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We study electrical and thermoelectrical properties for a double quantum dot system. We consider the cases
of both single-level and multilevel quantum dots whatever the way they are coupled, either in a series or in
a parallel arrangement. The calculations are performed by using the nonequilibrium Green function theory. In
the case of a single-level double quantum dot, the problem is exactly solvable whereas for a multilevel double
quantum dot, an analytical solution is obtained in the limit of energy-independent hopping integrals. We present
a detailed discussion about the dependences of electrical conductance, zero-frequency charge susceptibility, and
Seebeck coefficient on the gate voltages applied to the dots, allowing us to derive the charge stability diagram.
The findings are in agreement with the experimental observations notably with the occurrence of successive
sign changes of the Seebeck coefficient when varying the gate voltages. We interpret the results in terms of
the bonding and antibonding states produced by the level anticrossing effect which occurs in the presence of
a finite interdot coupling. We show that at equilibrium the boundary lines between the domains with different
dot occupancies in the charge stability diagram take place when the bonding and antibonding state levels are
aligned with the chemical potentials in the leads. Finally the total dot occupancy is found to be considerably
reduced in the case in parallel compared with the case in series, whenever the level energies in each dot are
equal. We interpret this dip as a direct manifestation of the interference effects occurring in the presence of the
two electronic transmission paths provided by each dot.
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I. INTRODUCTION

The study of double quantum dot (DQD) has been the
focus of an increasing number of research works in the last
years both theoretically and experimentally. One of the main
reasons explaining these developments are that DQDs are
promising candidates to build quantum bits of spin, i.e., spin
qubits [1,2], which surpass charge qubits because of their
longer coherence time [3]. Moreover, a DQD is a readily
tunable system [4–6]: The number of electrons in each of the
two dots can be controlled by varying gate voltages located at
proximity. Proposals to probe and drive the spin and charge
states in DQDs have also been made [7–9]. Note that the
second dot is used under certain circumstances to control the
spin state in the first dot benefiting from the Pauli spin block-
ade effect [10]. Initially, experimental DQDs were built from
GaAs heterostructures [11–17], but one has witnessed in the
last five years the development of studies in Si-based DQDs
which have the advantage over the former one to present a
longer spin coherence time [18–29]. The serial-coupling of the
two dots is by far the geometry that has been the most studied.
However, the case of two parallel coupled dots is interesting
too since it may give rise to interference effects [30–32] or
other specific effects [33–40]. In this paper, both geometries
of serial-coupled and parallel-coupled DQDs are considered.

From the theoretical side, the electrical transport prop-
erties in DQDs have been widely studied by using various
methods going from scattering matrix theory [41–43] for the

noninteracting case to Master or Bloch equation approaches
[44–50] and nonequilibrium Green function methods [51–56]
for more general cases. A classical theory has also been devel-
oped along which the DQD is modeled as a network of resis-
tors and capacitors which mimic the tunnel and electrostatic
couplings between dots and leads [4–6]. The obtained results
for the overall evolution of the linear electrical conductance as
a function of gate voltages are as follows: (i) At weak interdot
coupling, conductance peaks are observed at the nodes of a
square lattice in the (ε1, ε2) phase space, where ε1 and ε2

are the level energies of each of the two dots, delimiting
domains with different integer occupancies in the charge
stability diagram. (ii) At intermediate interdot coupling, the
nodes separate into pairs of triple points, corresponding to
the deformation of the square lattice into a honeycomb lattice
in the (ε1, ε2) phase space. (iii) At strong interdot coupling,
the triple point separation reaches its maximum and the DQD
behaves as a single dot with an occupancy 〈N̂1〉 + 〈N̂2〉, where
〈N̂1〉 and 〈N̂2〉 are the average rate of electronic occupancy in
the dots 1 and 2, respectively.

Charge susceptibility and thermoelectrical properties in
DQDs have aroused much less attention than electrical
conductance while the growing-up activity in both gate-
reflectometry experiments [23,25,57] and thermopower mea-
surements [58–62] in spin qubits provides a strong motivation
to intensify the theoretical efforts in that direction. From
the theoretical side, one essentially refers to the works of
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Refs. [63–65] where the charge susceptibility of a DQD is dis-
cussed in the context of mesoscopic admittance in either the
noninteracting case or the interacting case where it is affected
by the Pauli spin blockade effect. These works are in line with
the seminal works of Büttiker and collaborators [66,67] which
demonstrate the importance of taking the charge susceptibility
contribution into account in the mesoscopic capacitance of the
system, in addition to the standard geometrical capacitances
of the dots. The charge susceptibility reflects the ability of
the system when it is open, to adjust the average rate of elec-
tronic occupancy in the dots to the external excitation brought
by the gate voltage Vg. It is the relevant physical quantity
behind reflectometry experiments carried out in spin qubit
systems and plays a key role in the context of manipulation,
coupling, and readout of qubits. Theoretical works devoted
to the thermoelectrical properties of DQDs have highlighted
specific features such as the increase of the figure of merit
when the interdot coupling is reduced [68], the decrease of
the efficiency at maximum power in the presence of Coulomb
interactions in the dots [69]. Some other works have focused
on the effects of electron-hole symmetry [70,71] and quan-
tum interferences [72,73] on thermopower. Moreover, it has
been shown that a DQD constitutes a minimal thermoelectric
generator [74] and the issue related to energy harvesting is a
central one [75–77]. All these results demonstrate the need
to develop further theoretical studies on charge susceptibility
and thermopower in DQDs.

In this paper, we simultaneously discuss electrical trans-
port, charge susceptibility, and thermoelectrical properties
of a DQD connected to two reservoirs (leads) of electrons,
whether the two dots are coupled in series or in parallel, and
contain a single energy level or multiple energy levels. The
calculations are performed by using the nonequilibrium Green
function technique. We study the evolution of the electrical
conductance, Seebeck coefficient, and zero-frequency charge
susceptibility with the gate voltages applied to the two dots
as well as the stability phase diagram, in various regimes
going from weak to strong interdot coupling. The results are
valid at any temperature, lead-dot and interdot couplings, bias
and gate voltages. They are in qualitative agreement with
experiments, with notably the succession of sign changes
of the Seebeck coefficient when varying the gate voltages
applied to the dots.

The plan of the paper is the following. In Sec. II A, we
present the Hamiltonian describing the DQD system. We
adopt a unified presentation which enables us to describe the
case when the dots are coupled in series as well as the case in
parallel. In Sec. II B, we give the analytical expressions for the
electrical current which allows us to derive the linear electrical
conductance and the Seebeck coefficient. In Sec. II C, we
derive the expression for the zero-frequency charge suscep-
tibility related to the occupancies of the dots. The numerical
results obtained for conductance, Seebeck coefficient, occu-
pancies of the dots, and zero-frequency charge susceptibility
are presented in Sec. III in the case when the dots are coupled
in series and in Sec. IV when the dots are coupled in parallel.
Section V is a conclusion. Details about the determination
of the Green functions in the dots are reported in Appendix
A, whereas Appendix B presents the diagonalization of the
Hamiltonian describing the DQD.

FIG. 1. Schematic representation of the DQD coupled to L and
R leads in the serial (a) and parallel (b) geometries.

II. MODEL AND EXPRESSIONS FOR ELECTRICAL
CURRENT AND CHARGE SUSCEPTIBILITY

A. Hamiltonian

We consider two quantum dots 1 and 2 coupled through a
tunnel barrier and connected to two metallic leads as depicted
in Fig. 1. Each of the two quantum dots contains Nε and
Mε discrete levels of energies ε1n and ε2m, respectively, with
n ∈ [0, Nε − 1] and m ∈ [0, Mε − 1]. The values of ε1n and
ε2m can be tuned by varying the nearby gate voltages. The
two metallic left (L) and right (R) leads are characterized
by their chemical potentials μL, μR and temperatures TL, TR,
respectively. In the noninteracting case that we consider,
the Hamiltonian of this DQD system writes: Ĥ = Ĥdots +
Ĥleads + Ĥhop, where Ĥdots and Ĥleads are the Hamiltonian of
the disconnected DQD and that of the disconnected leads,
respectively, and Ĥhop is the hopping Hamiltonian between
the dots and the leads

Ĥdots =
∑

i=1, 2
n∈i

εind̂ †
in d̂in +

∑
n∈1
m∈2

V1n,2md̂ †
2md̂1n + H.c., (1)

Ĥleads =
∑

α=L, R
k∈α

εαk ĉ †
αk ĉαk, (2)

Ĥhop =
∑

α=L, R
k∈α

∑
i=1, 2

n∈i

Vin,αk ĉ †
αkd̂in + H.c., (3)

in which d̂ †
in and d̂in are the creation and annihilation operators

of one electron in the dot i with energy εin, the index i taking
the values 1 and 2. ĉ †

αk and ĉαk are the creation and annihilation
operators of one electron in the lead α with momentum k and
energy εαk , the index α taking the values L and R. V1n,2m and
Vin,αk are the hopping matrix elements between the states |1n〉
and |2m〉 in the dots and those between the states |in〉 in the dot
i and |αk〉 in the lead α. We have V∗

1n,2m = V2m,1n and V ∗
in,αk =

Vαk,in. The abbreviation H.c. stands for hermitian conjugate.
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We want to emphasize the very general feature of the
expression we introduce for the Hamiltonian. It allows one to
describe all the possible assemblies of two dots in a unified
way: the serial assembly corresponding to the case where
V2m,Lk = V1n,Rk = 0 for any index n, m, or k [depicted in
Fig. 1(a)] and the parallel one corresponding to the case where
Vin,αk �= 0 for any index i, n, α, or k [depicted in Fig. 1(b)].
The spin degree of freedom can be added without any diffi-
culty, which is essential if one wants to describe spin qubits or
magnetic leads for instance. However, it will not be included
in this paper since we restrict our study to a noninteracting
DQD system connected to nonmagnetic leads.

B. Electrical current

In this section we give the expression for the electri-
cal current assuming that the noninteracting DQD is in a
steady state. For that we start from the current operator from
the lead α defined as Îα (t ) = −edN̂α (t )/dt , where N̂α (t ) =∑

k∈α ĉ †
αk (t )̂cαk (t ) is the average number of electrons in the

lead α. In the steady state the derivative with respect to
the time variable is given by dN̂α (t )/dt = [N̂α (t ), Ĥ]/ih̄. In
the limit of wide flat band and energy-independent hopping
integrals, one obtains

Iα = e

h

∫ ∞

−∞
Tr

[
�

α
Gr (ε) �

α
Ga(ε)

]
×( fα (ε) − fα (ε))dε, (4)

where α = R for α = L and α = L for α = R, fα (ε) is the
Fermi-Dirac distribution function in the lead α, Gr(a)(ε) is the
retarded (advanced) Green function matrix in the dots defined
as

Gr(a)(ε) =
(

Gr(a)
11 (ε) Gr(a)

12 (ε)

Gr(a)
21 (ε) Gr(a)

22 (ε)

)
, (5)

and �
α

is the dot-lead coupling matrix defined as

�
α

= 2πρα

( |V1α|2 V ∗
1αV2α

V1αV ∗
2α |V2α|2

)
, (6)

with ρα , the density of states in the lead α. Tr[ ] is the trace
of the matrix. Note that the matrix �

α
is diagonal in the case

of a DQD coupled in series and nondiagonal in the case in
parallel. Equation (4) corresponds to the Landauer formula
for the electrical current with a transmission coefficient equal
to

Tαα (ε) = Tr
[
�

α
Gr (ε)�

α
Ga(ε)

]
. (7)

Appendix A gives the details of these calculations performed
in the framework of the nonequilibrium Green function tech-
nique [78–80]. The result for the expression of the retarded
Green function matrix in the dots is

Gr (ε) = 1

Dr (ε)

(
g̃r

1(ε) g̃r
1(ε)Σr

12(ε )̃gr
2(ε)

g̃r
2(ε)Σr

21(ε )̃gr
1(ε) g̃r

2(ε)

)
,

(8)

where Dr (ε) = 1 − g̃r
1(ε)Σr

12(ε )̃gr
2(ε)Σr

21(ε), g̃r
i (ε) = gr

i (ε)/
(1 − Σr

hop,ii(ε)gr
i (ε)), gr

i (ε) is the retarded Green function
in the disconnected dot i defined as gr

i (ε) = ∑
n∈i gr

in(ε)

with gr
in(ε) = (ε − εin + i0+)−1, and Σr

i j (ε) is the self-
energy given by Σr

i j (ε) = Σr
hop,i j (ε) + δ jiV∗

ii
with Σr

hop,i j (ε) =∑
α=L,R

∑
k∈α V ∗

iαgr
αk (ε)Vjα . In the multilevel case, it has been

assumed that the hopping integrals between the dots, Vin, jm,
and between the dots and the leads, Vin,αk , do not depend on
the indices n, m and on the state k.

C. Zero-frequency charge susceptibility and dot occupancies

The experimental works carried out on DQDs often fo-
cused on establishing the charge stability diagram which gives
information on the charge occupancy 〈N̂i〉 = ∑

n∈i〈d̂ †
in d̂in〉

of each of the two dots [14,27,81,82]. One of the relevant
physical quantity to discuss the charge stability diagram is the
charge susceptibility which is the linear response in charge
Q̂(t ) to the external excitation brought by a time-dependent
gate voltage �Vg(t ) applied to the system. Q̂(t ), the charge
accumulated on the capacitor plates ensuring the coupling
between �Vg(t ) and the dots, is given by [63]

Q̂(t ) = (
C0

1 + C0
2

)
�Vg(t )̂I −

∑
i=1,2

αie�N̂i(t ), (9)

where C0
1 and C0

2 are the geometrical capacitances of the
totally disconnected quantum dots (closed system with V12 =
0 and Viα = 0, ∀i, α) and Î is the identity operator. The last
term in Eq. (9) comes from the additional electrons in the dot i,
denoted by �N̂i(t ), induced by �Vg(t ) when the dots are con-
nected (open system), weighted by the lever-arm coefficient,
αi measuring the asymmetry of the capacitive coupling of the
voltage generator to the dot i. The external excitation �Vg(t )
introduces the additional source term �Ĥ (t ) = Q̂(t )�Vg(t )
in the Hamiltonian of Eqs. (1)–(3). From the linear response
theory [83], the expectation value 〈Q̂(t )〉, up to the first order
in �Vg(t ), is given by

〈Q̂(t )〉 = (
C0

1 + C0
2

)
�Vg(t )

−e2
∫ ∞

−∞
χc(t, t ′)�Vg(t ′)dt ′, (10)

where χc(t, t ′) is the dynamical charge susceptibility given by
the Kubo formula: χc(t, t ′) = ∑

i, j=1,2 αiα jχi j (t, t ′), with

χi j (t, t ′) = i
(t − t ′)〈[�N̂i(t ),�N̂ j (t
′)]〉. (11)

By taking the Fourier transform of Eq. (10), one gets
〈Q̂(ω)〉 = C(ω)�Vg(ω) where C(ω) = C0

1 + C0
2 − e2χc(ω) is

the mesoscopic capacitance [66,67] of the DQD system,
with χc(ω) = ∑

i, j=1,2 αiα jχi j (ω). Thus, in addition to C0
1 +

C0
2 , C(ω) contains an additional contribution, equal to

−e2χc(ω), related to the dynamical charge susceptibility de-
fined as

e2χc(ω) = lim
�Vg(ω)→0

∑
i=1,2

αie
d〈�N̂i(ω)〉
d�Vg(ω)

. (12)

In the following we will focus on the static charge susceptibil-
ity χc(ω = 0). To get it, we will not make use of Eq. (12) but
rather of the alternative and more direct expression given by

χc(ω = 0) = −
∑

i, j=1,2

αiα j
∂〈N̂i〉
∂ε j

, (13)
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where 〈N̂i〉 is the number of electrons in the dot i at �Vg(ω) =
0 given by

〈N̂i〉 = − i

2π

∑
n∈i

∫ ∞

−∞
dεG<

in,in(ε). (14)

Equation (13) can be readily obtained from Eq. (12) by notic-
ing that the role of �Vg(ω = 0) comes down to shift the level
energy of the dot j according to ε j → ε̃ j = ε j − α je�Vg(ω =
0), therefore

lim
�Vg(ω=0)→0

d〈�N̂i(ω)〉
d�Vg(ω = 0)

=
∑
j=1,2

∂〈�N̂i(ω = 0)〉
∂ε̃ j

d ε̃ j

d�Vg(ω = 0)

= −e
∑
j=1,2

α j
∂N̂i

∂ε j
. (15)

Incorporating Eq. (15) into Eq. (12), one obtains Eq. (13).
We set α1 = α2 = 1 in the rest of the paper. However, the
influence of asymmetric capacitive couplings can be readily
studied by using the results we obtain for arbitrary values of
α1 and α2.

In this section one has analytically derived all the ingredi-
ents needed to characterize the electrical and thermoelectrical
properties of a DQD whether it is in serial or parallel ge-
ometry. In the next two sections, one successively considers
the DQD in series and in parallel for both single-level (SL)
and multilevel (ML) dots. The electrical conductance G =
dIL/dV , with V = (μL − μR)/e the bias voltage between the
two leads, and the Seebeck coefficient S = G−1dIL/d�T ,
with �T the temperature difference between the left and
right leads [84], are calculated numerically with the help of
Eq. (4). The zero-frequency charge susceptibility χc(0) and
the total DQD occupancy N = 〈N̂1〉 + 〈N̂2〉 are calculated
from Eqs. (13) and (14). The calculations are performed in the
linear response regime, i.e., in the limit V → 0 and �T → 0,
but can be readily extended to the nonlinear response regime.
We study the variations of G, S, N , and χc(0) as a function of
gate voltages which act on the positions of energy levels ε1n

and ε2n of the two dots constituting the DQD system.

III. DISCUSSION FOR A DQD IN SERIES

A. SL-DQD in series

We first consider the case of a DQD system in series with
a single energy level in each of the two dots [see Fig. 2(a)].
Figure 3 shows the color-scale plots of G, S, N , and χc(0) as
a function of the energies ε1 and ε2, whereas Fig. 4 shows the
plots of the same physical quantities as a function of ε1 along
either the first or the second diagonal of equation ε1 = ε2 or
ε1 = −ε2, respectively. We describe the results obtained in
Figs. 3 and 4 and then provide an interpretation for them. In
a general way, we point out that all the color-scale plots in
Fig. 3 have two axes of symmetries which are the first and
second diagonals. Figure 3(a) shows that the conductance G
is the largest in the central region surrounding the origin point
O (ε1 = 0, ε2 = 0), with the presence of two peaks along the
first diagonal, equidistant from O. Besides, O behaves as a

FIG. 2. The four studied geometries: (a) SL-DQD in series,
(b) ML-DQD in series, (c) SL-DQD in parallel, and (d) ML-DQD
in parallel. We take ε1n = ε1 + n�ε1 and ε2n = ε2 + n�ε2 with the
integer index n ∈ [0, 2] in panels (b) and (d) since one considers three
energy levels in each of the two dots in the ML-DQD case. The dotted
black lines symbolize the couplings between the various parts of the
system.

saddle point in the sense that G is maximal at that point when
sweeping along the second diagonal direction, while it is a
local minimum along the first diagonal one (see Fig. 4(a)).
When getting farther from the origin O, G gradually decreases
forming a star-shaped pattern in the plane (ε1, ε2) as displayed
in blue color in Fig. 3(a), until reaching the zero value in
the remaining parts of the plane. The color-scale plot of the
Seebeck coefficient displayed in Fig. 3(b) shows that S is zero
(green color) along the boundary lines B+ and B− located
in quadrants III and I, as well as inside a band located on
either side of the second diagonal. It takes positive values (red
color) inside the top-right domain delimited by the boundary
line B− and vice versa negative values (violet color) inside
the respective bottom-left domain delimited by B+. In the
intermediate area located between the two boundary lines, S
exhibits pockets of local maxima and minima located in the
vicinity of B+ and B−. In the plot of S as a function of ε1

along the first and second diagonal displayed in Fig. 4(b),
one can see that S is zero all along the second diagonal,
while it changes sign three times when sweeping along the
first diagonal, once at ε1 = 0 and the two other times at the
positions of the maxima of G observed in Fig. 4(a). The
behavior for S which we obtain with these three observed
changes of sign are in agreement with both the theoretical
results of Ref. [85] and the experimental results obtained in
GaAs/AlGaAs heterostructures which are reported in Fig. 3
of Ref. [58] and Fig. 4 in Ref. [61]. We underline that in the
experimental works Vth = −S�T is plotted instead of S in the
results presented here. Figure 3(c) shows the evolution of N as
a function of ε1 and ε2. It reveals the charge stability diagram
with the presence of four domains denoted as (〈N̂1〉, 〈N̂2〉)
inside which 〈N̂1〉 and 〈N̂2〉 take values close to (0,0), (1,0),
(0,1), or (1,1). As can be seen, the (0,0) and (1,1) domains
are shrunk within the I and III quadrants, compared to the
uncoupled DQD case (at V12 = 0) for which the diagram
would have shown a tiling on a square lattice set on the
four quadrants [see Figs. 13(a), 13(c) and 13(e) in Appendix
B]. Note that the boundary lines B− and B+ delimiting the
(0,0) and (1,1) domains have the shape of arcs and that
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FIG. 3. Color-scale plots of (a) the linear conductance G, (b) the
Seebeck coefficient S, (c) the total dot occupancy N , and (d) the zero-
frequency charge susceptibility χc(0) for a SL-DQD connected in
series as a function of ε1 and ε2 for μL,R = 0, kBT = 0.01, V12 =
0.1, and �L,11 = �R,22 = 0.1. In panel (a) the black line marks the
first diagonal of equation ε1 = ε2, whereas the red line shows the
second diagonal of equation ε1 = −ε2 along which the plots of Fig. 4
are drawn. In panel (c) the domain with occupancies 〈N̂1〉 and 〈N̂2〉
of the dots 1 and 2 are indicated under the form (〈N̂1〉, 〈N̂2〉), and the
dashed and dotted black arcs represent the boundary lines B+ and
B− between domains with different occupancies. Panel (d) shows
the four quadrants: I (top right), II (top left), III (bottom left), and IV
(bottom right).

N takes a constant value along the second diagonal [see
red curve in Fig. 4(c)]. The evolution of the zero-frequency
charge susceptibility χc(0) displayed in Figs. 3(d) and 4(d)
follows the same trend. It shows the presence of two lines of
maxima, located precisely on the boundary lines B+ and B−
highlighted in Fig. 3(c). As for G, the origin O behaves as a
saddle point, χc(0) being maximal when sweeping along the
second diagonal direction, while it is a local minimum along
the first diagonal one.

The results obtained for G, S, N and χc(0) can be inter-
preted in a simple way by relying on the properties presented
in Appendix B. It is explained how, when the DQD system is
disconnected from the leads, the Hamiltonian Ĥdots describing
the system can be diagonalized leading to the eigenenergies
E+

dots and E−
dots, the values of which are given by Eq. (B2). The

corresponding antibonding and bonding eigenstates [4,33] |+〉
and |−〉 are defined by Eqs. (B3) and (B4). Consequently
the spectral density A11(ε) in dot 1, respectively, A22(ε) in
the dot 2, is a linear combination of delta functions within a
multiplicative factor 2π , centered at the values of eigenener-
gies E+

dots and E−
dots, corresponding to the spectral densities of

eigenstates A+(ε) and A−(ε), with weighting factors equal to
|u|2 and |v|2, respectively, |v|2 and |u|2 in dot 2, where |u|2 and
|v|2 are defined by Eqs. (B5) and (B6). The physical meaning
of this diagonalization is that the DQD system behaves as

FIG. 4. Dependences as a function of ε1 along the first diagonal
ε1 = ε2 and the second diagonal ε1 = −ε2 of (a) the linear electrical
conductance G, (b) the Seebeck coefficient S, (c) the dot occupancy
N , and (d) the zero-frequency charge susceptibility χc(0) for a SL-
DQD connected in series. The choice of parameters is the same as in
Fig. 3.

an effective single quantum dot with two energy levels at
energies E−

dots and E+
dots. The charge stability diagram of the

disconnected DQD system can easily be derived from the
latter results. At equilibrium the boundary lines between the
domains of different occupations are obtained when any of
the two levels of energies E+

dots and E−
dots is aligned with the

chemical potential of the leads, taken to 0 (μL,R = 0). The
equations of the boundary lines B+ and B−, hence given
by E+

dots = 0 and E−
dots = 0, are ε1ε2 = |V12|2 (see Appendix

B). They correspond to the two branches of an hyperbole
as shown in Figs. 13(a), 13(c) and 13(e) for different values
of the interdot coupling V12. The distance between the two
branches is minimal along the first diagonal, taking the value
of 2|V12|. They correspond to the two boundary lines found
in quadrants I and III in Fig. 3(c): The curve B− of equation
E−

dots = 0 corresponds to the boundary line in quadrant I,
whereas the curve B+ of equation E+

dots = 0 corresponds to
the boundary line in quadrant III. Inside the top-right domain
delimited by the curve B−, both E−

dots and E+
dots are positive

and the two corresponding energy levels are empty. It gives
rise to the domain (0,0) in the charge stability diagram (by
making use of the results on the spectral densities Aii(ε)
mentioned above and by noticing that |u|2 + |v|2 = 1). Inside
the bottom-left domain delimited by the curve B+, both E−

dots
and E+

dots are negative and the corresponding two energy
levels are occupied. It gives rise to the domain (1,1) in the
charge stability diagram. Inside the area located between the
two boundary lines B+ and B−, centered around the second
diagonal, E−

dots is negative while E+
dots is positive, hence only

the lower energy level at E−
dots is occupied. It corresponds
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either to the domain (1,0) or (0,1) in the charge stability
diagram. The line of separation between these latter two
domains is along the first diagonal. The results obtained above
from the diagonalization of Ĥdots apply to the case of a DQD
disconnected from the leads. However it is easy to realize that
connecting the DQD system to the leads would introduce a
broadening of the eigenenergy levels described above together
with an eventual renormalization of the eigenenergies values.
It would not change the general shape of the charge stability
diagram discussed above but would simply widen the bound-
ary lines separating the different domains. It allows one to
explain the charge stability diagram obtained in Fig. 3(c) with
a remarkable agreement on the value of the minimal distance
observed between the two boundary lines, equal to 2|V12|.

We now interpret the results obtained for the linear elec-
trical conductance as reported in Figs. 3(a) and 4(a). From
Eqs. (A43) and (B3)–(B6), the linear conductance at zero tem-
perature is proportional to: �L,11�R,22|uv|2[A+(0) + A−(0)].
The spectral densities A+(0) and A−(0) are maximal when the
point (ε1, ε2) corresponding to the energies of the dots falls
in one of the boundary lines B+ and B−. However in order
to get the linear conductance, one has to weight the result for
the spectral densities of eigenstate at ε = 0 by a multiplicative
coherence factor equal to |uv|2. Typically |uv|2 is the largest
along the first diagonal (ε1 = ε2) where it equals the value
1/4. Moreover u → 1 and v → 0 along the end part of the
boundary lines asymptotic to the ε2 axis, whereas u → 0 and
v → 1 along the end-part of the boundary lines asymptotic to
the ε1 axis. Combining these arguments, the peaks of G in the
plane (ε1, ε2) arise at the intersection of the boundary lines B+
and B− and of the first diagonal as seen in Figs. 3(a) and 4(a).
The results obtained for the Seebeck coefficient in Figs. 3(a)
and 4(a) can be interpreted in the same way. From Ref. [86],
the Seebeck coefficient is proportional to the average energy
of the charge carriers: S = −〈E − μ〉/kBT which is zero in
two types of situations: Either when the chemical potential μ

(with μ taken to 0 here) falls at the center of one of the peaks
of the spectral density of states, that is to say at E+

dots and
E−

dots, or when the chemical potential falls at equal distance
from the two peaks. In either case, there are as many carriers
with negative energies than carriers with positive energies and
hence the average energy of carriers is zero (electron-hole
symmetry). This explains why the zeros of S in Fig. 3(b)
occur along the boundary lines B− and B+, as well as along
the second diagonal, where (E+

dots + E−
dots )/2 = 0 since ε1 =

−ε2 there, as seen in Figs. 4(b). The cancellation of S could
be used to measure the value of the interdot coupling V12

which is directly given by the distance between the canceling
points. The interpretation of the results obtained for the zero-
frequency charge susceptibility follows in the same way: χ (0)
determined from Eq. (13) is maximal in the plane (ε1, ε2)
when the spectral densities A+(0) and A−(0) are maximal, i.e.,
when the point (ε1, ε2) falls in one of the boundary lines B+
and B−.

B. ML-DQD in series

We examine the case of a ML-DQQ in series. As an exam-
ple we consider the situation where each of the quantum dots
i = 1, 2 has three energy levels of energies εin = εi + n�εi

with the integer index n ∈ [0, 2] and �εi = 1 [see Fig. 2(b)].
The results obtained for the color-scale plots of G, S and
N, χc(0) as a function of ε1 and ε2 are reported in Figs. 5
and 6, respectively, in the different interdot coupling regimes.

In the weak interdot coupling regime, i.e., for |V12| �
�L,11, �R,22, the electrical conductance G displayed in
Fig. 5(a) exhibits peaks centered at the nodes of a square
lattice constituted by the vertical lines ε1n = 0 and horizontal
lines ε2n = 0. Moreover in the continuation of these peaks,
one glimpses a slight enhancement of G along the lines of the
square lattice. The results for N reported in Fig. 6(a) reveals
the charge stability diagram with the presence of 4 × 4 = 16
domains where N changes by plateau. The boundary lines
separating the domains coincide with the lines of the square
lattice highlighted above. The top-right corner domain corre-
sponds to the completely empty DQD system denoted as (0,0).
Whereas one would have expected a completely filled DQD
system in the bottom-left corner domain with an occupation
(3,3), we point out that the maximal value of N reached
there is close to 5, instead of 6, due to the relatively weak
value of the dot-lead couplings (�L,11 = �R,22 = 0.1). In the
color-scale plot of χc(0) shown in Fig. 6(b), χc(0) is maximal
along the same boundary lines as for N , reaching the zero
value inside the delimited domains. Finally the color-scale
plot of S displayed in Fig. 5(b) shows that S changes of sign
several times in the plane (ε1, ε2) as previously highlighted in
Ref. [87].

In the intermediate interdot regime, i.e., for |V12| of the
order of �L,11, �R,22, the results for the color-scale plots of G
displayed in Fig. 5(c) are strongly reminiscent of the results
obtained in the case of the single-level DQD in series [see
Fig. 3(a)]. G is the largest in the central areas surrounding the
nodes of the square lattice, with the presence of two peaks
on either side of the nodes. These two peaks are located
along a line parallel to the first diagonal. When getting farther
from these nodes, G gradually decreases along lines forming
a characteristic star-shaped pattern, whereas it is zero in the
remaining part of the plane. The results for N displayed in
Fig. 6(c) still show the presence of 16 domains of different
occupancies. The boundary lines between these domains are
no longer straight lines but becomes sinuous, the vertices of
the square lattice having separated into two triple points in
complete agreement with standard results [4,5]. These triple
points are at the intersection of the boundaries delimiting three
domains of different occupancies. In the color-scale plot of
χc(0) shown in Fig. 6(d), χc(0) is maximal along the same
boundary lines as in Fig. 6(c), reaching the zero value inside
the delimited domains. Finally the color-scale plot of S dis-
played in Fig. 5(d) shows that S exhibits successive changes
of sign in the plane (ε1, ε2), being of positive sign in the
areas delimited by the convex parts of the sinuous boundary
line facing top right, i.e., similar to the area in quadrant I
of Fig. 3(b), and of negative sign in its concave parts facing
bottom left, i.e., similar to the area in quadrant III in Fig. 3(b).
Besides S is zero inside broad strips surrounding either the
second diagonal or the two lines parallel to the second diag-
onal. Hence S changes sign nine times when sweeping along
the first diagonal, instead of five times in Fig. 5(b).

In the strong interdot coupling regime, i.e., for |V12| �
�L,11, �R,22, the square lattice structure visible in the previous
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FIG. 5. Color-scale plots of G and S for a ML-DQD connected
in series as a function of ε1 and ε2 at μL,R = 0, kBT = 0.01 for: (a),
(b) weak interdot coupling (V12 = 0.01, �L,11 = �R,22 = 0.1), (c),
(d) intermediate interdot coupling (V12 = �L,11 = �R,22 = 0.1), and
(e), (f) strong interdot coupling (V12 = 0.5, �L,11 = �R,22 = 0.01).

figures has disappeared, giving place to an oblique structure
in the direction of the second diagonal as can be seen in
Figs. 5(e) and 5(f), and Figs. 6(e) and 6(f) for G, S, N , and
χc(0). This means that the two quantum dots have merged
into one single quantum dot of occupation 〈N̂1〉 + 〈N̂2〉. In
Fig. 6(e), one sees that the change of N by plateau observed
in the weak and intermediate regimes is replaced by a smooth
variation. The orders of magnitude obtained for N and χc(0)
are ten times smaller in the case of strong coupling regime
compared to the weak and intermediate coupling regimes,
the observed reduction being of the same magnitude as the
reduction of �L,11 and �R,22 values. The results for S shown
in Fig. 5(f) are in qualitative agreement with the experimental
ones obtained in GaAs/AlGaAs heterostructures displayed in
Fig. 2 of Ref. [58].

The whole set of these results can be physically interpreted
by relying on the properties presented in Appendix B where it
is shown how the Hamiltonian Ĥdots describing the three-level
DQD system can be diagonalized leading to six eigenenergies
Eλ

dots whose values are determined numerically. The charge
stability diagram showing N can easily be derived from that.
As in the case of the SL-DQD system, the boundary lines
between the domains of different occupations are obtained

FIG. 6. Color-scale plots of N and χc(0) for a ML-DQD con-
nected in series as a function of ε1 and ε2. The parameters are the
same as in Fig. 5.

when any of six levels of energies Eλ
dots is aligned with the

chemical potentials of the leads both taken to 0 at equilibrium
(μL,R = 0). The boundary lines of equations Eλ

dots = 0 are
precisely the equienergetic curves represented in Figs. 13(b),
13(d) and 13(f) for different values of the interdot coupling
V12. One recovers the shapes of the boundary lines obtained
above, going from straight lines on a square lattice in the weak
interdot coupling regime to sinuous lines in the intermediate
and strong interdot coupling regime. As emphasized in Ap-
pendix B, as soon as V12 becomes finite, a level anticrossing
effect takes place at the vicinity of the nodes of the square
lattice, the vertices of the square lattice splitting into two triple
points as observed in Fig. 13. The interpretation of the other
results obtained for G, S, and χc(0) is modeled on the one
given above in the single-level case with the presence of some
coherence factors which plays a role of extinction for some
parts of the equienergetic curves Eλ

dots = 0.

IV. DISCUSSION FOR A DQD IN PARALLEL

A. SL-DQD in parallel

The schematic diagram of the DQD in parallel with a single
level in each dot is depicted in Fig. 2(c). The color-scale plots
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FIG. 7. Color-scale plots of (a) the linear electrical conductance
G, (b) the Seebeck coefficient S, (c) the total dot occupancy N , and
(d) the zero-frequency charge susceptibility χc(0) for a SL-DQD
connected in parallel as a function of ε1 and ε2 for μL,R = 0, kBT =
0.01, V12 = 0.1, and �α,i j = 0.1 for both α = L, R and i, j = 1, 2.

for G, S, N , and χc(0) as a function of ε1 and ε2 are shown
in Fig. 7. The results are very different from those obtained
in the case in series even if in all the plots in Fig. 7; one
still glimpses the presence of the boundary lines B+ and B−
in places almost unchanged compared to the case in series.
Strikingly, whereas the color-scale plots of Fig. 3 obtained in
the serial cases had two axes of symmetry along the first and
the second diagonals, only the axial symmetry with respect
to the first diagonal is conserved in Fig. 7 while the one with
respect to the second diagonal is lost. The color-scale plot of
G in Fig. 7(a) shows that instead of the two peaks for G in the
serial case which occurred at the intersection of the boundary
lines B+ and B− and of the first diagonal, the positions of
the maxima of G now spread all along the boundary line
B+ in the bottom-left corner, whereas those in the top-right
corner are located along the end parts of the boundary line
B−. Moreover one can notice that the conductance ridges thus
formed are much broader in the bottom-left corner than in the
top-right corner, with higher values reached along the former
rather than along the latter ones. We also point out that the
amplitude of the conductance to the maximum is about 40%
higher than in the serial case. The plots of G along the first and
second diagonals displayed in Fig. 8(a) bring complementary
information to that. When sweeping along the first diagonal,
G exhibits a single peak at a negative value of ε1 in perfect
agreement with the result displayed in Fig. 2 of Ref. [33],
whereas the peak of G along the second diagonal is centered
at the zero value.

The results obtained for S displayed in Fig. 7(b) show that
S still takes positive values inside the top-right domain and
negative values inside the bottom-left domain as it was the
case for the single-level DQD case, with a strong reduction in
the order of magnitude of the amplitude compared to the serial

FIG. 8. Dependences as a function of ε1 along the first diagonal
ε1 = ε2 and second diagonal ε1 = −ε2 of (a) G, (b) S, (c) N , and (d)
χc(0) for a SL-DQD connected in parallel. The parameters are the
same as in Fig. 7.

configuration results shown in Fig. 3(b). In the intermediate
area located between these two domains, S exhibits a series of
minima of negative sign inside a pair of two triangular pockets
along the boundary line delimiting the top-right domain as in
Fig. 3(b). Nevertheless we point out three major differences:
(i) the base of these triangles is a straight line parallel to
the second diagonal shifted to the top-right corner from the
second diagonal by a distance equal to |V12| and one has S = 0
on this base; (ii) the two triangles are disjoint at the center
showing a gap around the first diagonal in which S takes a
positive value close to zero; (iii) the negative values reached
inside the triangles are about twice larger than inside the
bottom-left corner. Moreover one still observes the presence
a series of maxima of positive sign inside a pair of two
triangular pockets as in Fig. 3(b); the difference in the parallel
case is that these two triangular pockets are contiguous to
the previous ones. Besides they share with the negative sign
triangles the same three peculiarities, i.e., (i), (ii), and (iii)
as far as we speak of their positive sign values. Finally S
gradually decreases keeping a positive sign inside the area
located between the latter positive sign triangles and the
boundary line surrounding the bottom-left domain, exhibiting
a gap around the first diagonal. The plots of S along the first
and second diagonals displayed in Fig. 8(b) completes this
information. Along the first diagonal, S goes from negative
to positive values with increasing ε1, showing one change of
sign instead of three in the serial configuration. Along the
second diagonal, S is no longer zero since the electron-hole
symmetry holding in the serial case is now lost, instead S
keeps a positive value all along the second diagonal with a
marked minimum around ε1 = 0. The electron-hole symmetry
is however restored with S = 0 on a line which corresponds to
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the base of the triangles discussed there before [see the green
line parallel to the second diagonal in Fig. 7(b)].

The color-scale plot of N displayed in Fig. 7(c) still shows
the presence of the boundary lines in top-right and bottom-left
corners as in Fig. 3(c). However one can notice important
differences in comparison to the results obtained for the case
in seriesÂ : (i) the value of N is strongly reduced inside
the domain in the bottom-left corner, reaching the value 0.8
instead of 1.6; (ii) an elongated tip is formed along the first
diagonal extending from the domain in the top-right corner to
the other side where it cuts the bottom-left corner domain in
half. Strikingly the value of N is strongly reduced along this
tip going from 0 to 0.8 when sweeping along the first diagonal
as shown in Fig. 8(c). Moreover the plot of N along the second
diagonal displayed in Fig. 8(c) too shows a marked minimum
at ε1 = 0 at the crossing with the elongated tip previously
reported.

Finally the evolution of χc(0) displayed in Fig. 7(d) follows
the same trend. It shows lines of maxima along the same
boundary lines highlighted in Fig. 7(a) but the maxima are
much more pronounced along the boundary lines in the top-
right corner in comparison to the ones in the bottom-left
corner. Besides these two lines of maxima are cut into half at
the crossing with the first diagonal with the opening of a gap
around it. As shown in Fig. 8(d), when sweeping along the
first diagonal, χc(0) exhibits a peak at a negative sign value
of ε1, whereas χc(0) along the second diagonal exhibits two
peaks located on both sides of the zero value.

As far as the physical interpretation of the results obtained
for G, S, N , and χc(0) is concerned, we would say that even
though the basic feature comes from the formation of the
boundary lines which occurs when one of the eigenenergies
in the system is aligned with the chemical potential of the
leads with the coherence factors acting as extinction factors,
as explained in Sec. III A, the parallel configuration introduces
some noticeable changes with comparison to the serial config-
uration as the existence of more than one transmission chan-
nels. The differences observed in the behaviors of G, S, N ,
and χc(0) compared to the case in series results from the
interference effects which take place in the presence of two
transmission channels as it is the case in the parallel configura-
tion. We give below some simple arguments, developed within
the zero temperature and zero interdot coupling limit, which
help in elucidating the origin of the formation of the elongated
tip mentioned above. In the limit of zero temperature and
zero interdot coupling, the expression of N can be derived
analytically from Eq. (14). One gets for a SL-DQD in series

Nseries = 1 − 1

π
arctan

(
2ε1

�L,11

)
− 1

π
arctan

(
2ε2

�R,22

)
. (16)

This result explains why according to the sign of ε1 and ε2,
the total occupancy N varies by plateau along which it takes
either the value 0, 1, or 2 at most, with a change from one
plateau to the other spreading over a width �L,11 or �R,22. For
a SL-DQD in parallel, one gets when ε1 = ε2,

Nparallel = 1

2
− 1

π
arctan

( ε1

2�

)
, (17)

where � = �α,i j for any α = L, R and i, j = 1, 2, i.e., for
symmetrical couplings. This expression has to be compared

FIG. 9. Dependences as a function of ε1 of N along (a) the first
diagonal and (b) the second diagonal as a function of ε1 at μL,R =
0, kBT = 0.01, V12 = 0.1 for �L,11 = �R,22 = 0.1, all the other dot-
lead couplings being equal to �P, meaning that the SL-DQD is in
series when �P = 0 (black curves) and in parallel when �P = 0.1
(blue curves). The red curves correspond to an intermediate situation
(�P = 0.05).

to 〈N̂〉series = 1 − (2/π ) arctan(2ε1/�) obtained from Eq. (16)
when ε1 = ε2. In the limit of large negative ε1 compared to �,
it leads to Nseries ≈ 2 and Nparallel ≈ 1, explaining the reduction
of N by a factor two along the first diagonal (see Fig. 9).
Physically, it corresponds to the decoupling of one of the
two eigenstates of the DQD, the bonding eigenstate, from the
leads.

B. ML-DQD in parallel

We examine the case of a ML-DQQ in parallel schemati-
cally represented in Fig. 2(d) taking as an example the case of
three energy levels of energies as in the case of the ML-DQD
in series. The results obtained for the color-scale plots of
G, S and N, χc(0) as a function of ε1 and ε2 are reported in
Figs. 10 and 11, respectively, in the different interdot coupling
regimes.

In the weak interdot coupling regime, i.e., for |V12| �
�α,i j , the color-scale plot for G reported in Fig. 10(a) is
strongly modified compared to the configuration in series,
showing conductance ridges along the lines of a slightly
distorted square lattice. The color-scale plot of χc(0) shown
in Fig. 11(b) looks like that of G, with maxima along the lines
of a lattice, with the presence of additional pairs of localized
peaks around the nodes of the lattice. The results for N
reported in Fig. 11(a) reveal the charge stability diagram with
the presence of 4 × 4 = 16 domains as for the configuration
in series. However one notices an important difference which
is provided by the presence of elongated tips along the first
diagonal as well as along the secondary first diagonals, with
a dip of N along them, similarly to what is observed in the
case of the SL-DQD in parallel. Finally the color-scale plot
of S displayed in Fig. 10(b) shows that S changes sign several
times in the plane (ε1, ε2).

In the intermediate interdot regime, i.e., for |V12| of the
order of �α,i j , the results for the different color-scale plots
of G, S, N , and χc(0) are strongly reminiscent of the results
reported in Fig. 7 obtained in the case of the SL-DQD in
parallel with the same choice of parameters. The reported
pattern corresponds to the duplication of the pattern observed
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FIG. 10. Color-scale plots of G and S for a ML-DQD connected
in parallel as a function of ε1 and ε2 at μL,R = 0, kBT = 0.01
for: (a),(b) weak interdot coupling (V12 = 0.01 and �α,i j = 0.1),
(c),(d) intermediate interdot coupling (V12 = �α,i j = 0.1), and (e),(f)
strong interdot coupling (V12 = 0.5, �α,i j = 0.01).

in the single-level case, in each cell of a square lattice. Here
again the presence of the elongated tips are clearly visible in
the charge stability diagram revealed by the color-scale plot
of N displayed in Fig. 11(d).

In the strong interdot coupling regime, i.e., for |V12| �
�α,i j , the square lattice structure visible in the previous figures
has disappeared, giving place to an oblique structure in the di-
rection of the second diagonal as can be seen in Figs. 10(e) and
10(f), and 11(e) and 11(f) for G, S, N , and χc(0), respectively.
In addition, the extremities of the lines of maxima for G, S,
and χc(0) disappear in the top-right part of the plane (ε1, ε2)
compared to the case of ML-DQD in series. The color-scale
plot of N shows the presence of a predominant tip along the
first diagonal.

V. CONCLUSION

We have studied a noninteracting DQD system regardless
of its geometry, either in series or in parallel, and analyzed
its electrical and thermoelectrical properties. In the case
of single-level dots, the expressions for the nonequilibrium
Green functions and electrical current are derived exactly.

FIG. 11. Color-scale plots of N and χc(0) for a ML-DQD con-
nected in parallel as a function of ε1 and ε2. The parameters are the
same as in Fig. 10.

In the case of multilevel dots, an analytical calculation is
performed assuming that the hopping integrals between the
two dots and between the dots and the leads are independent
of energy. The whole set of results apply to any temperatures,
bias/gate voltages, and coupling strengths. The numerical re-
sults for the linear electrical conductance, the zero-frequency
charge susceptibility, the Seebeck coefficient, and the dot
occupancy are discussed in the light of previous works. In
particular, the obtained results for G and χc(0) show that with
increasing interdot coupling, the system gradually changes
from a regime where the two dots are almost decoupled to
a regime where pairs of triple points have separated, until a
regime where the two dots merge into a single one, in qualita-
tive agreement with experiments, in particular in the case of a
ML-DQD system in series. One observes that for a SL-DQD
in series, the Seebeck coefficient undergoes three successive
sign changes with increasing dot gates, again in good agree-
ment with experiments. The cancellation of S arises when the
average energy of the charge carriers cancels, meaning that
the system reaches an electron-hole symmetry situation. A
level anticrossing effect resulting from finite interdot coupling
manifests itself in the charge stability diagram with boundary
lines separating the domains of different dot occupancies oc-
curring when the energy levels of the bonding and antibonding
states are aligned with the chemical potentials in the leads.
In a striking way, we find a considerable reduction of the
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total dot occupancy in the case in parallel compared to the
case in series, when the energy levels in each of the two
dots are equal. We interpret this reduction as an effect of
interferences produced by the presence of two transmission
electronic paths in the parallel geometry and by the fact that
the bonding eigenstate becomes disconnected from the leads.
The approach developed in this paper can be directly used
to study DQD systems driven out-of-equilibrium by applying
either a finite bias voltage or a temperature gradient between
the two leads and/or in the presence of asymmetric couplings.
The determination of the noise spectrum and finite-frequency
charge susceptibility in the noninteracting DQD system is
made in Ref. [88] following the theoretical approach devel-
oped in Refs. [89,90]. A direct and essential extension of
this work consists of taking into account the spin degrees of
freedom and the Coulomb interactions in the dots.
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APPENDIX A: ELECTRICAL CURRENT IN A DQD

1. Equations of motion

The Green functions in the dots are obtained by using
the equation of motion approach. We adopt the Zubarev
notation [91] along which the retarded Green function in
energy Gr

Â,B̂
(ε) associated with operators Â and B̂ is denoted

by 〈〈Â; B̂〉〉, with Gr
Â,B̂

(ε) the Fourier transform of the retarded

Green function in time, Gr
Â,B̂

(t, t ′) = −
(t − t ′)〈{Â, B̂}〉, 


being the Heaviside step function. By using this notation, the
equation of motion for 〈〈Â; B̂〉〉 writes

ε〈〈Â; B̂〉〉 = 〈{Â, B̂}〉 + 〈〈[Â, Ĥ]; B̂〉〉, (A1)

where [Â, Ĥ] is the commutator between the operator Â and
the Hamiltonian Ĥ of the DQD system, and {Â, B̂} is the
anticommutator between the operators Â and B̂. Applying
Eq. (A1) to the various operators in the dots and the leads,
one gets

ε〈〈d̂in; d̂ †
jm〉〉 = δi jδnm + 〈〈[d̂in, Ĥ]; d̂ †

jm〉〉, (A2)

ε〈〈̂cαk ; d̂ †
jm〉〉 = 〈〈[̂cαk, Ĥ]; d̂ †

jm〉〉, (A3)

since {d̂in, d̂ †
jm} = δi jδnm and {̂cαk, d̂ †

jm}=0. The calculation of

the nonvanishing commutators between the operators d̂in and
ĉαk and the various terms of Ĥ leads to

[d̂in, Ĥdots] = εind̂in +
∑
n′∈i

V∗
in,in′ d̂in′ , (A4)

[d̂in, Ĥhop] =
∑

α=L, R
k∈α

V ∗
in,αk ĉαk, (A5)

[̂cαk, Ĥleads] = εαk ĉαk, (A6)

[̂cαk, Ĥhop] =
∑

i=1, 2
n∈i

Vin,αkd̂in, (A7)

where i = 2 when i = 1 and i = 1 when i = 2. By collecting
these contributions together and defining the retarded Green
functions in the dots Gr

in, jm(ε) = 〈〈d̂in; d̂ †
jm〉〉, one gets the set

of coupled equations

Gr
in, jm(ε) = δi jδnmgr

in(ε) + gr
in(ε)

∑
n′∈i

V∗
in,in′G

r
in′, jm

(ε)

+ gr
in(ε)

∑
α=L, R

k∈α

V ∗
in,αkGr

αk, jm(ε), (A8)

Gr
αk, jm(ε) = gr

αk (ε)
∑

i′=1, 2
n′∈i′

Vi′n′,αkGr
i′n′, jm(ε), (A9)

where gr
in(ε) = (ε − εin + i0+)−1 and gr

αk (ε) = (ε − εαk +
i0+)−1 are the retarded Green functions in the disconnected
dot i and lead α, respectively. By inserting Eq. (A9) into
Eq. (A8), one finally obtains a Dyson-like equation

Gr
in, jm(ε) = δi jδnmgr

in(ε) +
∑
n′∈i

gr
in(ε)V∗

in,in′G
r
in′, jm

(ε)

+
∑

α=L, R
k∈α

∑
i′=1, 2
n′∈i′

gr
in(ε)V ∗

in,αkgr
αk (ε)Vi′n′,αkGr

i′n′, jm(ε),

(A10)

leading to a set of 4(Nε × Mε ) coupled linear equations.
We want to underline that the presence of the term∑

n′∈i gr
in(ε)V∗

in,in′G
r
in′, jm

(ε) in this equation is directly related
to the fact that one has here two coupled dots.

In the next two sections, a distinction is made between the
SL-DQD case for which an exact solution of Eq. (A10) can
be derived and the ML-DQD case for which an approximate
solution is given. This latter solution is obtained by making
the assumption that the hopping integrals entering in the
Hamiltonian is independent both of the energy levels εin in
the dots and of the k state in the leads.

2. Exact result for a SL-DQD

When each of the two dots contains a single energy level,
denoted as ε1 and ε2, the indices n, n′ and m are absent and
then Eq. (A10) reduces to

Gr
i j (ε) = δi jg

r
i (ε) + gr

i (ε)V∗
ii
Gr

i j
(ε)

+
∑

i′=1,2

gr
i (ε)Σr

hop,ii′ (ε)Gr
i′ j (ε), (A11)

where gr
i (ε) = (ε − εi + i0+)−1 is the retarded Green func-

tion of the disconnected single-level dot i, and Σr
hop,ii′ (ε) are

the elements of the 2 × 2 hopping self-energy matrix Σr
hop

(ε)

in the {|1〉, |2〉}-basis

Σr
hop

(ε) =
∑

α=L,R

∑
k∈α

gr
αk (ε)

(
|V1,αk|2 V ∗

1,αkV2,αk

V1,αkV ∗
2,αk |V2,αk|2

)
. (A12)
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In a matrix notation, the Dyson equation for Gr (ε) writes

Gr (ε) = gr (ε) + gr (ε)Σr (ε)Gr (ε), (A13)

where gr (ε) is the retarded Green function matrix of the

disconnected dots

gr (ε) =
(

gr
1(ε) 0

0 gr
2(ε)

)
, (A14)

and Σr (ε) is the retarded self-energy matrix given by

Σr (ε) =
(

Σr
hop,11(ε) Σr

hop,12(ε) + V∗
12

Σr
hop,21(ε) + V∗

21 Σr
hop,22(ε)

)
. (A15)

Equation (A13) can be solved exactly. The calculation pre-
sented hereafter applies to the case of a SL-DQD but can be
generalized to the case of a ML-DQD within the limit of the
approximations made in this paper. The explicit dependences
with energy ε of the Green functions and of the self-energies
are omitted in the next equations in order to lighten the nota-
tions. Starting from Eq. (A11) one writes the four equations
of motion followed by the elements of the matrix Gr

Gr
11 = gr

1 + gr
1V∗

12Gr
21 + gr

1

(
Σr

hop,11Gr
11 + Σr

hop,12Gr
21

)
Gr

12 = gr
1V∗

12Gr
22 + gr

1

(
Σr

hop,11Gr
12 + Σr

hop,12Gr
22

)
Gr

21 = gr
2V∗

21Gr
11 + gr

2

(
Σr

hop,21Gr
11 + Σr

hop,22Gr
21

)
Gr

22 = gr
2 + gr

2V∗
21Gr

12 + gr
2

(
Σr

hop,21Gr
12 + Σr

hop,22Gr
22

)
.

This set of linear equations can be rewritten in the following
matrix form Mr (ε)Gr (ε) = gr (ε), where

Mr =
(

1 − gr
1Σ

r
11 −gr

1Σ
r
12

−gr
2Σ

r
21 1 − gr

2Σ
r
22

)
, (A16)

with Σr
ii(ε) = Σr

hop,ii(ε), Σr
ii
(ε) = Σr

hop,ii
(ε) + V∗

ii
and

Gr (ε) =
(

Gr
11(ε) Gr

12(ε)

Gr
21(ε) Gr

22(ε)

)
, (A17)

gr (ε) =
(

gr
1(ε) 0

0 gr
2(ε)

)
. (A18)

The solution of this matrix equation is given by Gr (ε) =
(Mr (ε))−1gr (ε); one obtains the following expression for the

2 × 2 Green function matrix Gr (ε)

Gr (ε) = 1

Dr (ε)

(
g̃ r

1 (ε) g̃ r
1 (ε)Σr

12(ε )̃g r
2 (ε)

g̃ r
2 (ε)Σr

21(ε )̃g r
1 (ε) g̃ r

2 (ε)

)
,

(A19)

where g̃ r
i (ε) is defined by g̃ r

i (ε) = gr
i (ε)/(1 −

Σr
hop,ii(ε)gr

i (ε)), and Dr (ε) is given by Dr (ε) = 1 −
g̃ r

1 (ε)Σr
12(ε )̃g r

2 (ε)Σr
21(ε). Equation (A19) gives the exact

expression of the retarded Green function Gr (ε) in a
SL-DQD. It holds as well as for serial as for parallel
geometries of the DQD system. We want to underline that for
a DQD connected in series, the self-energy Σr

hop
(ε) defined

in Eq. (A12) becomes a diagonal matrix since the product
V ∗

1,αkV2,αk is equal to zero whatever the index α is. Therefore,
the off-diagonal elements of the total self-energy matrix Σr

defined in Eq. (A15) reduces to V∗
12 and V∗

21 in that case.

3. Generalization to a ML-DQD

In realistic systems, the dots constituting the DQD system
contain several energy levels, as for example in Ge/Si het-
erostructure nanowire-based DQDs [81] or in graphene-based
DQDs [92]. In that situation one would have to perform a
numerical calculation to determine the solutions of Eq. (A10).
However, when the hopping integrals Vin,im and Vin,αk do not
depend on the indices n and m and on the state k (and in that
case, we use the notations Vii and Viα), the calculation remains
analytical. Within this assumption and by performing a double
sum over the n and m indices, Eq. (A10) becomes

Gr
i j (ε) = δi jgr

i (ε) + gr
i (ε)V∗

ii
Gr

i j
(ε)

+
∑

i′=1,2

gr
i (ε)Σr

hop,ii′ (ε)Gr
i′ j (ε), (A20)

where

Gr
i j (ε) =

∑
n∈i,m∈ j

Gr
in, jm(ε), (A21)

gr
i (ε) =

∑
n∈i

gr
in(ε), (A22)

Σr
hop,i j (ε) =

∑
α=L,R

∑
k∈α

V ∗
iαgr

αk (ε)Vjα. (A23)

In a matrix form, Eq. (A20) reads as

Gr (ε) = gr (ε) + gr (ε)Σr (ε)Gr (ε). (A24)

The solutions of Eq. (A24) can be obtained analytically since
it is a set of four linear equations. In matrix notation we obtain
a 2 × 2 matrix Gr (ε), the elements of which correspond to
Gr

i j (ε),

Gr (ε) = 1

Dr (ε)

(
g̃r

1(ε) g̃r
1(ε)Σr

12(ε )̃gr
2(ε)

g̃r
2(ε)Σr

21(ε )̃gr
1(ε) g̃r

2(ε)

)
,

(A25)

with Dr (ε) = 1 − g̃r
1(ε)Σr

12(ε )̃gr
2(ε)Σr

21(ε), g̃r
i (ε) = gr

i (ε)/
(1 − Σr

hop,ii(ε)gr
i (ε)) and Σr

i j (ε) = Σr
hop,i j (ε) + δ jiV∗

ii
.

Equation ( provides the expression of the retarded Green
function Gr (ε) in a ML-DQD within the assumption
that the hopping integrals are independent of the energy
levels. We remark that this result is similar to Eq. (A19)
obtained for a SL-DQD, provided that Gr (ε), g̃ r

i (ε) are
changed into Gr (ε), g̃r

i (ε). The advanced Green function
Ga(ε) is obtained straightforwardly by replacing the
superscript r by the superscript a in Eq. (A25) with
Da(ε) = 1 − g̃a

1(ε)Σa
12(ε )̃ga

2(ε)Σa
21(ε), where g̃a

i (ε) =
ga

i (ε)/(1 − Σa
hop,ii(ε)ga

i (ε)) and Σa
i j (ε) = Σa

hop,i j (ε) + δ jiVii.
To be able to describe the out-of-equilibrium properties of
the DQD such as the electrical current and the electrical
conductance, it is necessary to also determine the lesser
and greater Green functions G≶(ε) for the DQD system as
detailed in the next section.

4. Lesser and greater Green functions

The lesser Green function matrix G<(ε) can be obtained
by using the Langreth analytic continuation rules [93] on
the Dyson equation for the contour ordered Keldysh Green
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functions obtained from Eq. (A24). One gets

G<(ε) = g<(ε) + gr (ε)Σr (ε)G<(ε)

+ gr (ε)Σ<(ε)Ga(ε) + g<(ε)Σa(ε)Ga(ε). (A26)

By performing successive iterations on G<(ε) in the r.h.s. of
Eq. (A26), one obtains

G<(ε) = Gr (ε)Σ<(ε)Ga(ε)

+ [
1 + Gr (ε)Σr (ε)

]
g<(ε)

[
1 + Σa(ε)Ga(ε)

]
. (A27)

The second term in the r.h.s of Eq. (A27) vanishes since it can
be put in the form[

1 + Gr (ε)Σr (ε)
]
g<(ε)

[
1 + Σa(ε)Ga(ε)

]
= Gr (ε)(gr (ε))−1g<(ε)(ga(ε))−1Ga(ε), (A28)

with (gr (ε))−1g<(ε)(ga(ε))−1 = 0, stemming from the fact

that g(ε) is the Green function for the disconnected nonin-

teracting DQD system [80]. Therefore, and generalizing it to
the greater Green functions G>(ε), one has

G≶(ε) = Gr (ε)Σ≶(ε)Ga(ε), (A29)

where the lesser and greater self-energies Σ≶(ε) are given by

Σ≶(ε) =
∑

α=L,R

∑
k∈α

g≶
αk (ε)

( |V1α|2 V ∗
1αV2α

V1αV ∗
2α |V2α|2

)
, (A30)

whereas Σr,a(ε) differs from Σr,a
hop

(ε) by the off-diagonal

terms V∗
12 and V∗

21, Σ≶(ε) coincides with Σ≶
hop

(ε); thus one

can indifferently use one or the other in any expression where
these quantities appear.

The result expressed in Eq. (A29) is remarkably simple.
It indicates that the information about the inner details of
the DQD system is entirely coded in the retarded/advanced
Green functions Gr,a(ε). We underline that the calculation of

G≶(ε) is made here for a ML-DQD system. However one can
immediately deduce the lesser and greater Green functions
G≶(ε) for the SL-DQD system by simply changing Gr,a(ε)
into Gr,a(ε) in Eq. (A29). This also applies to the next section.

5. Explicit expression for the electrical current

The current operator from the lead α is defined as Îα (t ) =
−edN̂α (t )/dt with N̂α (t ) = ∑

k∈α ĉ †
αk (t )̂cαk (t ). In the steady

state the derivative with respect to the time variable is given
by dN̂α (t )/dt = [N̂α (t ), Ĥ]/ih̄ [78]. Thus the average current
writes

Iα = 〈Îα〉 = − e

ih̄

∑
k∈α

〈[̂c †
αk (t )̂cαk (t ), Ĥ]〉. (A31)

The only term in Ĥ leading to a nonvanishing commutator
with the product of operators ĉ †

αk (t )̂cαk (t ) is Ĥhop. One gets

Iα = e

h̄

∑
k∈α

∑
i=1, 2

n∈i

(
ViαG<

in,αk (t, t ) − V ∗
iαG<

αk,in(t, t )
)
, (A32)

where one has defined the lesser and greater Green
functions G<

in,αk (t, t ′) = i〈̂c †
αk (t ′)d̂in(t )〉 and G<

αk,in(t, t ′) =
i〈d̂ †

in (t ′ )̂cαk (t )〉. Performing a Fourier transform, one gets

Iα = e

h

∑
k∈α

∑
i=1, 2

n∈i

∫ ∞

−∞

(
ViαG<

in,αk (ε) − V ∗
iαG<

αk,in(ε)
)
dε.

(A33)

In order to calculate the lesser and greater Green functions
G<

in,αk (ε) and G<
αk,in(ε), one applies the Langreth analytic

continuation rules [93]. From Eq. (A9), one obtains

G<
αk,in(ε) =

∑
j=1, 2
m∈ j

Vjα
(
gr

αk (ε)G<
jm,in(ε) + g<

αk (ε)Ga
jm,in(ε)

)
.

(A34)

Similarly,

G<
in,αk (ε) =

∑
j=1, 2
m∈ j

V ∗
jα

(
G<

in, jm(ε)ga
αk (ε) + Gr

in, jm(ε)g<
αk (ε)

)
.

(A35)

By inserting these expressions into Eq. (A32), one gets

Iα = e

h

∑
k∈α

∑
i=1,2

∑
j=1,2

∫ ∞

−∞
ViαV ∗

jα

× ((
ga

αk (ε) − gr
αk (ε)

)
G<

i j (ε)

+ g<
αk (ε)

(
Gr

i j (ε) − Ga
i j (ε)

))
dε, (A36)

where Gr
i j (ε) is the Green function summed over the indices

n and m as defined in Eq. (A21). By using the general
relationship Gr (ε) − Ga(ε) = G>(ε) − G<(ε) which holds for
any Green function G, one obtains

Iα = e

h

∑
k∈α

∑
i=1,2

∑
j=1,2

∫ ∞

−∞
ViαV ∗

jα

×(
g<

αk (ε)G>
i j (ε) − g>

αk (ε)G<
i j (ε)

)
dε. (A37)

Physically, this expression is interpreted as follows: The first
contribution in Iα represents the current flowing from the α

lead to the DQD since it is the product of the out-tunneling
rate of the occupied state in the α lead,

∑
k∈α ViαV ∗

jαg<
αk

which corresponds to the self-energy, and of the number of
unoccupied states in the DQD, G>

i j (ε), whereas the second
contribution with the minus sign corresponds to the current
flowing from the DQD to the lead α. Equation (A39) can be
written thanks to Eq. (A29) under the following form

Iα = e

h

∫ ∞

−∞
Tr

[
Σ<

α
(ε)Gr (ε)Σ>(ε)Ga(ε)

−Σ>

α
(ε)Gr (ε)Σ<(ε)Ga(ε)

]
dε, (A38)

where the matrix elements of the self-energy Σ≶
α

(ε) are de-

fined as �
≶
α,i j (ε) = ∑

k∈α V ∗
iαg≶

αk (ε)Vjα and where Tr[ ] de-
notes the trace of the matrix. In the limit of wide flat band
for electrons in the leads and energy-independent hopping
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FIG. 12. Eigenenergies E+
dots (red curve) and E−

dots (black curve)
at V12 = 0.1 as a function of the angle θ with ε1 = cos(θ ) and ε2 =
sin(θ ). Level anticrossing effect arises at θ = π/4 or θ = 5π/4, i.e.
at ε1 = ε2, with a distance between the red and black curves equal to
�E = 2|V12| = 0.2.

integrals, one has

Σ<

α
(ε) = i fα (ε)�

α
, (A39)

Σ>

α
(ε) = −i(1 − fα (ε))�

α
, (A40)

where the elements �α,i j of the matrix �
α

are defined as
�α,i j = 2πραV ∗

iαVjα with ρα , the density of states in the lead
α. We also have Σr,a

α
(ε) = ∓i�

α
/2. By inserting Eqs. (A41)

and (A42) into Eq. (A40), one obtains

Iα = e

h

∫ ∞

−∞
Tαα (ε)

(
fα (ε) − fα (ε)

)
dε, (A41)

which corresponds to Eq. (4), where Tαα (ε) is the transmis-
sion coefficient equal to

Tαα (ε) = Tr
[
�

α
Gr (ε) �

α
Ga(ε)

]
, (A42)

with α = R for α = L and α = L for α = R, and where �
α

is
the dot-lead coupling matrix defined as

�
α

= 2πρα

( |V1α|2 V ∗
1αV2α

V1αV ∗
2α |V2α|2

)
. (A43)

APPENDIX B: ̂Hdots EIGENVALUES

In this Appendix, we determine the eigenenergies and
eigenvectors of the Hamiltonian Ĥdots of Eq. (1) describing
the DQD disconnected from the leads firstly for a SL-DQD
and secondly for a ML-DQD with three levels of energy.

1. SL-DQD

For a SL-DQD, the Hamiltonian Ĥdots writes as a 2 × 2
matrix in the basis {|1〉, |2〉} of the states in the two dots 1 and
2

Ĥdots =
(

ε1 V∗
12

V∗
21 ε2

)
. (B1)

FIG. 13. Equienergetic curves of equations E±
dots = μL,R (left col-

umn) and Eλ
dots = μL,R with λ ∈ [1, 6] (right column) at μL,R = 0 in

the plane (ε1, ε2) for (a),(b) V12 = 0, (c),(d) V12 = 0.1, and (e),(f)
V12 = 0.5. The purple lines are obtained for a SL-DQD and the black
lines for a ML-DQD with three levels of energy in each dot.

It can be diagonalized leading to the following eigenener-
gies E+

dots and E−
dots

E±
dots = ε1 + ε2 ±

√
(ε1 − ε2)2 + 4|V12|2

2
, (B2)

and eigenvectors |+〉 and |−〉 which correspond to the anti-
bonding and bonding eigenstates of the SL-DQD

|+〉 = u∗|1〉 + v∗|2〉, (B3)

|−〉 = −v|1〉 + u|2〉, (B4)

with

|u|2 = 1

2

(
1 + ε1 − ε2

E+
dots − E−

dots

)
, (B5)

|v|2 = 1

2

(
1 − ε1 − ε2

E+
dots − E−

dots

)
, (B6)

and therefore |uv|2 = |V12|2/(E+
dots − E−

dots )2. It gives rise to a
level anticrossing effect as soon as the interdot coupling V12

is finite. The anticrossing of the two levels ε1 and ε2 occurs in
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the vicinity of the first diagonal as shown in Fig. 12. Indeed,
from Eq. (B2), the difference between the two eigenenergies
reads as �E = E+

dots − E−
dots =

√
(ε1 − ε2)2 + 4|V12|2, which

is minimal along the first diagonal (i.e., when ε1 = ε2) equal-
ing �E = 2|V12| then. Resulting from Eqs. (B3)–(B6), the
spectral density A11(ε) in dot 1, respectively, A22(ε) in dot
2, is a linear combination of Dirac delta functions within a
multiplicative factor 2π , centered at the values of eigenener-
gies E+

dots and E−
dots, with weighting factors equal to |u|2 and

|v|2, respectively, |v|2 and |u|2 in dot 2. It has to be noted
that as soon as the interdot coupling V12 becomes finite, a
mixed spectral density A12(ε) arises, resulting from interdot
transitions.

The charge stability diagram of the system can easily be
derived from the latter results. At equilibrium the boundary
lines between the domains of different occupations are ob-
tained when any of the two levels of energies, E+

dots and E−
dots,

is aligned with the chemical potential of the leads μL = μR =
μ. The equations of the boundary lines B+ and B−, hence
given by E+

dots = μ and E−
dots = μ, are (ε1 − μ)(ε2 − μ) =

V2
12. They correspond to two branches of a hyperbol in the

plane (ε1, ε2).The distance between the two branches B+ and
B− is minimal along the first diagonal taking the value of
2|V12|. The boundary lines are drawn in Figs. 13(a), 13(c) and
13(e) at μ = 0 for different values of the interdot coupling
V12. One can check that the minimal distance between the two
boundary lines B− and B+ increases with increasing V12.

2. ML-DQD

For the three energy level ML-DQD considered in
Sec. III B, the Hamiltonian Ĥdots writes as a 6 × 6 matrix
in the basis of the states {|1n〉, |2m〉} with integer indices

n, m ∈ [0, 2] in the two dots given by

Ĥdots =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ε10 0 0 V∗
12 V∗

12 V∗
12

0 ε11 0 V∗
12 V∗

12 V∗
12

0 0 ε12 V∗
12 V∗

12 V∗
12

V∗
21 V∗

21 V∗
21 ε20 0 0

V∗
21 V∗

21 V∗
21 0 ε21 0

V∗
21 V∗

21 V∗
21 0 0 ε22

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B7)

where εin = εi + n�εi and V12 is the interdot coupling of
equal value regardless of the levels considered in each dot.
Ĥdots can be diagonalized leading to six eigenenergies Eλ

dots,
with the integer index λ ∈ [1, 6], whose values can be numer-
ically calculated. It is useful for the discussion in Sec. III B to
determine the equienergetic curves at equilibrium: Eλ

dots = μ.
The results obtained numerically are displayed in Figs. 13(b),
13(d) and 13(f) at μ = 0 for different values of the interdot
coupling V12. When V12 = 0, the eigenenergies are simply
equal to ε1, ε1 + �ε1, ε1 + 2�ε1, ε2, ε2 + �ε2, and ε2 +
2�ε2, and the equienergetic curves at Eλ

dots = 0 are the three
horizontal and three vertical lines of a square lattice as found
in Fig. 13(b). As soon as the interdot coupling V12 gets finite,
a level anticrossing effect takes place in the vicinity of the
nodes of the square lattice, as shown in Figs. 13(d) and 13(f).
At V12 = 0.1, the equienergetic curves become sinuous, as a
result of this level anticrossing effect. At V12 = 0.5, the dis-
tance between two adjoining equienergetic curves increases,
leaving room for wide interstitial areas in the direction parallel
to the second diagonal. These various elements brought by
the above discussion are crucial to physically interpret the
results obtained for the conductance, Seebeck coefficient, total
dot occupancy, and zero-frequency charge susceptibility in the
DQD system as discussed in Secs. III A and III B.
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