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Band structure of a HgTe-based three-dimensional topological insulator
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From the analysis of the cyclotron resonance, we experimentally obtain the band structure of the three-
dimensional topological insulator based on a HgTe thin film. Top gating was used to shift the Fermi level in
the film, allowing us to detect separate resonance modes corresponding to the surface states at two opposite film
interfaces, the bulk conduction band, and the valence band. The experimental band structure agrees reasonably
well with the predictions of the k · p model. Due to the strong hybridization of the surface and bulk bands, the
dispersion of the surface states is close to parabolic in the broad range of the electron energies.
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I. INTRODUCTION

The electronic band structure provides an important finger-
print of a material in the reciprocal space. In case the surface
of the sample is accessible experimentally, the standard tech-
nique of angle-resolved photoemission spectroscopy [1] is an
established way to obtain the necessary information. However,
in several cases, especially in two-dimensional heterostruc-
tures, several buffer or capping layers prevent collecting the
data from the photoemitted electrons. As possible alternative
methods, the analysis of the cyclotron mass [2–5] or density of
states via capacitance experiments [6,7] have been suggested
to recover the band dispersion especially of two-dimensional
materials. In magneto-optical experiments [8–12], the relevant
information is obtained comparing the theoretical predictions
[13,14] of the band structure with experimental data.

Within another approach, the band structure may be ob-
tained from the analysis of the cyclotron resonance frequen-
cies [5,15] that is especially useful for two-dimensional ma-
terials. Indeed, in two dimensions and in the quasiclassical
approximation, the cyclotron frequency �c may be written in
terms of the cyclotron effective mass mc as [16]

mc ≡ eB

�c
= h̄2

2π

∂A

∂E

∣
∣
∣
∣
E=EF

. (1)

Here, B is the external magnetic field, A is the area in the
reciprocal space enclosed by the contour of the constant
energy E , and EF is the Fermi energy.

An important point is that the cyclotron frequency in
Eq. (1) linearly depends on an external magnetic field
independently of the form of dispersion relations because
the Fermi area is field independent in the quasiclassical
approximation. This approximation is the main assumption
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in the present experiments [5,15], i.e., transitions between
several Landau levels should take place simultaneously. This
condition is certainly realized at lower magnetic fields utilized
in the present experiment.

In the general case, the relation between the area and the
band structure may be complicated. In such cases, an addi-
tional input from the theory is indispensable. As discussed in
Sec. III, especially for surface states and for bulk conduction
band, the isotropic approximation can be applied leading to
a simple relation between the Fermi-vector kF and the Fermi
area: A = πk2

F . In this case, Eq. (1) can be rewritten as

∂E

∂k

∣
∣
∣
∣
E=EF

= h̄2kF

mc
, (2)

and, thus, can be directly integrated to obtain the experimental
band-structure E (k). For the holelike states, however, the
isotropic approximation breaks down, and additional informa-
tion from the theory is necessary to obtain the band structure.
A possible approach, in this case, is presented in Sec. III.

In this paper, we apply the procedure sketched above to
a three-dimensional topological insulator (3D TI) HgTe and
compare the results with the predictions of the k · p model.

The unstrained single-crystalline mercury telluride (HgTe)
is a gapless semimetal with the conduction and valence bands
formed by �8 bands [13]. If grown in the form of a thin film on
a CdTe layer, HgTe is subject to a tensile strain due to lattice
mismatch between HgTe and CdTe [17]. As a consequence,
the originally degenerate light and heavy �8 hole bands split
at the � point, thus, forming a bulk insulator with a gap around
∼20 meV [17,18] for an 80-nm HgTe film. Due to a band
inversion between HgTe and CdTe the topologically protected
surface states arise in about 10–20-nm-thick layer close to
the boundary. HgTe films, thus, form a strong 3D TI [19].
According to band-structure calculations, the conduction band
of an 80-nm HgTe 3D TI is nonparabolical, and it is quantized
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FIG. 1. Theoretical band structure of a 3D topological insulator
HgTe. (a) The first valence band, the surface band, and the first con-
duction band of the 80-nm-thick HgTe layer at the charge neutrality
point ntot = 0 where the concentrations of electrons and holes equal
±1.2 × 1011 cm−2. (b) Cross section of (a) at Ef = 0 meV. Blue:
holelike Fermi surface (∂A/∂E < 0) from the islands in the (±1, ±1)
directions. Orange: electronlike Fermi surface (∂A/∂E > 0) from the
surface states. (c) Fermi surface of the hole-doped sample where four
islands are connected and lead to a different cyclotron picture: blue:
holelike; violet: electronlike; orange: electronlike.

due to the confinement. The valence band of the HgTe film
reveals a deep minimum at the � point with four shallow
side maxima along the (±1,±1) directions (see Fig. 1). The
minimum is due to the mixing between light and heavy-hole
states in the inverted band structure of HgTe [20,21].

II. EXPERIMENT

A. Technique

The magneto-optical experiments were carried out on a
strained 80-nm-thick HgTe film grown by molecular beam
epitaxy on a (100)-oriented GaAs substrate [18,22] with a
lateral size of 5 × 5 mm. The layer was sandwiched between
the cap and the buffer layers of Cd0.7Hg0.3Te to obtain high
electron mobility in the sample. The analysis of the cyclotron
resonance corresponding to the upper surface state revealed
the mobility to be up to μ = eτ/mc = 5 × 105 cm2 V−1 s−1.
Here, e, τ , and mc are the electron charge, the scattering time,
and the cyclotron mass, respectively. Between the layered
structure and the GaAs substrate a 5-μm-thick CdTe buffer
layer was placed. To produce the semitransparent gate elec-
trode, the film was covered on top by a multilayer insulator of
SiO2/Si3N4 and a semitransparent metallic 10.5-nm-thick Ti-
Au layer. The top-gate electrode allowed the variation of the
Fermi energy to probe the surface states and the valence and
conduction bands [6,23,24]. The shape of the gate electrode
allowed a fully covered center of the sample for terahertz
transmission measurements and four contacts at the corners
of the sample, allowing to acquire simultaneous information
about the electrical conductivity in the system.

Due to the fact that the gate only partially covers the
sample, we were not able to fully rely on the magnetotransport
measurements. The ungated regions can significantly falsify
the transport response. However, at zero gate voltage, this ef-

fect is minimized, thus, allowing us to gather some additional
information about the carriers in the system as shown below.

The cyclotron resonance was investigated in a Mach-
Zehnder interferometer [25] arrangement, which allowed to
measure the amplitude and the phase shift of the transmitted
electromagnetic radiation with controlled polarization of light
[23,26]. Continuous monochromatic radiation was produced
by backward-wave oscillators operating in the submillimeter
regime (100–1000 GHz). The transmitted radiation was de-
tected by a silicon 4.2-K bolometer with a high-frequency
cutoff filter of 3 THz. The data were obtained at several fixed
frequencies in sweeping magnetic fields. Additional informa-
tion about the charge carriers in the system was also obtained
from the frequency-dependent spectra in a zero magnetic field.
To unambiguously separate the resonances from the electron-
like and holelike carriers, several experiments were conducted
with circularly polarized radiation. The experiments were
carried out at 1.8 K in a split-coil superconducting magnet that
provided a magnetic field up to ±7 T in the Faraday geometry;
i.e., a magnetic field was applied parallel to the k vector of the
terahertz radiation.

B. Spectra modeling

In order to obtain the parameters of the charge carriers,
such as the two-dimensional (2D) density n, the effective
cyclotron mass mc, and the intrinsic scattering time τ , the
acquired experimental data were fitted using the Drude model
for dynamical conductivity in the quasiclassical approxima-
tion [27]. We utilize the geometry with circularly polarized
light and the conductivity written as

σ+ = σ0

1 − iτ (ω + �c)
. (3)

Here, σ0 = ne2τ/mc is the two-dimensional DC conductivity.
The conductivity of a system with multiple carriers is the sum
of the individual conductivities. Neglecting the influence of
the substrate, the simplified expression for the transmission of
circularly polarized radiation through a film (assumed to be
thin compared to the radiation wavelength) can be written as

t+ = 1 − i

τSR

1

(ω + i�) − �c
. (4)

Here the “total” scattering rate � = 1/τ + 1/τSR describes
the effective width of the cyclotron resonance observed in
the transmission signal, 1/τ is the transport scattering rate,
1/τSR = ne2Z0/2mc is the superradiant damping [28], and Z0

is the impedance of the free space.
To take into account the reflections inside the substrate,

we employed a more accurate model for the analysis of the
experimental results. The procedure utilizes similar algebra as
described previously [21,29,30]. The theoretical transmission
of the circular polarization t+ = txx + itxy was calculated by
changing into the basis with parallel txx and crossed txy trans-
mission coefficients.

III. THEORETICAL MODEL

To acquire a more detailed insight into the band structure
of the strained HgTe layer, theoretical calculations have been
performed using a multiband k·p model [31] which takes into
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account the strong coupling between the lowest conduction
and the highest valence bands. The k · p model considers eight
bands: two �6, two �7, and four �8 subbands. Yet, considering
the energy region of our interest, the contribution of the �7

subband is below 1%. The calculations were performed for
a fully strained HgTe film with Cd0.7Hg0.3Te barriers which
are grown on a CdTe substrate. The strain due to the lattice
mismatch between HgTe and CdTe of about 0.3% leads to
an opening of a direct gap of ≈22 meV (the indirect gap
is about10–15 meV) between the heavy-hole and light-hole
bands in the HgTe layer [17]. We take the strain effects
into consideration by applying a formalism introduced by
Bir and Pikus [32]. According to the previous studies of
similar structures [8,17,33], the crossing point of the surface
states is located below the bulk band gap. Accordingly, a
full-band envelope function approach [34] is used to perform
the self-consistent calculations of the Hartree potential. This
procedure avoids the separation of the occupied electron
and hole states which is complicated for structures where
both are occupied simultaneously. Our calculations include
the structure inversion asymmetry and, therefore, effectively
reproduce the experimental effect of the applied gate. The
spatial distribution of charge can be calculated while the
total charge density is being varied. The Hartree potential
determined by this spatial distribution of charge ( see Eq. (2)
in Ref. [34]) splits the bulk and surface states and leads
to their realignment, resulting in significant band-structure
modifications (see Figs. 5 and 6 and the discussion below).

There is an ongoing debate in the literature about the
influence of the interface inversion asymmetry (IIA) [35] on
the band structure of HgTe structures. Several studies argue
a sufficient effect of IIA in HgTe quantum wells grown on
(013) substrates [36–38]. Moreover, theoretical calculations in
Ref. [35] predict a gap of about 15 meV caused predominantly
by IIA in (001) HgTe quantum wells of critical thicknesses.
However, experimental data [15,39] do not confirm these
predictions. Considering the complexity of the band structure
of 80-nm HgTe layers and the missing experimental evidence
of the influence of the IIA, we do not include these terms in
our calculations.

In an attempt to test further anisotropy terms in the Hamil-
tonian, we tried to include the bulk inversion asymmetry
(BIA) [40] term in calculation of the band structure at the
charge neutrality point (ntot = 0). As demonstrated in Fig. S9
of the Supplemental Material in Ref. [41], the inclusion of this
term strongly splits the valence bands and reduces the value
of the gap. As the latter even worsens the agreement between
theory and experiment (see Fig. 5 below), the BIA term was
not used in the calculations of the band structure.

The plots of the surface band, the first valence band, and
the first conduction band calculated using the k · p model are
shown in Fig. 1 for the case of the charge neutrality point:
The densities of the holes and electrons are equal, and the
total charge density equals ntot = 0. Here, all three bands are
spin degenerate. In this case, the Fermi energy crosses the
surface, and the valence bands, thus, forming four islands in
the valence band as shown in Fig. 1(b).

In the cyclotron signal, we expect an electronlike resonance
due to the surface states and a holelike signal from the valence
islands. After lowering the Fermi energy, the four regions of

the valence band connect forming a ring structure as shown
in Fig. 1(c). In this case, the fourfold “valley” degeneracy is
lifted, and each curve of the valence-band ring corresponds
to a separate cyclotron resonance: a holelike signal from the
outer curve (blue) and an electronlike signal from the inner
curve (violet). The latter effect is due to a different sign
of ∂A/∂E in Eq. (1); positive curvature: electrons; negative
curvature: holes. We note that, even in this case, a separate
surface resonance is expected that remains electronlike. The
island-ring transition is present even if we take into account
that the band structure deforms with varying density and
that all bands are spin polarized due to broken symmetry.
After the Fermi surface is determined from the band-structure
calculations, the theoretical cyclotron mass can be calculated
using the definition in Eq. (1).

To obtain the density dependence of the cyclotron mass
within the present theory, the effect of the applied gate was
modeled by varying the total charge density in the system
from 6 × 1011 cm−2 (holes) to −6 × 1011 cm−2 (electrons)
with the Fermi level reaching the valence and conduction sub-
bands, respectively. For each value of the ntot , the cyclotron
mass was calculated using Eq. (1) as a function of density
within the corresponding bands.

Finally, the theoretical band structure confirms the rota-
tional symmetry of both surface states and bulk conduction
subbands, thus justifying the use of Eq. (2) to connect the
Fermi vector and the cyclotron mass. On the other hand, the
hole islands do not show this isotropic behavior. Nevertheless,
at lower hole concentration, the islands can be approximated
as circles [see Fig. 1(b)] with an effective radius keff shifted
by k0 ≈ (±0.15,±0.15) nm−1 from the � point. In this case,
k = keff in Eq. (2), where keff is related to the Fermi-surface
area of each of the four islands as A = πk2

eff . Of course,
the exact relation between A and keff can be calculated from
the theory. We believe, however, that a reasonable picture
of the band structure can be obtained within an isotropic
approximation as well. A direct comparison between theory
and experiment can be performed using an approximation-
independent plot of cyclotron masses vs density (see Fig. 4
below). This presentation is not sensitive to approximations
performed in Eq. (2).

IV. RESULTS AND DISCUSSION

A. Cyclotron resonance

Figure 2 shows typical field-dependent transmission in the
geometry with circularly polarized radiation. The advantage
of this geometry is the clear separation of the electron (e)
and hole (h) resonances as they are observed for positive and
negative external magnetic fields, in agreement with Eq. (3).
The inset in Fig. 2 demonstrates linear field dependence of the
cyclotron resonance frequency (ω = 2πν), thus, verifying the
application of the quasiclassical approximation in Eqs. (1) and
(2). The data at low frequency (142 GHz) shown in Fig. 2(a)
are most sensitive to the overall behavior of the charge car-
riers as, here, electrons and holes may be easily observed
simultaneously, and they, indeed, can be well separated for
the Ug = −10-V curve. For large negative voltages, the Fermi
energy is situated in the valence band. The cyclotron signal
from the holelike carriers can be observed in the gate voltage
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FIG. 2. Cyclotron resonance with circularly polarized light.
(a)–(c) The intensity of the transmitted radiation |t+|2 as a function
of an external magnetic field for fixed frequencies as indicated.
Resonance features for positive and negative fields correspond to
electrons and holes, respectively. Points: experiment; solid lines:
theoretical model based on Drude conductivity, Eq. (3). The ab-
solute scales refer to the lowest curves, the others are shifted for
clarity. The inset (d) shows the field dependence of the cyclotron
resonance demonstrating linear behavior within the quasiclassical
approximation according to Eqs. (1) and (2). (e) The oscillating part
of the longitudinal resistivity at zero gate voltage. The experimental
data (black circles) were fitted by a single-carrier Lifshits-Kosevich
model (orange line).

range from −10 to 0 V. This correlates with the position
of the charge neutrality point that has been estimated from
the resistivity measurements: The longitudinal resistivity ρxx

showed a maximum at around −3 V. With increasing gate
voltage, the single resonance of the electrons reveals a distinct
structure that is most clearly seen in the data at 687 GHz,
Fig. 2(c).

The transmission curves can be fitted well using the pro-
cedure presented in Sec. II B (solid lines in Fig. 2). From the
analysis of the resonances in the transmission, we obtain the
2D charge density, effective cyclotron mass, and the scattering
time for each separate carrier type. A gradual increase in
density with increasing gate voltage is expected for elec-
trons. Similarly, the density of the holelike carriers must be
a decreasing function of the gate voltage. Therefore, in the
analysis of the band structure, only the resonances caused
by carriers with monotonous gate-voltage dependence of the

FIG. 3. Electrodynamic parameters of the cyclotron resonances
in HgTe. (a)–(c) Holelike carriers, (d)–(f) electronlike carriers. Only
the most relevant resonances which may be explained via a quasiclas-
sical picture are shown. Colored symbols are experimental data from
the fits of the spectra in Fig. 2. The black circle corresponds to the
density nSdH

2 resulting from the Shubnikov–de Haas (SdH) analysis
from Fig. 2(e). The lines are guides to the eye.

charge density were taken into account. For completeness,
the electrodynamic parameters of the remaining resonances
are given in the Supplemental Material in Ref. [41]. We
believe that the majority of the additional peaks represents
direct transitions between Landau levels and, thus, cannot be
described via the quasiclassical approximation using Eqs. (1)
and (2). For example, carriers h1 and h3 in Fig. 2 showed
a nonmonotonous gate-voltage dependence of density and
were, therefore, not considered in the band-structure analysis.
Nevertheless, we were able to recognize them at multiple
frequencies, showing a characteristic behavior of charged
carriers in our model. Currently, the gate-voltage dependence
of the intensity of these modes cannot be used to extract their
density since their behavior goes beyond the quasiclassical
approach.

Figure 3 shows the parameters of the cyclotron resonances
that will be used to obtain the band structure of the 3D TI. The
charge density decreases with the gate voltage for holes and
increases for electrons. Both agree with the sign of the charge
carriers obtained directly from the spectra in Fig. 2.

Additional information about the carriers in the sample was
gathered by four-point longitudinal resistivity measurements
at zero gate voltage, which displayed strong SdH oscillations
as plotted against the reciprocal magnetic field in Fig. 2(e).
The Lifshits-Kosevich formula [37,42,43] can be used to
extract the carrier properties from the oscillation period. A
model with a single carrier type fits the experimental data
reasonably well [see the orange curve in Fig. 2(e)]. The oscil-
lation frequency f can be transformed into the carrier density
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FIG. 4. Comparison of the cyclotron masses in strained HgTe with k · p model calculations. Compared to Fig. 3, the cyclotron masses are
plotted as a function of density. This presentation allows the comparison with the theoretical model without integrating Eq. (2). (a) Holelike
carriers. (b) Electronlike carriers. Full symbols: experimental values; empty symbols: theory; BS: bottom surface states; TS: top surface states;
C1, C2: spin-polarized bulk conduction bands; CNP: charge neutrality point.

by n = e f D/h, where D represents the degeneracy of states.
Assuming a double-degenerate state (D = 2), we obtained
nSdH = 0.98 × 1011 cm−2. As seen in Fig. 3(e), nSdH

2 overlaps
with the densities of carriers e1 and e2. As discussed below,
these carriers can be attributed to bottom and top surface
states, respectively. Note that SdH oscillations are mostly
sensitive to the carriers density n. In the present case, the
magnetotransport signal does not show any clear indication
of the presence of two carrier types with different densities. In
fact, Landau filling factors v = nSdH/(Bmine/h) at the minima
of ρxx seems to give odd values (v = 7, 9, 11, 13, 15), which
is a characteristic signature of a double-degenerate Dirac
system [24,39,44].

To compare theory and experiment without using isotropic
approximation, the cyclotron mass can be plotted directly as a
function of the 2D density. This presentation is given in Fig. 4
where the k · p predictions are shown with empty symbols and
the experimental results with full symbols.

The theoretical points were obtained for a discrete number
of ntot as discussed in Sec. III. A scattering in the theoretical
data comes from several effects: (i) numerical integration of
area A in Eq. (1) with a discrete number of k points, (ii)
from the anticrossings of the subbands, and (iii) from a finite
value of the lateral lattice constant (a = 1 nm) in the full-
band envelope-function approach used for the self-consistent
calculations.

We note that the approximate density independence of
the majority of the observed carriers in Figs. 4(a) and 4(b)
suggests that the dispersion relations will have a parabol-
iclike shape. Indeed, inserting E = h̄2k2/2mc into Eq. (2)
gives the momentum and density-independent cyclotron mass
mc = eB/�c = const(n, kF ). However, since hybridization of

multiple subbands takes place in the system, we do not expect
a simple parabolic band structure, but one with higher-order
corrections.

Comparing the experimental points [solid symbols in
Fig. 4(a)] with theoretical predictions, we recognize the h2
carriers as the fingerprint of the first spin-polarized valence
band with four degenerate islands pockets in the band disper-
sion. Apparently, within the gate-voltage range of the present
experiment, we did not reach the region of the ringlike Fermi
surface nor the rest of the valence subbands at lower energies.
Most likely, this is due to the flatness of the band structure at
the transition point which leads to small values of ∂E f /∂Ug.
Experiments in quantizing magnetic fields previously showed
a transition line involving the hole Landau level in a 20-nm
sample [45]. Nevertheless, our results exhibit the first detec-
tion of a hole carrier in a 3D TI by quasiclassical cyclotron
resonance analysis.

Experimental values show fairly flat behavior of the hole
mass vs its density, whereas the theoretical values are slightly
increasing. The weak increase was as well experimentally and
theoretically observed for much thinner samples (d � 20 nm)
[37]. Currently, the reasons behind the mismatch between
experiment and theory are not clear. Two factors can impact
the experimental values here: (i) The experimental data for
holes were obtained at high values of gate, which leads to
deformation of the band structure, and (ii) due to relatively
low hole density and high magnetic fields (∼1.5 T), we are
approaching the limit where transitions between single Lan-
dau levels start to dominate.

Figure 4(b) shows the comparison of the cyclotron mass
of the electronlike carriers with model calculations. We start
with the analysis of the theoretical mass-density relations of

115113-5
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FIG. 5. Band structure of the three-dimensional topological insulator based on a strained HgTe along the (1,1) direction. Symbols:
experimental data obtained from cyclotron mass; solid lines are predictions of the k · p model for three values of the total charge density:
(a) hole doping: ntot = 4 × 1011 cm−2, (b) charge neutrality:- ntot = 0 and (c) electron doping: ntot = −4 × 1011 cm−2. Areas highlighted in
yellow present the regions where it is valid to compare experimental results with theory.

the surface states that are marked by TS and BS. The density
of the TS states (yellow open squares) can be changed by
applying the gate voltage within the full range of Fig. 4(b). We
observe approximate density independence of the cyclotron
mass for the top surface states supporting the paraboliclike
form of the surface band. We interpret the experimentally
determined carriers e2 (yellow full squares) as the top surface
carriers as their parameters are close to the results of the
theory.

On the contrary, the theoretical model predicts only weak
variation of the electron density at the bottom surface as a
function of doping [green open triangles, magnified part of
Fig. 4(b)], which is due to screening of the potential by the
top surface (see also Fig. 6). In the same mass range, we
observe the carriers e1 (green full triangles) that probably
correspond to the electrons on the bottom surface. Looking
back at Fig. 3(d), we observe that the carriers e3 are possibly
a continuation of e1. Therefore, we interpret e3 as the bottom
surface carriers as well. The gap between these two carriers in
Fig. 3(d) might be the result of a dominating cyclotron signal
by the top surface carriers e2 at the gate voltages between +1
and +7 V.

The k · p model predicts that the bottom of the bulk con-
duction band can be reached at high electron densities. For
such high voltages, not only the top and bottom surfaces are
strongly split, but also the spin degeneracy of the conduc-
tion band is lifted [see Fig. 5(c)]. Thus the theory predicts
two cyclotron resonances from the bulk conduction band in
the relevant doping range that are shown in Fig. 4(b) by
open diamonds (C1) and open circles (C2). Comparing these
predictions with the experiment, we suggest that carriers e4
correspond to bulk conduction electrons C1.

Finally, we note that, within an alternative description, the
electronlike signals e3 and e4 could be identified as C1 and
C2 especially since they were observed simultaneously as
soon as the Fermi level in the system reached the conduction
bands. However, this interpretation provides a less convincing
agreement between theory and experiment.

B. Band structure of 3D TI

To access the experimental band structure of the HgTe film,
the charge density of electrons is transferred to the electron
momentum using the relation k = √

4πn/D [15]. According
to the identification of the carriers in the previous section, we

FIG. 6. Hartree potential and spatial distribution of the wave
functions for the top and bottom surface states. Hartree potential (left
axis) at neutral, electron, and hole dopings that is self-consistently
determined as described in Sec. III. The spatial probability distribu-
tion (right axis) of the surface states at ntot = 0 is superimposed on
the Hartree potential.
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assume single degeneracy (D = 1) for all electronlike carriers.
We classified h2 hole carriers as fourfold valley degenerate
and spin-polarized hole-pocket states, thus, taking D = 4.
According to the model calculations, the four local maxima
of the valence band are expected at finite wave-vector k0 ≈
(±0.15,±0.15) nm−1. The maximum of the experimental
valence band has been shifted by this value. As pointed out in
Sec. III, for holelike carriers, we calculate the k vector along
the (1,1) direction as k = k0 ± keff with keff = √

πn.
The band dispersion, calculated within the approximation

above, is shown in Fig. 5 as solid symbols. Direct integration
lacks in providing the absolute energy position of the bands.
Since we assume that the gate voltage defines a constant Fermi
level in the film, the bands are vertically aligned to each other
by referring to the gate voltage at which they were mutually
detected.

In Fig. 5, we plot the theoretical band structure for three
different doping ranges: (a) hole-doped regime with ntot =
+4 × 1011 cm−2, (b) undoped regime with ntot = 0, and (c)
electron-doped regime with ntot = −4 × 1011 cm−2. The ex-
ternal electric field created by the applied gate drastically
influences the energy spectrum as seen in Fig. 5. This variation
of the band dispersion can be well understood taking into
account the spatial distribution of the probability density of
different states and the spatial dependence of the Hartree po-
tential. These dependencies are shown in Fig. 6. Yellow, blue,
and red curves show the Hartree potential for the same hole,
neutral, and electron dopings as in Figs. 5(a)–5(c). The solid
and dashed violet lines represent the probability distribution
of the BS and TS states, respectively, at ntot = 0. While vary-
ing ntot does alter the distribution functions, the positions of
the distribution maxima remain almost unchanged. Therefore,
it is clearly evident that Hartree potential influences the top
and bottom surfaces differently when ntot �= 0. It is well seen,
that, at the position of the BS, the Hartree potential barely
changes with ntot, a consequence of the screening by all other
carriers. This explains the weak gate dependence of the BS
parameters in Fig. 4.

On the other hand, the TS experiences the strongest influ-
ence from the varying gate potential being easily split from the
BS and shifted in energy in the band diagram. Latter is mostly
evident at the positive gate voltages corresponding to electron
doping with ntot = −4 × 1011 cm−2. The value of the Hartree
potential at the position of the TS is around −40 meV. This
value directly corresponds to the shift of TS with respect to
the E f , when comparing the undoped and the electron-doped
regimes presented in Figs. 5(b) and 5(c). Similar shifting
occurs for the conduction and valence bands. However, the
shifting amplitudes are smaller since the maxima of the corre-
sponding wave functions lie in the bulk. The overlap between
the bulk valence and TS wave functions leads to multiple
crossings and anticrossings of their dispersion curves.

The variation of the gate voltage leads to shifting of the
characteristic band energies and to the splitting of the bands
that were degenerate at ntot = 0. Therefore, the comparison
between experiment and theory is valid in the vicinity of E f

only with E f = E f (ntot ) being the Fermi level of the system.
Three regions around Fermi energy corresponding to electron
doping, hole doping, and the charge neutrality are shown by
yellow shaded areas in Figs. 5(a)–5(c), and they are defined by

E = E f ± 7.5 meV. Also, Ug = 0 V and the charge neutrality
point do not coincide due to impurity doping—the experimen-
tal charge neutrality was found at Ug = −3 V.

We start the discussion of the band structure with the region
close to the charge neutrality point shown in panel (b). Here,
according to theory, the bands are spin degenerate, and the size
quantization of the valence and conduction bands is seen. As
the Fermi energy lies in the vicinity of zero, the active states
are expected to be the surface states and the valence-band
holes. In the experiment, however, we have detected only the
TS states. These states are marked as e2 throughout this paper,
and their dispersion fits well to the theoretical predictions
without additional free parameters. On the other hand, e1 and
h2 appeared at lower energies as the theory predicts.

In the hole-doped region, Fig. 5(a), we focus only on the
data at lower energies. Here, both in the experiment and in the
theory, we observe a clear splitting of the surface bands. These
results are denoted as TS and BS in the model, and they cor-
respond to e2 and e1 carriers, respectively. The reasons behind
the vertical misalignment between the experimental and theo-
retical valence bands and the resulting increase of the indirect
band gap remain unclear. Within our procedure, the energy
position of the h2 state cannot be shifted as it is fixed by the
values of the gate voltage. Here, we would like to note that the
inclusion of the BIA terms in our theoretical model resulted
in an increase in the energy at which the valence holes appear
and, therefore, an even greater mismatch with the experiment
(see Fig. S9 of the Supplemental Material in Ref. [41]).

In the predominantly electronic doping regime shown in
Fig. 5(c), the e2 surface band nicely overlaps with the the-
oretical top surface band, which is subject to hybridization
and crossings/anticrossings with several valence subbands.
As discussed above, we attribute the carriers e3 (solid red
circles) to the bottom surface band and the carriers e4 to one
of the spin-polarized conduction bands (marked as C1).

Summarizing this section, in addition to two spatially
separated surface bands in Fig. 5, the bulk valence, and
conduction bands are accessed within the present experiment.
Although the band structure is strongly influenced by the gate
voltage, we observe reasonable coincidence between the k · p
model and the cyclotron resonance data. We recall that, in the
theoretical model, all parameters are fixed by the known film
structure and by the doping level of the layers.

V. CONCLUSIONS

We investigated the cyclotron resonance of the three-
dimensional topological insulator based on a HgTe film in the
subterahertz frequency range. In addition to the resonances
from the top and bottom surface states, separate modes are ob-
served that correspond to bulk conduction and valence bands.
The quasiclassical approach is utilized to analyze the parame-
ters of the charge carriers, which is approved by the linearity
of the cyclotron frequency in external magnetic fields. Within
this approximation, the band structure can be extracted from
the gate dependence of the magneto-optical spectra. Consid-
ering the obvious effect of the asymmetric gating potential on
the sample, the experimental band structure agrees reasonably
well with the predictions of the k · p model. Especially for the
case when the Fermi level is shifted to the valence band, clear
deviations between theory and experiment are observed.
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