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Physical properties of weak-coupling quasiperiodic superconductors

Nayuta Takemori ,1,2,* Ryotaro Arita ,2,3 and Shiro Sakai 2,†

1Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
2Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

3Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan

(Received 6 May 2020; revised 3 August 2020; accepted 17 August 2020; published 3 September 2020)

We numerically study the physical properties of quasiperiodic superconductors with the aim of understanding
superconductivity in quasicrystals. Considering the attractive Hubbard model on the Penrose tiling as a
simple theoretical model, we calculate various basic superconducting properties and find deviations from the
universal values of the Bardeen-Cooper-Schrieffer theory with a constant density-of-states approximation. In
particular, we find that the jump of the specific heat at the superconducting transition is about 10%–20%
smaller than that universal value, consistent with the experimental results obtained for the superconducting
Al-Mg-Zn quasicrystalline alloy. Furthermore, we calculate current-voltage characteristics and find that the
current gradually increases with the voltage on the Penrose tiling in contrast to a rapid increase in the periodic
system. These distinctions originate from the nontrivial Cooper pairing characteristic of the quasiperiodic system.
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I. INTRODUCTION

Superconductivity in a system without translational sym-
metry has been found in amorphous metals such as Sn0.9Cu0.1

(Tc = 6.76 K) [1,2] and Pb0.75Bi0.25 (Tc = 6.9 K) [2,3]. Be-
cause the ratio of the zero-temperature gap 2� and the critical
temperature Tc is around 4.5 in these superconductors, they are
considered to be formed by relatively strong electron-phonon
interaction. On the other hand, the existence of weak-coupling
superconductivity with spatially extended Cooper pairs is
a highly nontrivial issue in aperiodic systems. Recently,
an experimental work discovered bulk superconductivity in
a Bergmann-type Al-Mg-Zn quasicrystalline alloy [4]. The
measured properties in this alloy appear to be consistent with
a weak-coupling superconductor. This discovery necessitates
a theoretical investigation because the quasicrystal breaks
the fundamental prerequisite in the BCS theory, namely, the
presence of the momentum space and Fermi surface.

The effect of a microscopic quasiperiodic potential on
a superconductor in a periodic lattice has been intensively
studied in one dimension [5–11], especially in relation to an
ultracold-atom experiment [12]. On the other hand, a large
part has remained unexplored in two or three dimensions, as
well as in quasicrystalline structures where the lattice points
are arranged in a quasiperiodic manner. Recently, more atten-
tion has been drawn to such quasiperiodic superconductors
[13–18].

The interplay between the quasiperiodicity and supercon-
ductivity was also pursued in earlier works on quasiperi-
odic pinning arrays in ordinary (periodic) superconductors
[19–23], as well as quasiperiodic networks of ordinary
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superconducting wires [24–29]. In these systems, the mini-
mum length scale of the quasiperiodicity is much larger than
the coherence length of the superconductor. On the other hand,
in the superconducting quasicrystal [4] discovered recently,
the quasiperiodicity occurs on the atomic scale, and hence, its
length scale will be much smaller than the coherence length.
Motivated by this latter system, we study the properties of
quasicrystalline superconductors.

In our previous work [14], we studied possible supercon-
ductivity emerging in a quasiperiodic system by introducing
a simplified theoretical model, i.e., the attractive Hubbard
model on the Penrose tiling [14]. We studied the model by
means of real-space dynamical mean-field theory [30–34]
and revealed that the emerging superconducting phase is
categorized into three different regions, which cross over
each other, in the density-interaction phase diagram. Espe-
cially, unconventional spatially extended Cooper pairs whose
coherence length is much longer than the minimum length
scale of inhomogeneity, i.e., lattice spacing, were found in
the weak-coupling region, which may be relevant to the bulk
superconductivity observed in the Al-Mg-Zn quasicrystal. We
clarified that the Cooper pairs in this region deviate from that
of the BCS superconductivity formed between the electrons at
momentum k with spin ↑ and −k with ↓ [14] because of the
lack of periodicity. Moreover, the obtained superconducting
states show a spatial inhomogeneity owing to the aperiodic
feature of the quasiperiodic structure. Then, the self-similarity
of such structures means that this superconducting state is
inhomogeneous on any length scale, which is distinct from
any other known superconductors.

Here, a question arises, Does this quasiperiodic super-
conductor show any properties, in particular experimentally
observable ones, different from those of the BCS super-
conductor? To answer this question, we calculate experi-
mentally observable quantities such as the specific heat and
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current-voltage characteristics, as well as several basic quan-
tities of the superconductors, in the Penrose tiling. We find
that the jump of the specific heat is about 10%–20% smaller
than that obtained with the BCS theory. Also, we find that the
current-voltage (I-V ) curve shows a gradual increase in the
Penrose tiling, which is clearly different from a rapid increase
in the BCS theory. These results call for a further experimental
investigation of these quantities in quasicrystalline supercon-
ductors.

This paper is organized as follows. In Sec. II, we introduce
the model and summarize our theoretical approach. In Sec. III,
we show calculated results for the experimentally observable
quantities such as thermodynamic properties and transport
properties. A summary is given in the last section.

II. MODEL AND METHOD

Although the present study is partly motivated by the
recent discovery of a real quasicrystalline superconductor [4],
our study aims to clarify general features of quasicrystalline
superconductors, rather than focusing on a specific material.
To this end, we consider a theoretically tractable model con-
taining the two essences, quasiperiodicity and superconduc-
tivity, as was done in several recent works [14–17]: We study
weak-coupling superconductivity in quasiperiodic systems by
assuming a weak local attractive interaction U < 0 in the
Hubbard model on the Penrose tiling under the open boundary
condition [14,16,34]. Here, we adopt a vertex model where
a site is placed on each vertex of the rhombuses, and thus,
the model is bipartite. The coordination number in the system
ranges from 3 to 7, and each vertex pattern can be divided
into eight classes [35–38], except for the boundary sites.
The structure of the Penrose tiling is generated by applying
the inflation-deflation rule [39] iteratively to the pentagon
structure composed of the five fat rhombuses so that the
structure holds C5v symmetry (fivefold rotational and mirror
symmetries). In the following, we make use of a series of the
Penrose tiling consisting of N = 1591, 4181, and 11 006 sites.
These structures contain 175, 444, and 1142 geometrically
inequivalent sites, respectively. In this paper, we suppose a
finite electron-transfer integral t only between the vertices
connected by edges of the rhombuses and set it as the unit
of energy. In order to avoid a peculiarity at the half filling,
we tune the chemical potential to obtain a filling away from
half filling. In the noninteracting limit of this model, the width
of the site-averaged local density of states is about 8.5t , so
that, based on previous studies [14,40], we can expect a weak-
coupling superconductivity for |U | � 4. Because the Cooper
pairs are less extended for a larger |U |, in order to reduce the
finite-size effect coming from the boundary of the cluster, we
mainly study U = −3 at quarter filling in this paper.

To study the superconducting solution in this model, we
employ the Bogoliubov–de Gennes (BdG) equation, which is
expected to work well in the weak-coupling region. We self-
consistently solve the BdG Hamiltonian given by [41]

[ĤBdG]i j =
[
U 〈ci↑ci↓〉σ1 +

(
Uni

2
− μ

)
σ3

]
δi j

− tσ3δ〈i j〉. (1)
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FIG. 1. (a) Spatially averaged superconducting order parameter
OP and superconducting gap Eg at quarter filling for U = −3 as a
function of the temperature. The inset shows the square of OP and
Eg around Tc with a linear fitting function (black line). (b) Spatial
pattern of the site-dependent superconducting order parameter OPi

at zero temperature in the Penrose tiling of 4181 sites.

Here, 〈i j〉 denotes a pair of the neighboring sites, μ is the
chemical potential, and σ1(3) is the x (z) component of the
Pauli matrix. We define the site-dependent superconducting
order parameter and electron density by OPi = 〈ci↑ci↓〉 and
ni = ∑

σ niσ , with niσ = 〈c†
iσ ciσ 〉, respectively, where c(†)

iσ is
an annihilation (creation) operator of an electron at the ith
site with spin σ =↑,↓. The eigenvalue Eα of the Hamiltonian
and the local density of states enable us to compute various
experimental observables. We assume only s-wave supercon-
ductivity driven by the local attractive interaction.

III. RESULTS

A. Superconducting order parameter and gap

We first discuss the temperature dependence of the super-
conducting order parameter and the gap, using a Penrose-
tiling cluster of 4181 sites. We show in Fig. 1(a) the spatially
averaged order parameter OP ≡ 1

N

∑
i OPi and superconduct-

ing gap Eg, which is defined as the minimum absolute value
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TABLE I. The ratio of the superconducting gap at zero temperature to the critical temperature
2E0

g

Tc
, a coefficient in the temperature

dependence of the superconducting gap near the critical temperature A1, and the jump of the specific heat �C
Cen

obtained in Penrose tiling
of 1591, 4181, and 11 006 sites, as well as its extrapolated (Ext) value, and those for a square lattice of 2500 and 10 000 sites. Universal values
in the BCS theory [42] are given in the rightmost column.

Penrose Square BCS

1591 4181 11 006 Ext 2500 10 000

2E0
g

Tc
3.35 3.38 3.38 3.38 3.46 3.45 3.52

A1 1.61 1.63 1.69 1.70 1.70 1.70 1.74
�C
Cen

1.13 1.21 1.21 1.21 1.40 1.39 1.43

of the eigenvalues {Eα}. As discussed in our previous paper
[14], the local superconducting order parameter OPi, which
shows a nonuniform spatial distribution [Fig. 1(b)], reaches
zero simultaneously everywhere at the critical temperature
Tc where both Eg and OP vanish. In the periodic system,
according to the BCS theory, the critical behavior of the
superconducting gap satisfies

Eg(T )

E0
g

∼ A1

(
1 − T

Tc

)γ

, (2)

with the exponent γ = 1/2. Here, E0
g denotes the supercon-

ducting gap at zero temperature. To see the critical behavior
in the quasiperiodic system where the distribution of the
superconducting gap is inhomogeneous, we plot the temper-
ature dependence of Eg

2 in the inset of Fig. 1(a). It shows
a linear behavior around Tc, which indicates that Eq. (2) is
satisfied also in the present mean-field-type calculation for
the quasiperiodic (inhomogeneous) system. Furthermore, in
the framework of the BdG theory, the superconducting gap is
interpreted as Eg ∼ |U |OP. Indeed, these two quantities are
in good agreement around Tc in the present case, too. By
using this relationship, the critical temperature is evaluated as
Tc = 0.330 for the parameters used here.

Next, we compare the calculated results with the known
value of the superconducting gap in the BCS theory, as shown
in Table I. The ratio 2E0

g /Tc is 3.52 in the BCS theory with
a constant density-of-states (DOS) approximation. This is
nearly reproduced with the present method applied to a square
lattice of finite sizes, which does not have any singular density
of states at the filling we study. Although the calculated value
is slightly smaller than the BCS one, this will be attributed
to the weak energy dependence of the density of states in
the energy range comparable to Tc. On the other hand, the
ratio is calculated to be 3.38 for the Penrose tiling. Here,
we have calculated the ratio for each finite-size cluster, and
the extrapolation to the thermodynamic limit in the Penrose
tiling gives 3.38, which is substantially smaller than that of the
BCS theory. This substantial reduction from the BCS value
can be a notable characteristic of the quasiperiodic super-
conductivity since the effect of a finite coupling (as we use
U = −3) usually lifts the ratio from the BCS value [43,44],
in contrast to the present case. This indicates that distinct
weak-coupling superconductivity is formed in the present
system.

For the temperature dependence of the superconducting
gap near the critical temperature, the coefficient A1 in Eq. (2)

in the BCS theory is given by A1 = 1.74. We obtain a similar
value for both the Penrose tiling and square lattice, as shown
in Table I. These results show that the critical behavior, which
is scaled by E0

g , does not show much difference between the
Penrose tiling and the square lattice.

To examine whether these results are universal in the
Penrose tiling, we have performed calculations at different
average fillings n and interactions for N = 11 006, as summa-
rized in Table II. We see that 2E0

g /Tc is always smaller than
the BCS value. A1 is similar to or somewhat smaller than the
BCS one. Note that the finite-size effect may influence the
results at U = −2 while a strong-coupling feature (related to
the Bose-Einstein condensation) [40] may come in the results
at U = −4.

Thus, we clarified that 2E0
g /Tc exhibits a smaller value

in the Penrose tiling than in the periodic system, while
the temperature dependence of the superconducting gap
does not show a clear difference from that in the BCS
theory.

B. Perpendicular space

The superconductivity in the weak-coupling region in-
volves spatially extended Cooper pairs [14], where the off-site
superconducting order parameter 〈ci↑c j↓〉 remains finite for a
large distance between i and j. In this state, the local super-
conducting order parameter reflects the geometry beyond the
nearest neighbors. This feature can be easily seen in perpen-
dicular space [45], as shown in Fig. 2. Perpendicular space
(xperp, yperp, zperp) is the remaining three dimensions when
the projection from a five-dimensional cubic lattice onto two-
dimensional physical space generates the Penrose tiling [46].
In this space, a parity of zperp ∈ {0, 1, 2, 3} corresponds to the
sublattice in physical space. Moreover, sites with equivalent
local vertex geometries [35–37] in physical space are assem-
bled in the star-shaped section in the perpendicular space, as
shown in Figs. 2(c) and 2(f). Therefore, the roughly uniform
color in each section indicates that the value of OPi is largely
determined by the local geometries represented by the vertex
patterns in Fig. 2(g). However, a closer look at Figs. 2(a), 2(b)
2(d), and 2(e) does not show merely a star-shaped pattern but
further additional structures, which indicate that longer-range
geometry beyond the nearest neighbors plays a role. We note
that the points with exceptionally strong intensity in the D
region [Figs. 2(d) and 2(e)] correspond to the sites at the edge
of the system.
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TABLE II. The same quantities as in Table I obtained in the Penrose tiling of 11 006 sites for different values of U and the average filling
n. Universal values in the BCS theory [42] are given in the rightmost column.

U = −2 U = −3 U = −4 BCS
n = 0.5 n = 0.3 n = 0.5 n = 0.7 n = 0.5

2E0
g

Tc
3.36 3.24 3.38 3.29 3.42 3.52

A1 1.56 1.69 1.69 1.51 1.67 1.74
�C
Cen

1.23 1.25 1.21 0.72 1.23 1.43

C. Local density of states

As shown in Fig. 1(b), the superconducting order pa-
rameter shows an interesting nonuniform spatial pattern in
quasiperiodic systems. This may be observable with scanning
tunneling microscopy (STM) or scanning tunneling spec-
troscopy (STS) as a gap in the local density of states. To
clarify this point, we calculate the local density of states as
shown in Fig. 3 for five different sites, A–E, depicted in the
inset. These sites are geometrically inequivalent and show
different values of the local superconducting order parameter,
OPi = 0.133 (A), 0.141 (B), 0.153 (C), 0.184 (D), 0.239 (E).
Although the local superconducting order parameter depends
significantly on sites, the gap size in the local density of states
does not appreciably depend on OPi. On the other hand, the
amplitude of the peaks (Bogoliubov peaks) at the edge of the
gap strongly depends on sites, and this would be measurable
by STM/STS. Although the site dependence of this peak

amplitude does not seem to show a simple correspondence to
that of OPi, it can still provide evidence of the inhomogeneous
superconducting state characteristic of quasiperiodic systems
and would show a fractal-like pattern in real space. In the
next section, we shall discuss how this spatial inhomogeneity
affects the bulk superconducting property.

D. Specific heat

Another basic property of a superconductor is specific heat.
To obtain this quantity, we first calculate the entropy in the
Penrose tiling by

S = 2
∑

α

{
ln(1 + e−βEα ) + βEα

eβEα + 1

}
, (3)

where α runs over 1 to 2N and β denotes inverse temperature.
As the finite superconducting gap Eg appears at T < Tc,
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FIG. 2. Perpendicular space profile of the site-dependent superconducting order parameter OPi for (a) zperp = 0, (d) zperp = 1, (e) zperp = 2,
and (b) zperp = 3 at zero temperature in the Penrose tiling of 11 006 sites. Each perpendicular space for (c) zperp = 0, 3 and (f) zperp = 1, 2
is divided into star-shaped sections which correspond to the vertex pattern. (g) Vertex patterns D, Q, K, J, S, S5, S4, and S3 defined for the
Penrose tiling [35,36].
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FIG. 3. Local density of states for geometrically inequivalent
sites at zero temperature obtained for the Penrose tiling of 4181
sites at quarter filling for U = −3. The inset shows an enlarged
view of Fig. 1(b) around the center of the Penrose-tiling cluster. To
plot the density of states, we have added an imaginary part iη (with
η = 0.003) to the energy ω.

entropy shows a kink at T = Tc, as shown in Fig. 4(a). The
electronic specific heat is obtained by numerical differentia-
tion of entropy as

Ce = T
dS

dT
, (4)

which shows a jump singularity at T = Tc, as shown in
Fig. 4(b), corresponding to the kink appearing in entropy.
In the BCS theory with a constant DOS approximation, the
universal ratio �C/Cen = 1.43 is known between the specific
heat jump �C and its value in the normal state Cen at T = Tc.

The system size dependence of the heat capacity jump is
shown in Table I. In the Penrose tiling, it depends on the
system size only weakly, and the extrapolated value is 1.21.
Table II shows a similar reduction from the BCS value for
other fillings and interactions, too. On the other hand, that

(a) (b)

FIG. 4. Temperature dependence of (a) entropy S and (b) specific
heat Ce/T obtained in the Penrose tiling of 11 006 sites at quarter
filling for U = −3. We note that the specific heat is shown in units of
Cen/Tc, where Cen denotes the specific heat in the normal state at Tc.
The specific heats obtained for 4181 sites and in the experiment for
the Al-Mg-Zn quasicrystalline alloy [4] are plotted for comparison.
The dashed curve represents the results calculated for 11 006 sites
while artificially restricting a solution to the normal state.

FIG. 5. Temperature dependence of specific heat Ce/T obtained
in the Penrose tiling of 11 006 sites at different values of the average
filling n for U = −3. We note that the specific heat is shown in
units of Cen/Tc, where Cen denotes the specific heat in the normal
state at Tc.

in the square lattice shows a value close to the known BCS
value of 1.43. We thus find that the jump of the specific heat
in the Penrose tiling is about 10%–20% smaller than that
obtained by the BCS theory. This reduction is consistent with
the experimental results of the Al-Mg-Zn quasicrystalline
alloy [4], although differences between the two systems in
structures may also be playing a role. The reduction of the
jump in the quasiperiodic system is presumably due to the
multigap nature (inhomogeneity) of its superconductivity (as
seen in Fig. 3), which would broaden the singularity.

A closer look at Table II tells us that the jump decreases as
n approaches half-filling at U = −3. This is consistent with
the U -n phase diagram in Ref. [14], which shows that the
spatial extension of the Cooper pairs is suppressed around the
half-filling in the weak-coupling region. Namely, a strong-
coupling effect (leading to the Bose-Einstein condensation)
would account for this trend. Note that the specific heat in
the normal state (T > Tc) strongly depends on temperature for
n = 0.7, different from the temperature-independent behavior
for n = 0.3 and 0.5, as shown in Fig. 5.

To identify the origin of the difference in the specific heat
jump, we substitute Eq. (3) into Eq. (4) to obtain

Ce = 2β
∑

α

(
−∂ f (Eα )

∂Eα

)(
E2

α + β

2

∂E2
α

∂β

)
, (5)

where f (E ) = 1/(eβE + 1) is the Fermi-Dirac distribution
function. Because − ∂ f (E )

∂E peaks around E 	 0, only α’s with
|Eα| � Tc can have a substantial contribution to the jump of
the specific heat. We therefore compare the distribution of Eα

between the Penrose and square lattices. We show in Fig. 6(a)
the distribution of Ediff

α ≡ |Eα| − |Eg| at the temperature just
below Tc. In the square lattice, eigenvalues are densely pop-
ulated in the smallest energy range, as is clearly seen in the
peak at Ediff

α = 0. On the other hand, in Penrose tiling, the
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FIG. 6. (a) Distribution of E diff
α in the superconducting state at

T = 0.325 (0.33) for the Penrose (square) lattice. (b) Distribution of
Eα in the normal state at T = 0.34 (0.36) for the Penrose (square)
lattice. The calculations were done at quarter filling for U = −3 on
the Penrose (square) lattice of 11 006 (10 000) sites, where Tc is 0.328
(0.333).

coherence peak is absent, and the eigenvalues spread over
a wide energy range. This difference accounts for the small
specific heat jump in the Penrose tiling. We further clarify
that the absence of the coherence peak on the Penrose tiling
is ascribed to the absence of the Fermi surface in its normal
state. Figure 6(b) compares the distribution of the eigenvalues
just above Tc between the square and Penrose lattices. While
the former shows a prominent peak at Eα = 0, contributed by
the Fermi surface, the latter shows no such prominent peak
at Eα = 0. The latter means the absence of the Fermi surface,
which is a direct consequence of the lack of periodicity. The
small jump of the specific heat is thus attributed to the absence
of the Fermi surface, which is characteristic of quasiperiodic
systems.

E. I-V characteristics

Next, we focus on the transport property, which might
be a direct clue to distinguish the BCS superconduc-
tivity and quasiperiodic superconductivity. For this pur-
pose, we calculate the I-V characteristic curve of a
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FIG. 7. (a) Current as a function of eV/E 0
g and (b) the site-

averaged density of states at zero temperature obtained for the
Penrose tiling of 11 006 sites and for a square lattice of 10 000
sites at quarter filling for U = −3 and η = 0.001. The inset shows
an enlarged view around ω = E 0

g .

normal-metal-superconductor tunnel junction, as shown in
Fig. 7(a). Here, we consider a tunnel junction of a periodic
normal metal and a quasiperiodic superconductor. The current
through the junction I (V ) at temperature T = 1/β is given by
[42]

I (V ) ∝
∫ ∞

−∞
ρ(E )[ f (E ) − f (E + eV )]dE , (6)

where ρ(E ) denotes the site-averaged density of states of the
superconductor. We have assumed that the density of states of
the normal metal does not depend on energy in the range of
interest.

At T = 0, the current flows only when the applied voltage
exceeds the difference of chemical potentials between the
normal metal and the superconductor; namely, I (V ) becomes
finite only for e|V | � E0

g . In the periodic system, the volt-
age dependence of the tunneling current shows a rapid rise
because of the sharp Bogoliubov peak at the edge of the
superconducting gap in the density of states. On the other
hand, it shows a gradual (nearly linear) development in the
quasiperiodic system owing to the nonuniform distribution of
the superconducting order parameter, which is reflected in the
multiple peaks and a nearly flat distribution for ω � E0

g , in the
site-averaged density of states shown in Fig. 7(b).

Figures 8(a) and 8(b) show the I-V characteristics at
various temperatures for the Penrose and square lattices,
respectively. Both curves look qualitatively similar at fi-
nite temperatures. However, we find that the two cases can
be distinguished by looking at the temperature dependence
of the slope at the threshold voltage, eV = E0

g . Here, we
define the slope by the difference of I at eV = E0

g and at
E0

g + �E . As the temperature decreases, the slope increases
rapidly on the square lattice, while it increases only weakly on
the Penrose lattice. This is plotted for �E = 0.002 and 0.01
[denoted by vertical lines in the insets in Figs. 8(a) and 8(b)] in
Fig. 8(c). The weak increase (i.e., nearly flat behavior) in the
quasiperiodic system is due to the nearly flat distribution of
the Bogoliubov peaks, as discussed above. For �E = 0.002,
the slope even decreases from T = 0.01 to T = 0. This will be
because the density of states lacks the sharp Bogoliubov peak
at the gap edge [inset in Fig. 7(b)]: Since at T = 0 the current
I is contributed by the spectra within the width η (= 0.001
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FIG. 8. I-V characteristics at various temperatures for the (a) Penrose (N = 11 006) and (b) square (N = 10 000) lattices, calculated for
quarter filling and U = −3. Insets show the enlarged views around the threshold voltages, eV = E 0

g = 0.555 and 0.576 (denoted by solid
vertical lines), respectively. The dashed vertical lines denote the voltages eV = E 0

g + �E with �E = 0.002 and 0.01, which are used to
calculate the slope. (c) The temperature dependence of the slope at eV = E 0

g for the Penrose and square lattices.

here) around the gap edge, the small spectral weight at the
gap edge gives a relatively small increase of I compared to
that at finite T (> η), where the spectra within the width ∼T
around the gap edge can contribute.

These results clearly show the difference between the
BCS superconductivity and quasiperiodic superconductivity,
offering possible experimental tests to examine whether the
superconductivity found in quasicrystals is consistent with
quasiperiodic superconductivity.

IV. CONCLUSIONS

We calculated the experimental observables such as spe-
cific heat and current-voltage characteristics in the Penrose
tiling and compared them with the well-known results in
the BCS theory with a constant DOS approximation. We
found that the specific heat jump is about 10%–20% smaller
than that obtained by the BCS theory, consistent with the
experimental results obtained in the superconducting Al-Mg-
Zn quasicrystalline alloy. We have clarified that the reduction
of the jump is due to the absence of the coherence peak in
the quasiperiodic superconductor. We also found that the ratio

of the zero-temperature gap and Tc is smaller than the BCS
value. This is in sharp contrast to amorphous superconductors,
which usually show a ratio substantially larger than the BCS
value, indicating that the quasiperiodic superconductivity is,
indeed, formed in the weak-coupling mechanism rather than
the strong-coupling one. These tendencies do not depend on
the electron density in the weak-coupling region. Further-
more, we calculated current-voltage characteristics and found
that the gradual, nearly linear, development appears in the
Penrose tiling in comparison to that in the periodic system.
These properties mark a quasiperiodic superconductivity that
is distinct from the BCS superconductivity.
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