionic theory with purely local interactions.

III. LOCAL BOTTOM-UP EFFECTIVE THEORY
OF THE EXTENDED HUBBARD MODEL

Before discussing realistic multiorbital systems, let us con-
sider the periodic single-band extended Hubbard model on a
D-dimensional hypercubic lattice,

ĤUV = ĤU + V

2

∑
〈i j〉

n̂in̂ j , (1)

where ĤU is the Hubbard Hamiltonian:

ĤU = −t
∑
〈i j〉σ

c†
iσ c jσ + U

∑
i

n̂i↑n̂i↓ − μ
∑

i

n̂i ; (2)

the symbol 〈i j〉 indicates the summation over all nearest-
neighbor pairs (so each pair is counted twice); c†

iσ , ciσ are the
annihiliation and creation operators of electrons of spin σ ∈
{↑,↓} at the atomic site i; n̂iσ = c†

iσ ciσ and n̂i = n̂i↑ + n̂i↓.
The nonlocal operator proportional to V > 0 is called density-
density interaction [66].

The key distinctive feature of the nonlocal interactions,
such as the density-density terms in Eq. (1), is that they make
it impossible to partition the system into distinct subsystems
coupled only by quadratic operators. For example, the parti-
tions enclosed by blue dashed lines in Fig. 1(a) are not distinct,
as they overlap with each other. In many QE theories, this
makes it very challenging to accurately model the coupling
between the subsystems and their respective environments. In
particular, this is a well-known obstacle within many widely
used QE embedding methods (such as DMFT, RISB, and
the GA). To solve this cardinal problem, here we design an
effective theory satisfying the following conditions:

(1) Locality, i.e., the existence of a partition into finite
subsystems coupled only quadratically.

(2) Equivalence to Eq. (1), i.e., with the property of repro-
ducing exactly its physics for all U, t, μ,V .

FIG. 1. Representation of the density-density interaction in the
extended Hubbard model in dimension D = 1. The blue bullets
represent the physical electronic degrees of freedom and the gray
bullets represent the ghost particles. (a) [Eq. (1)]: The density-density
interaction (yellow wavy line) is nonlocal. (b) [Eq. (3)]: The density-
density interaction is effectively mediated by the virtual processes
1,2,3, involving the ghost degrees of freedom. The interaction (gray
wavy line) is local, i.e., it couples only ghost and physical degrees of
freedom belonging to the same unit cell.

As we are going to show, such construction can be realized
starting from the following Hamiltonian, represented in Fig. 2
for dimension D = 2:

Ĥγ τ
UV = ĤU + τD

∑
i

n̂i + γ τ
∑

iσ

D∑
d=1

(c†
iσ gi+ed dσ

+H.c.)

+ γ 2
∑

i

D∑
d=1

(τ n̂id + V n̂id n̂i ), (3)

where we have introduced D auxiliary fermionic degrees of
freedom g†

idσ
, gidσ

for each unit cell i and spin σ ; n̂id =∑
σ g†

idσ
gidσ

and ed is the D-dimensional vector with all en-
tries equal to 0 except for the dth component, which is 1. From
now on, we will refer to the auxiliary fermionic particles as
the ghost degrees of freedom and to Eq. (3) as the effective
bottom-up theory of Eq. (1).

The fact that Eq. (3) is local (condition 1) stems from
the fact that all interaction operators carry the same unit-cell
label i. This is also shown in Fig. 2, where the subsystems
indicated by the blue dashed lines interact only quadratically.
Note that the ghost modes (gray dots) are associated with the
links connecting the lattice sites (blue dots). This structure is
analog to the quantum link approach to lattice gauge theories,
where the fermionic fields are placed on the lattice sites, while
the bosonic gauge fields are placed on the links [67]. This
analogy will be discussed further below.
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FIG. 2. Representation of the effective bottom-up Hamiltonian
[Eq. (3)] for a square lattice (D = 2). The blue bullets represent the
physical electronic degrees of freedom and the gray bullets (placed
on the corresponding lattice links) represent the ghost particles.
The ghost modes placed on the horizontal links have label d = 1,
while the ghost modes placed on the vertical links have label d = 2.
The lattice unit cell, enclosed by dashed lines, have label i. The
density-density interactions between ghost and fermionic modes are
indicated by gray wavy lines, the hopping between physical modes
is indicated by continuous black lines, the hopping between physical
and ghost modes is indicated by gray dashed lines.

Let us now focus on the equivalence to Eq. (1) (condi-
tion 2). As we are going to show, for τ → ∞ and γ → ∞,
Ĥγ τ

UV reproduces exactly the physics of the extended Hubbard
model [Eq. (1)]. In particular, this means that, for all physical
observables Ô (constructed with ciσ , c†

iσ ),

lim
τ→∞ lim

γ→∞〈�γτ | Ô |�γτ 〉 = 〈�| Ô |�〉 , (4)

where |�γτ 〉 is the ground state of Eq. (3) and |�〉 is the
ground state of Eq. (1).

Before demonstrating formally this fact, it is insightful
to describe intuitively the key physical concept underlying
the construction of Eq. (3): The nonlocal interactions be-
tween the physical electronic modes ciσ , c†

iσ [Fig. 1(a)] can
be viewed as if they were mediated by the ghost fermions
(represented by the operators gidσ

, g†
idσ

). Specifically, in Ĥγ τ
UV

the effect of V is the outcome of the following second-order
sequence of processes [Fig. 1(b)]: (1) a nonlocal hopping
between physical and ghost modes, (2) a local density-
density interaction between ghost and physical particles, and
(3) a second nonlocal hopping between physical and ghost
modes.

Let us now prove this result mathematically. We define
P the projector over the “physical” space VP generated only
by ciσ , c†

iσ , i.e., where all ghost-particle occupation numbers
are 0. The projector over the auxiliary space generated by
the eigenstates of n̂g = ∑

id n̂id with eigenvalue ng � 1 is
Q = 1 − P. From the Schrödinger equation for Eq. (3), we
deduce that the eigenstates of Eq. (3) satisfy the following
equation:

ĤUV,γ τ

eff [Eγ τ ] P|�γτ 〉 = Eγ τ P|�γτ 〉 , (5)

where Eγ τ is a generic eigenvalue of Eq. (3) and

ĤUV,γ τ

eff [Eγ τ ] = PĤγ τ

UV P + PĤγ τ

UV Q
1

Eγ τ − QĤγ τ

UV Q
QĤγ τ

UV P

= ĤU + τD
∑

i

n̂i +
∑
idσ

c†
iσ

τ 2

γ −2Eγ τ − γ −2[ĤU + τD n̂i+ed ] + (τ + V n̂i )
ciσ . (6)

Note that Eq. (5)—with ĤUV,γ τ

eff [Eγ τ ] given by the first line
of Eq. (6)—is an exact identity valid for all Hamiltonians, see
Ref. [68]. The second line of Eq. (6) is obtained by using
that, for our specific Hamiltonian, each term of PĤγ τ

UV Q can
rise the occupation number of only one of the ghost modes
(from 0 to 1).

It is important to note that, at any finite γ , the effective
Hamiltonian [Eq. (6)] depends itself on Eγ τ . To understand
how Eq. (6) simplifies for γ → ∞ (at fixed τ > 0), we need
to estimate how the eigenvalues Eγ τ of Eq. (3) behave in this
limit. As we are going to show, the spectra of Eq. (3) is divided
in two sectors: a low-energy (physical) sector, such that

lim
γ→∞ γ −2Eγ τ = 0 , (7)

and a high-energy (auxiliary) sector, with eigenvalues diverg-
ing as τγ 2. To prove this fact, starting from Eq. (3), we note

that γ −2Ĥγ τ
UV can be expressed as follows:

γ −2Ĥγ τ

UV = ĥτ
UV + r̂τ

UV (γ ) , (8)

where

ĥτ
UV =

∑
i

D∑
d=1

(τ n̂id + V n̂id n̂i ) , (9)

r̂τ
UV (γ ) = γ −1τ

∑
iσ

D∑
d=1

(c†
iσ gi+ed dσ

+ H.c.)

+ γ −2

(
ĤU + τD

∑
i

n̂i

)
. (10)

We note that ĥτ
UV assigns an energy cost ∝ τ > 0 to all un-

physical configurations (with nonzero occupied ghost modes),
while its ground space coincides with the physical subspace
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VP (where, by definition, all ghost modes are empty). Since
r̂τ

UV (γ ) vanishes for γ → ∞, the low-energy eigenvalues
γ −2Eγ τ of Eq. (8) satisfy Eq. (7). Instead, Eγ τ diverges as τγ 2

for the unphysical states. For the same reason, the low-energy
eigenstates |�γτ 〉 become equal to P|�γτ 〉 in this limit.

By substituting Eq. (7) in Eq. (6), we deduce that, in the
low-energy sector, Eq. (5) reduces to an ordinary (energy-
independent) Schrödinger equation for γ → ∞, with respect
to the following effective Hamiltonian:

ĤUV,τ
eff = ĤU + τD

∑
i

n̂i −
∑
idσ

c†
iσ

τ 2

τ + V n̂i+ed

ciσ . (11)

Let us now evaluate the limit of Eq. (11) for τ → ∞. We
note that, if τ is sufficiently large, the following equation
holds:

τ 2

τ + V n̂i+ed

= τ

[
1 − V

τ
n̂i+ed +

∞∑
l=2

(
−V

τ
n̂i+ed

)l
]
. (12)

In fact, since the maximum eigenvalue of n̂i+ed is 2, the
geometric series is guaranteed to converge for ∀ τ > 2V . By
substituting Eq. (12) in Eq. (11), we obtain

ĤUV,τ
eff = ĤUV + ôV (τ ) , (13)

which coincides with Eq. (1) up to a perturbation of order
ôV (τ ) ∼ V 2τ−1, that vanishes for τ → ∞.

In summary, for γ → ∞ the states with nonzero ghost
occupations are gapped out (as their energy diverges as τγ 2).
On the other hand, they mediate the desired nonlocal density-
density interaction of Eq. (1) within the physical space, by
means of second-order (virtual) processes. At finite τ , these
virtual processes also generate undesired additional interac-
tions (because of the subleading terms of order �2 in the
geometric series [Eq. (12)]). But all spurious terms van-
ish as 2V/τ 2 for τ → ∞, while the desired density-density
interaction remains. In other words, the spurious terms asso-
ciated with deviations from the extended Hubbard model are
suppressed by a factor ∝ (V/τ )2 with respect to the density-
density interaction. Therefore, in these limits, the low-energy
sector of Eq. (3) reproduces exactly the physics of Eq. (1),
∀U, t, μ,V .

We point out that, in the last step in Eq (6), we used the
fact that the ghost degrees of freedom in Eq. (1) are placed on
the links (analogously to lattice gauge theories [67]). In fact,
linking a ghost fermion to multiple physical modes would
generate additional second-order processes—and, in turn, ad-
ditional long-range interactions not present in the original
extended Hubbard Hamiltonian [Eq. (1)]. This explains why
the nonlocal interactions along different directions in Ĥγ τ

UV
have to be mediated by distinct ghost particles, identified by
the label d . Note also that, since the ghost fermions are placed
on the links, Eq. (3) preserves the translational invariance of
the system ∀ γ , τ—as opposed to classic cluster approaches
[69–73], where the problem of breaking artificially the trans-
lational symmetry cannot be avoided.

To illustrate the implications of our result in a minimal
setting, in Fig. 3 we present numerical calculations of a
half-filled one-dimensional extended Hubbard model ĤUV

consisting of four physical sites. Note that, for this relatively

FIG. 3. Solution of the four-site single-band extended Hubbard
model at half filling for U = 3 and V = 1.5, where t is set as the
energy unit. The dotted lines indicate quantities calculated directly
from Eq. (1), while the bullet points are quantities calculated using
the effective bottom-up Hamiltonian [Eq. (3)], for different values
of γ and 2V τ−1 = 10−2. Top panel: Physical occupation (green)
and ghost occupation (gray). Bottom panel: Hopping operator (blue),
double occupancy (red) and density-density operator (orange).

small system, both the original Hamiltonian and the cor-
responding effective Hamiltonian Ĥγ τ

UV can be diagonalized
exactly. As an example, we set t as unit of energy, U = 3
and V = 1.5. In all calculations, we set the parameter of the
geometric expansion in Eq. (12) to 2V τ−1 = 10−2. In the top
panel is shown the behavior, as a function of γ , of the physical
occupancy 〈�γτ | n̂ |�γτ 〉 (green line) and of the occupation
of the ghost modes 〈�γτ | n̂d |�γτ 〉 (gray line). In the bottom
panel are shown the corresponding expectation values for a
few physical observables. Consistent with Eq. (4), the numer-
ical calculations confirm that the “spurious” charge transfer
between physical and ghost degrees of freedom vanishes for
large γ , where the ghost modes are gapped out and, there-
fore, the corresponding occupancy vanishes. Furthermore, all
expectation values converge to the correct limit for γ → ∞,
as expected. The exact-diagonalization calculations were per-
formed using the open-source software OPENFERMION [74].

A. Generalization to multiorbital systems

The procedure utilized above within the context of the
single-band extended Hubbard model can be straightfor-
wardly generalized to realistic multiorbital Hamiltonians. For
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example, let us consider the following D-dimensional system:

ĤUV = ĤU + 1

2

∑
〈i j〉

ν∑
αβγ δ=1

Vαβγ δ c†
iαciβc†

jγ c jδ , (14)

where ĤU is any multiorbital Hamiltonian with purely local
interactions, the labels α, β, γ , δ represent both orbital and
spin degrees of freedom and the coefficients Vαβγ δ parametrize
a generic density-density operator—which is typically the
largest contribution to nonlocal interactions in real solids and
molecules [66]. It can be readily shown that the effective
bottom-up theory of Eq. (14) is the following:

Ĥγ τ
UV = ĤU + τD

∑
i

n̂i + γ τ
∑
idα

(
c†

iαgi+ed dα
+ H.c.

)

+ γ 2
∑

id

[
τ n̂id +

∑
αβγ δ

Vαβγ δ g†
idα

gidβ
c†

iγ ciδ

]
, (15)

where

n̂i =
∑

α

c†
iαciα, (16)

n̂id =
∑

α

g†
idα

gidα
. (17)

Note that, as for the single-orbital case, Ĥγ τ

UV becomes equiv-
alent to ĤUV for γ → ∞ and τ → ∞ (where, as before, the
limit for γ → ∞ is taken first).

We point out that the theoretical construction derived in
this paper is not restricted to hypercubic periodic lattices but
can be extended to systems with arbitrary structures (also
without translational symmetry). Furthermore, the Coulomb
interactions beyond first-nearest neighbors can also be de-
scribed, in a similar fashion, by introducing longer-range
hopping operators between physical and ghost degrees of
freedom. Our approach may also be applicable for studying
real crystals and molecules, e.g., using the interfaces already
available for performing this type of calculation [15,75,76]. In
fact, treating systematically beyond the mean-field level also
the dominant (e.g., first-nearest-neighbor) contributions of the
nonlocal interactions may improve substantially the accuracy
of these methods. In this respect, applications in combination
with HF + QE frameworks [76] (which do not require to in-
troduce any adjustable parameters) are particularly appealing.

IV. CONCLUSIONS

In summary, we have shown that all multiorbital sys-
tems represented by Eq. (14)—which includes all local and
the largest nonlocal contributions of most real solids and
molecules [66]—can be equivalently described by solving
higher-dimensional fermionic systems with purely local in-
teractions, see Eq. (15). This exact result is analog to the
quantum link approach to lattice gauge theories, where
the fermionic fields are placed on the lattice sites, while
the bosonic gauge fields are placed on the links [67].
The dual relationship between nonlocal and local interactions,
demonstrated here, provides us with a rigorous alternative
direction of interpretation. Furthermore, the possibility of
using auxiliary fermions for decoupling the nonlocal in-
teractions may allow us to develop methods for including
these effects in practical calculations—complementary to the
available computational frameworks. In fact, many of the
existing state-of-the-art QE approaches are based on the
so-called Hubbard-Stratonovich transformation [38], which
utilizes auxiliary bosons instead of fermions. Computation-
ally, the main cost of performing calculations of our dual
model would be that introducing additional fermionic degrees
of freedom increases the dimension of the impurity problem.
However, within QE methods such as DMET and the GA
(where the bath is as large as the impurity [19,21]), applica-
tions to models with up to three correlated orbitals per atom
may be already feasible using exact diagonalization or state-
of-the-art quantum chemistry methods [49–51] as impurity
solvers. Furthermore, thanks to the rapidly evolving techno-
logical developments based on machine learning [52,53] and
quantum-computing [54–61], it may soon become possible
to apply this framework also to arbitrary d-electron and f -
electron systems.
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