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Conductance peak density in disordered graphene topological insulators
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We investigate the universal properties of quantum transport in graphene nanowires that engender subtle
universal conductance fluctuations. We present results for three of the main microscopic models that describe the
sublattice of graphene and generate, as we shall show, all the chiral universal symmetries. The results are robust
and demonstrate the widely sought sign of chirality even in the regime of many open channels. The fingerprints
pave the way to distinguish systems with sublattice symmetry such as topological insulators from ordinary ones
by an order of magnitude. The experimental realization requires a single measurement of the chaotic fluctuations
of the associated valleytronics conductant. Through the phase coherence length, our theoretical predictions are
confirmed with the data from traditional measurements in the literature concerning quantum magnetotransport.
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I. INTRODUCTION

The transport phenomena in disordered mesoscopic sys-
tems is strongly affected by the wave behavior of the
electron [1–6]. The wave scattering in nanostructures gives
rise to the fundamental phenomena of universal conductance
fluctuation (UCF), which depends only on the dimension-
ality and the symmetries of the corresponding coherent
state [4,7–10]. An extraordinary characteristic of the UCF
is the nature selection of just a few ensembles to describe
its emerging properties. Despite the complexity of the meso-
scopic device, atomic details are irrelevant and the transport
properties depend only on fundamental symmetries. Accord-
ing to random matrix theory (RMT) [1,11,12], there are three
ensembles: (1) circular orthogonal ensemble (COE) (β = 1),
if the Hamiltonian supports time-reversal and spin-rotation
symmetries, i.e., if no magnetic field is applied B = 0 and the
spin-orbit interaction (SOI) is neglected; (2) circular unitary
ensemble (CUE) (β = 2), if time-reversal symmetry is bro-
ken by a magnetic field, B �= 0; and (3) circular symplectic
ensemble (CSE) (β = 4), if spin-rotation symmetry is broken,
while the time-reversal symmetry is preserved, i.e., the SOI is
non-null.

In bulk state, at the thermodynamic limit, the conduc-
tance assumes fixed values in the same material. However,
in the mesoscopic regime, fluctuations that seem random
appear as a function of some field or external energy that
vary from sample-to-sample [13–17]. Interestingly, these fluc-
tuations are, in fact, chaotic properties categorized through
their amplitudes in any of the universal ensembles previously
mentioned, namely they depend only on fundamental sym-
metries of nature. One way to measure the correlation of
such chaotic events is to run an average on the ensemble of
achievements from various disordered devices [13,15]. This
exhaustive process of make and measure samples provides
the important correlation width scale associated with chaos.
Several experimental and theoretical results indicate the uni-
versality of this scale, which act as a “chaotic number” [18].

For parametric variations in energy, for instance, this average
on samples allows one to find the electron dwell time as the
inverse of the corresponding autocorrelation width [19–22].
The measurements as a function of the external magnetic field,
on the other hand, have the phase-coherence length as the
associated physical measurable [10], a relevant parameter of
the quantum scattering.

Recent advances in nanotechnology have allowed the pro-
duction and control of graphene monolayers with carbon
atoms distributed in honeycomb lattice [23,24]. Graphene has
received both experimental and theoretical attention due to
its special electronic transport properties [8,10,14,23,25–28].
Other studies demonstrate the existence of universality in
graphene beyond the Wigner-Dyson classes previously men-
tioned [14,29–36]. In the chaotic mesoscopic regime, RMT
predicts the existence of ten symmetries classes according to
Cartan’s classification [12], with the three Wigner being the
most established. The honeycomb graphene lattice is divided
into two sublattices, which give rise to chiral symmetries,
allowing the emulation and control of the other Cartan classes
in artificial atoms (quantum dots). The chiral symmetry is an
achievement of more general systems also known as topo-
logical insulators [14–17,37,38] and the phenomenological
counterpart, the relativistic chaos [2–4]. However, experimen-
tal detection of others symmetries is a hard task given that the
chirality seems to disappear according to the number of open
channels (leads widths) that increases subtly. For two or more
channels, this signal tends to disappear quickly.

Faced with this scenario, two questions of experimental
and theoretical interest naturally arise. The first concerns the
extraction of the magnetic correlation width considering the
requirement of several experimental designs and, therefore,
the synthesis of a very large ensemble of nanowire samples:
Is there a measurable capable of extracting the correlation
width through a single experimental design? And the second
one deals with the characteristic values associated with uni-
versality in topological insulators such as graphene: Does the
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autocorrelation width and consequently the phase-coherence
length carry peculiar information of topological insulators? In
this work we give a positive answer to both questions. The
observable in question is the density of maxima (local max-
imum per magnetic field interval) already tested in different
systems [13,18–22]. To extend the validity of our result, we
also investigate the graphene monolayer in different scenarios
and find different numbers associated with the chaos and
universality that can be extracted from a single realization.
Our results are confirmed by experimental data available in
the literature [39,40].

II. METHOD

In this work we investigate the three main models for
graphene nanowires. As we shall show, all of them exhibit the
UCF. The first model (model I) supports spin-rotation sym-
metry with neglected SOI terms. In the second (model II) and
third (model III) models we implement the effect of the SOI in
the electronic structure, proposed by Kane and Mele [41,42],
as a spin-rotation symmetry breaking mechanism.

Disordered graphene in a tight-binding representation has
the Hamiltonian for honeycomb lattice defined as [14,41–43]

H1 =
∑

i

εic
†
i ci − t

∑
〈i, j〉

eiφi j c†
i c j (1)

for model I,

H2 = H1 − i2√
3
λKM

∑
〈〈i, j〉〉

eiφi j (d̂in × d̂ jn)zszc
†
i c j (2)

for model II, and

H3 = H1 − iλR

∑
〈i, j〉

eiφi j (s × d̂i j )zc
†
i c j (3)

for model III, where 〈· · · 〉 and 〈〈· · · 〉〉 denote the nearest-
neighbor and next-nearest-neighbor interactions, respectively.
In model I, the first term introduce short-range disorder with
εi randomly chosen in the range (−W/2 < εi < W/2), with
W being the measure of the disorder strength and ci(c

†
i ) the

annihilation (creation) operator on the ith lattice site. The
second term represents a usual nearest-neighbor interaction,
with t denoting the hopping between C atoms. Here we choose
the value t = 2.6 eV, following DFT calculations [44]. The
time-reversal symmetry breaking is generated by an exter-
nal magnetic field B accounting for the magnetic flux φi j =
e/h̄

∫ r j

ri
A · dl. In this work we use the gauge A = (−By, 0, 0)

as the vector potential for perpendicular magnetic field
(z direction) to graphene sheet. The second term contemplated
in model II is the mirror symmetric SOI that involves next-
nearest sites of indices i, j with n being the common nearest
neighbor of i and j, and, consequently, d̂in describes a vector
pointing from n to i. The second term in model III is a nearest-
neighbor Rashba term. The symbol s denotes the Pauli matrix
that describes the electron spin.

We perform tight-binding simulations through the Kwant
code [45]. We calculated the conductance using the Landauer-
Büttiker formulation G = e2/h Tr(tt†), where t is the
transmission matrix block of the scattering matrix, written
in terms of Green’s function. The system is coupled to two

semi-infinite ideal leads and the sample-to-sample fluctuation
behavior can be characterized by the conductance deviation
rms[G] =

√
〈G2〉 − 〈G〉2.

III. RESULTS AND DISCUSSIONS

For pedagogical reasons we divide this section into the
following four subsections: Sec. III A shows the effects of
SOI on the graphene band structure and in the corresponding
conductance without disorder. Section III B incorporates ef-
fects of disorder on the graphene conductance and also in its
UCF. Section III C describes the conductance peak density
and analyzes the corresponding numerical data using, as a
method, results from the principle of maximum entropy. In
Sec. III D the analysis of the conductance peak density will
be applied to UCF experimental data from Refs. [39,40].

A. The graphene wire in the absence of disorder

We begin the investigation obtaining known results and
analyzing the graphene band structure. We explore a zigzag
graphene nanoribbon (ZGNR) with 84 atoms, in the absence
of disorder and magnetic field. The results are depicted in
Fig. 1. For model I, Fig. 1(a) shows that the bands connected
at Fermi energy (E = 0) are populated by the edge states and
the other ones are the bulk bands, unveiling degenerate copies
for each band. For model II, according to the results shown
in Fig. 1(b), the effect of the spin-rotation symmetry breaking
with the SOI is to open the edge bands and the gap under-
goes an increment of 1.0 to 1.5 eV, which is in accordance
with the Kane-Mele model [41]. The latest model provides
results explaining that the edge states are not chiral since
each edge has propagating states in both directions. Model III
contemplates the Rashba term which violates z → −z mirror
symmetry [46], shifting some bands as depicted in Fig. 1(c).

We investigate the ZGNR conductance in a sample with
84 atoms and 100 nm of length, in the absence of disorder
and magnetic field. Results for the three models are shown in
Fig. 2. Without SOI (model I), the conductance is quantized,
as expected, and it is null for any energy out of the range
|E | > 8.0 eV, while its maximum value is at |E | = 2.6 eV.
With intrinsic SOI in the scattering region (model II, λKM =
0.1), the conductance steps show fluctuations, and the edge
state decreases from −0.4 to −0.8 eV compared to model I, as
expected by the general behavior of the band structures. The
Rashba SOI (model III, λR = 0.15) also induces conductance
fluctuation.

B. Disordered graphene wire

The main purpose of this present investigation is to sim-
ulate samples whose relevant properties are manifest in the
UCF whenever the electron transport is diffusive. Within this
general purpose, we analyze the conductance average and its
deviation as a function of the disorder strength W , as shown
in Fig. 3, for which we take the typical values λKM = 0.15
and λR = 0.15 on models II and III, respectively. Although
the absence of disorder W = 0 can induce the system to
behave as ideal, the conductance decreases according to the
disorder magnified, as depicted in Fig. 3(a), and it is also
the disorder that induces the sample-to-sample fluctuation,
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FIG. 1. Band structures of ZGNR samples with 84 atoms. Blue
line indicates the edge states. Band structure of (a) model I, pre-
served the time-reversal and spin-rotation symmetries, characterized
by COE. The time-reversal symmetry is breaking for (b) model II and
preserved for (c) model III, while spin-rotation symmetry is breaking
in both models by SOI λKM = 0.1 and λR = 0.15. Models II and III
are characterized by CUE and CSE, respectively.

Fig. 3(b). Therefore, with moderate values of W , the diffusive
regime is activated, and indicates that the conductance devi-
ations Fig. 3(b) support an expected characteristic value of a
quasi-one-dimensional nanowire, described in the framework
of RMT [1]. For large values of W , the conductance performs
a conductor/insulator transition occasioned by the Anderson
localization [6], i.e., the conductance and its deviation tends
to zero, as expected.

Another perspective of the UCF can be enlightened
through the conductance average and its deviation as a func-
tion of the Fermi energy, Fig. 4, with λKM = 0.15 and
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FIG. 2. Conductance of a graphene nanowire as a function of
Fermi energy in the absence of both disorder and magnetic field for
a ZGNR sample with 84 atoms and 100 nm. Inset: The conductance
for energy above −0.4 eV indicates the edge states are unaffected by
the SOI.
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FIG. 3. Disorder effects in graphene. (a) Conductance average
and (b) its deviation as a function of disorder strength W at an energy
of −1.2 eV. The lines in (b) represent the deviation values predicted
by the RMT for COE (β = 1), CUE (β = 2), and CSE (β = 4).
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FIG. 4. (a) Conductance average and (b) its deviation as a func-
tion of Fermi energy in the presence of disorder W = 0.75. The lines
in (b) represent the deviation values predicted by the RMT for COE
(β = 1), CUE (β = 2), and CSE (β = 4).

λR = 0.15 for models II and III, respectively, and a disor-
der value W = 0.75. As expected, the conductance deviation
goes to the COE (β = 4) value 0.74 e2/h for model I, as
depicted in Fig. 4(b). For model II, Fig. 4(a), the edge states
(E > −0.4 eV) are unaffected by disorder and indicates a bal-
listic behavior of the electron transport. The robustness of the
topological edge states [37], although the conductance fluctu-
ates, Fig. 4(b), exhibits the universal behavior with the UCF
value of 0.52 e2/h in the diffusive regime (E < −0.4 eV), a
value that correspond to the CUE (β = 2). Notice that model
II corresponds to the CSE (β = 4) in the framework of RMT.
As discussed by Choe and Chang [14], the distinct UCF
value in the Kane-Mele model is attributed to the particular
form of H2 which can be written as a sum of two Haldane
Hamiltonians [37], H2 = H+

Haldane ⊕ H−
Haldane, a direct sum of

spin-up and spin-down Haldane terms with each component
supporting the opposite sign. The Haldane model is catego-
rized as the circular unitary ensemble (β = 2) since the phase
acquired by the next-nearest-neighbor hopping term breaks
the time-reversal symmetry. Hence, model II exhibits a UCF
value 0.52 e2/h, whereas its Hamiltonian is founded in the
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FIG. 5. Conductance as a function of perpendicular magnetic
flux, with a disorder strength of W = 0.75 at an energy of E =
−1.2 eV. For models II and III, the values used are λKM = 0.15 and
λR = 0.15, respectively.

Haldane model. For model III, the edge states are affected
by disorder as indicated in Fig. 4(b) and the conductance
deviation converges to the GSE value 0.37 e2/h, as expected.

C. Conductance peak density

In order to investigate the connection between the conduc-
tance peak density and its correlation function, we analyze the
conductance behavior as a function of a perpendicular mag-
netic field. Effectively, in all the simulations we use a disorder
strength W = 0.75 and a Fermi energy tuned in −1.2 eV.
The application of a perpendicular magnetic field flux in the
sample gives rise to a crossover COE-CUE for model I and
a CSE-CUE for model III, in both cases this is due to the
time-reversal symmetry breaking. Model II is unaffected.

Figure 5 shows typical curves of conductance, which al-
lows one to count the maxima number. The conductance peak
density (CPD) can be defined as the ratio between the max-
ima number N and the range of dimensionless perpendicular
magnetic flux ρ� = N/(��/�0) [19]. Hence we build the
central sector of Table I from Fig. 5, which shows the maxima
number and the CPD for the three models. Notice we use in
all graphene models the magnetic flux range ��/�0 = 0.006

TABLE I. Second column: The number of maximums (N) of
Fig. 5. Third column: The conductance peak density obtained from
ρ�/�0 = N/��/�0 with ��/�0 = 0.006. Fourth column: Correla-
tion width length (	⊥) obtained from autocorrelation function Fig. 6.
Fifth column: The conductance peak density obtained from Eq. (4).
There is great agreement between both methods for obtaining the
conductance peak density.

N ρ� 	� ρ�

Model I 8 1333 4.4 × 10−4 1532
Model II 11 1833 7.4 × 10−4 1614
Model III 20 3333 1.8 × 10−4 3778
Square 35 371 21.2 × 10−4 321
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FIG. 6. Conductance correlation in a function of perpendicular
magnetic flux obtained from 103 realizations. For models II and III
we used λKM = 0.15 and λR = 0.15, respectively.

(bottom horizontal axis) and, for the square lattice, the range
��/�0 = 0.1 (top horizontal axis) as indicated in Fig. 5.

The use of the maximum entropy principle in quantum
systems can establish an important connection between the
autocorrelation width 	� and the density of maxima ρ�, as
proposed in Ref. [19]. The method was applied in a variety of
scenarios, yielding applications on different systems [20,21].
The experimental obtention of the correlation width requires
an average under the data derived from the synthesis and mea-
surement on an ensemble of samples. Therefore, it is a costly
procedure, although it results in this important characteristic
number of chaos. The requirement of a large amount of data in
order to extract the average in the ensemble can be replaced by
a simple and unique measurement through the maxima den-
sity observable. The method determines such relation through
the formula

ρ� = 3

π
√

2	�

≈ 0.68

	�

. (4)

To confirm the results obtained previously, present in the cen-
tral sector of Table I, we calculate the autocorrelation function
C[�(�/�0)] by simulating several samples through subtle
modifications in the boundary conditions of the wire in each
sample in order to establish a connection with the chaos. Once
with the data, we extract the 	�. The former was calculated
through its usual definition

C(��/�0) = 〈G(��/�0)G(0)〉 − 〈G(��/�0)〉〈G(0)〉,
yielding the results displayed in Fig. 6 for the graphene mod-
els (bottom horizontal axis) and for the square lattice (top
horizontal axis). The autocorrelation width is also defined in
the usual way, i.e., the ��/�0 value at half-height

C(	�)

C(0)
= 1

2
.

The 	� values obtained from Fig. 6 are presented on the right-
side column of Table I. Substituting the 	� values in Eq. (4)
we obtain the CPD, which is also presented on the right side
of Table I. The results of the third and fourth columns are in

great agreement and demonstrate the efficiency of the CPD
procedure for a disorder graphene device.

On the one hand, as depicted in Figs. 3(b) and 4(b), the
conductance deviations of disordered graphene nanowire fol-
low the fundamental symmetries of Wigner-Dyson ensembles,
that is, they do not provide any information related to the
graphene chiral symmetry. On the other hand, the results in
Fig. 5 show a significant change in the UCF, leaving clear
the fingerprint of chiral symmetry. These changes affect the
CPD and can adequately characterize chiral fundamental sym-
metries in transport measurements. We performed the same
simulation for a square lattice for which there is no sublattice,
thus referring to the usual fundamental symmetries of Wigner-
Dyson ensembles. Our results are demonstrated in Fig. 6 and
also in Table I, confirming the result of Ref. [13].

As exposed in Table I, the CPD of disordered graphene
nanowire ranges from 1333 to 3333, while for typical
nanowire the value is 371. Even more surprisingly, we show
that there is a difference of an order of magnitude in all
conductance measurements of a topological insulator (hon-
eycomb lattice of graphene) compared to a typical nanowire
(square lattice). Therefore, our result demonstrates that UCF
clearly carry information about the fundamental symmetry of
the sublattice structure.

D. Chirality fingerprints underlying experimental signals

Our results suggest that chirality can be supported even
with a high number of open channels, leaving fingerprints
on the conductance/UCF. Experimental data on mesoscopic
diffusive wires with a number of channels on the order of a
few dozen would, consequently, be significantly relevant to
prove exactly the autocorrelation width length and other pre-
viously established observables. However, the experimental
data available are, to our knowledge, for more than 100 chan-
nels. We follow the previous results in order to find, through
a single realization, the fingerprints of chirality. Therefore, in
this section we apply the developed methodology in experi-
mental data found in the literature [39,40].

Ojeda et al. [39] and Lundeberg et al. [40] developed exper-
imental measures of conductance as a function of the magnetic
field in monolayer graphene, whose results are shown in
Figs. 7(a) and 7(b), respectively. In the former, the monolayer
graphene nanowire was deposited onto doped silicon and has
dimensions of 2.7 μm of width and 0.8 μm of length, while
in the latter, it was deposited onto an SiO2/Si wafer and
has dimensions of 4.1 μm of width and 12.9 μm of length.
In spite of the experimental sample lengths, be one order
greater than those used in our numerical simulations, Fig. 5,
the experimental data have a similar behavior, as depicted
in Fig. 7.

We focus the investigation of the experimental data on
one of the most relevant experimental observables, the phase-
coherence length Lφ , which has a direct relation with the
autocorrelation width

Lφ =
√

h

e	⊥
, (5)

with h and e denoting the Planck constant and the electronic
charge, respectively. The substitution of Eq. (4) into Eq. (5)
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FIG. 7. Experimental data of a monolayer graphene conductance
as a function of the magnetic field. The experimental data (green) are
obtained (a) from Ref. [39] and (b) from Ref. [40]. The smoothness
of experimental conductance data, in black.

renders

Lφ =
√√

2
πh

3e
ρ⊥, (6)

which provides a direct relation between ρ⊥ and Lφ . This in-
dicates that we can obtain the phase-coherence length through
a simple calculation of the conductance peak density directly
from experimental data even without the information of cor-
relation width.

We first remove the random noise due to both the thermal
interference and the experimental apparatus from the data.
A simple and straightforward way to perform the extraction
is through the Bézier algorithm as used and described in
Refs. [13,14]. The smooth conductance as a function of a per-
pendicular magnetic field is depicted by black color in Fig. 7.
The number of maxima contained in the data of Fig. 7(a) is
N = 16 while the magnetic field range is �B = 0.45 T, which
allows one to directly infer that ρ⊥ = 35.6 T−1. Thereafter, by
replacing the value in Eq. (6), we obtain the phase-coherence
length Lφ ≈ 0.46 μm, which is in agreement with litera-
ture of monolayer graphene with mobility μ ≈ 103 cm2/V s,
Refs. [25,47–50]. We make a direct comparison between
the CPD results of a monolayer graphene and those from
Ref. [13], which investigate InAs nanowire samples (metallic

regime). For such metallic samples (Wigner-Dyson ensem-
bles) with mobility also of μ ≈ 103 cm2/V s [51], we found
the CPD ρ⊥ = 3.4 T−1 and, by replacing the value in Eq. (6),
we obtain Lφ ≈ 0.14 μm. Remarkable, in similar experimen-
tal situations (small mobility values), the CPD of graphene is
ten times greater than that of InAs nanowire, which confirms
that UCF carry information about the fundamental sublattice
symmetry. Also, there is a peculiar coherence length finger-
print in the universal chiral symmetries, confirming nicely our
theoretical predictions.

Additionally, the maxima number of Fig. 7(b) is N =
32 and �B = 0.045 T, generating the numbers ρ⊥ = 711.1
T−1 and Lφ ≈ 2 μm, which is in agreement with litera-
ture of monolayer graphene with high mobility μ 
 103

cm2/V s [52–54].
Furthermore, not only do we show that the CPD can be un-

derstood as a universal sublattice characteristic number but we
also obtain a law that relates the coherence phase length with
the square root of the maxima density. The rapid oscillation of
the conductance as a function of the field in graphene explains
its strong quantum coherence behavior.

IV. CONCLUSIONS

In conclusion, we investigated three widely used models
to describe graphene nanowires. The three generate univer-
sal fluctuations in conductance, each belonging to different
classes of fundamental symmetries: orthogonal, unitary, or
symplectic ensembles. The study demonstrates the connection
between the typical spectrum of systems with the sublattice
symmetry, the formation of edge states, and the classes of
universal symmetries. The manifestations in diffusive electron
magnetotransport are evident in these different scenarios.

Through the connection between the conductance signals
with the principle of maximum entropy, we identified a mea-
surable capable of extracting the correlation length through
a single experimental realization of a graphene monolayer.
Remarkably, we identified a clear fingerprint of the sublat-
tice structure and, as a deployment, the signal coming from
topological insulators by simply counting the maxima number
even in the regime of many open channels.

We obtained a law relating the phase coherence length to
the square root of the maximum density Lφ ∝ √

ρ⊥, Eq. (6),
showing through experimental data, the sublattice signal by an
order of magnitude when compared to the magnetoconduc-
tance of usual semiconductor systems. Our study paves the
way for the search for coherent quantum transport signals in
chiral systems.
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