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Suppression of superfluidity by dissipation: An application to failed superconductors
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The ground states of bosons have been classified into superfluids, bosonic quantum Hall states, Mott insulators,
and Bose glass. Recent experiments in two-dimensional clean superconductors under an external magnetic field
B strongly suggest the existence of the fourth quantum state of Cooper pairs, i.e., Bose metal or quantum metal,
where the resistivity remains constant at lowest temperature. However, its theoretical understanding remains
unsettled. In this paper, we propose a model where the vortices behave as quantum bosons subject to dissipation
at the normal core. We discuss that those bosons remain metallic even at zero temperature by generalizing the
Feynman picture of superfluidity in the first quantization formulation and also by a perturbative calculation for a
field theoretical model in the second quantization formalism. This result indicates that the resistivity ρ of Bose
metal at zero temperature behaves as ρ ∼ ρn(B/Bc2) with ρn being the residual resistivity in the normal state and
Bc2 the second upper critical field. It also predicts that the Bose metal is missing in superclean superconductors
and at the dirty limit or in granular superconductors.

DOI: 10.1103/PhysRevB.102.104515

I. INTRODUCTION

Recent experiments show the possible metallic state down
to the lowest temperature with variable resistivity in clean
two-dimensional superconductors under an external magnetic
field, in sharp contrast to the conventional picture that the
metallic state appears only at the quantum critical point be-
tween the insulator and superconductor [1]. Superconductors
in this metallic phase are called “failed superconductors”.
Since we are interested in the temperature region much lower
than the superconducting gap, the Cooper pairs can be re-
garded as charge 2e bosons, and hence the problem is regarded
as that of the bosons. Under an external magnetic field B, the
vortices are relevant to the transport properties. The vortex is
accompanied with the winding of the phase θ of the Cooper
pair, and the vortex motion results in the time dependence of
θ and the voltage drop via the Josephson relation. Therefore,
there is a relation between the conductivities σCooper and σvortex

of two models in two dimensions, i.e., σCooperσvortex = ( (2e)2

h )
2

with h being the Planck constant [2–4]. Therefore, one can
discuss the conductivity of the system by analyzing the dy-
namics of the quantum vortices, which act as the repulsive
bosons. Under an external magnetic field, the number of
vortices is that of the magnetic flux measured in units of
φ0 = hc/(2e), and the many-body ground state of this vortex
system is the keen issue to understand the Bose metal.

Although the vortices behave basically as bosons, there is
an important difference. The vortex is a composite particle,
where the order-parameter amplitude vanishes at the core.
There are bound states at the core, the energy separation of
which is δ ∼ �2/εF with � being the superconducting gap
and εF the Fermi energy [5]. The broadening h̄/τ due to
the finite lifetime by impurity scattering gives another energy

scale. When h̄/τ � δ, the system is called “superclean,” but
typically δ is extremely small for the low-temperature super-
conductors and this case is very rare. For δ � h̄/τ � �, the
system is called “clean,” while it is “dirty” for � � h̄/τ .
We are interested in the situation of clean two-dimensional
superconductors, where the bound states at the core of each
vortex constitute the continuous spectra with finite density of
states at zero energy. The particle-hole excitation at the normal
core [6,7] can be regarded as a heat bath with a continuum
spectrum, which causes the dissipation associated with the
motion of the vortex as Bardeen and Stephen discussed [8].
This dissipation is taken into account by the method intro-
duced by Caldeira and Leggett [9], the coupling to harmonic
oscillators.

There are many papers on the dissipative XY model
[10–13], describing the dynamics of the resistively shunted
Josephson-junction array [14,15]. However, the XY model is
an effective model of bosons only at integer fillings [16,17].
Away from integer fillings, e.g., in the dilute limit, the action
contains the first-order time derivative term [18], which is
complex, and the Monte Carlo study in the phase represen-
tation is difficult because of the sign problem. This difference
is important in the context of the positive magnetoresistance
of failed superconductors, since in the dilute limit the number
of vortices changes continuously as we increase the magnetic
field. Also, the effect of dissipation on the dilute boson system
has been studied in Ref. [19], but that study is only for the one-
dimensional system. The analytical argument we will discuss
here is different from that argument relying on bosonization,
which is valid only in the one-dimensional system.

The bosonic system at zero temperature is known to be
a perfect superfluid, i.e., ρs = ρ, where ρs is the superfluid
density and ρ is the total particle density, if the system does
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not break the Galilean invariance [20,21] (for a similar discus-
sion in the case of the superconductivity, see Refs. [22,23]).
The point of the argument is that, if we write down the
effective action for the phase variable φ [24], the Galilean
invariance enforces the action to be the functional of only
∂tφ − (∇φ)2/2m. Since the coefficient of ∂tφ in the effec-
tive action is the total particle number density, it forces the
coefficient of the (∇φ)2/2 term to be the total density also,
i.e., ρs = n/m = ρ. At finite temperature, since the imaginary
time action at finite temperature is not Galilean invariant, the
above argument does not apply. Therefore, at finite temper-
ature ρs �= ρ [23,24], in accordance with Landau’s famous
expression of ρs in terms of the thermal distribution of the
quasiparticle [25].

The Galilean invariance and also the continuous transla-
tional symmetry at T = 0 are explicitly broken if we introduce
the lattice potential or the disorder, leading to the Mott insula-
tor [26] or the Bose glass [17,27,28]. Also, the application of
the magnetic field breaks the Galilean invariance and leads to
the quantum Hall state [29], where the longitudinal resistivity
is zero. Another possible source of the loss of the Galilean
invariance is the nonlocal interaction along the time direction
which arises after we integrate out the gapless degrees of
freedom. This depletion of the superfluid component due to
retarded interaction has been studied in Ref. [30], where the
gapless degree of freedom is the gauge field which mediates
the interaction between vortices. Note that the translational
symmetry is kept intact even in the presence of the dissi-
pation, which nonetheless breaks the Galilean invariance, in
the model we study below. The finite normal-state resistivity
is assumed to be due to the short-range impurity potential
and the translational symmetry is recovered by averaging, the
contribution of which to the vortex pinning can be neglected.
The pinning is mostly due to the inhomogeneity or defect of
the size comparable to the coherence length of the supercon-
ductors.

In this paper, we will discuss the effect of the gapless
degrees of freedom, i.e., the effect of the dissipation, on the
bosonic many-body system as a model for quantum vortices
in two-dimensional superconductors.

II. MODEL

The phenomenological action for the system of many
bosons in the presence of the dissipation is

S =
∫ β

0
dτ

(∑
i

m

2
�̇r2

i +
∑
i> j

Vi, j

)

+ η

4π

∑
i

∫ β

0
dτ

∫ β

0
dτ ′ π

2

β2

(
�ri(τ ) − �ri(τ ′)
sin π

β
(τ − τ ′)

)2

, (1)

where i is the labeling of the bosons, Vi, j is the repulsive
interaction between bosons, m is the mass of the bosons, β is
the inverse temperature, and the last term represents the effect
of the Ohmic heat bath [9,31]. We note that the dissipation
acting on the vortices is known to be Ohmic [5]. We neglected
the effective interaction between the bosons induced by the
coupling to the heat bath [32].

III. EXTENDED FEYNMAN ARGUMENT

Feynman developed a theory of superfluidity in 4He in
terms of the world-line path integral in the first quantization
scheme [33,34]. He pointed out that for the bosonic system
we should sum over all the boundary conditions such that
the final coordinates �ri(β ) are some permutation of the initial
coordinates �ri(0). Then he assumed the initial coordinates
�ri(0) to be on some specific lattice, and approximated the
statistical weight of the exchange event to be the one of free
particles with renormalized mass. Then the problem boils
down to the summation over all directed polygons made of
edges on the lattice, and at low enough temperature the typical
size of the polygon diverges, and that leads to the super-
fluidity. Namely, the superfluidity is characterized by the
presence of the macroscopically large exchange processes; it
appears in the form of the large fluctuation of winding number
[35,36]. In the absence of the dissipation, if we assume that
the effect of the repulsive interaction is simply renormaliz-
ing the mass of the bosons, the action for the macroscopic
exchange process can be obtained from the single-particle off-
diagonal density matrix of the free particle, which is given by
y(|r − r′|) ∝ exp[−m(r − r′)2/(2β h̄2)], so the action for the
exchange event is proportional to β−1. Therefore, as β → ∞,
the entropy of the macroscopic exchange processes, which is
constant as a function of temperature, overcomes the action
for the exchange process, so the bosonic system shows su-
perfluidity at finite temperature. More concretely, following
Feynman, we approximate the partition function of the system
by the one of the classical statistical problem of directed poly-
gons on a lattice and write it as Z = ∑

L y(d )Lg(L), where L is
the number of edges of the polygon, d is the lattice constant,
and g(L) is the total number of the polygons with L links. Here
we again note that y can be approximated by the off-diagonal
single-particle density matrix, rather than the diagonal one
as is used for the criterion of the superfluidity in previous
literature [37], although the Lindemann-type criterion may
be a good necessary condition for the superfluidity. In other
words, what determines the action for the exchange is 〈p2〉,
the second moment of the momentum, rather than 〈r2〉, the
second moment of the position, since the off-diagonal density
matrix represents the information of the momentum distribu-
tion through the Wigner transform as

y(|r − r′|) ∝ exp[−(r − r′)2 〈p2〉 /(2h̄2)]. (2)

Here the function y is Gaussian since the Caldeira-Leggett
action is quadratic, and we assume that this form remains
valid even in the presence of the interaction between particles.
〈p2〉−1 and 〈r2〉 show drastically different behavior in the pres-
ence of the dissipation: The former remains constant down to
β → ∞, while the latter diverges as log β [38]. The reason
for finiteness of 〈p2〉−1 was clearly explained by Caldeira and
Leggett (see Refs. [9,38]).

If we assume that the effect of the interaction can be
renormalized to the effective mass of the particle, from the
well-known result of the quantum Brownian motion [38],

〈p2〉 = M

β
+ 2M

μ1μ2

μ1 − μ2
[ψ (1 + μ1β ) − ψ (1 + μ2β )], (3)
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FIG. 1. Schematic phase diagram obtained from Feynman’s ar-
gument combined with the expression for the off-diagonal density
matrix in the presence of the Ohmic dissipation, Eq. (3). η̃ =
ηd2/h̄, where d is the interparticle distance. We set λ = h̄2/(2M ) =
6.0596 Å2 K, d = 3.570 Å, and h̄ωD = 10 K. The phase boundary is
calculated from the condition 〈p2〉 (T, η̃) = 〈p2〉 (T = 2 K, η̃ = 0),
i.e., we assumed that the transition temperature for the dissipationless
system is T = 2 K.

where M is the effective mass of bosons, ψ (x) is the digamma

function, μ1/2 = h̄(ωD ±
√

ω2
D − 4γωD)/(4π ), γ = η/M,

and ωD is the cutoff of the spectrum of the bath. Then, since
〈p2〉 decreases as we lower the temperature and saturates
at finite value, we expect that the transition temperature,
which is the temperature where the entropy of macroscopic
exchange g(L) and the action for the exchange yL compete,
monotonically decreases and reaches zero as we increases
the coupling η. This behavior is schematically shown in
Fig. 1. We note that the superfluid state and the normal
state of vortices correspond to the insulating and the
failed superconductor phase of electrons, respectively. The
critical η at T = 0 can be estimated from d2 〈p2〉T =0 /h̄2 =
2Md2μ1μ2[ln (μ1/μ2)]/[h̄2(μ1 − μ2)] ∼ 1. If we further
assume ωD  γ , the above condition simplifies to
η̃[ln(ωD/γ )]/(h̄π ) ∼ 1, where η̃ = d2η/h̄.

Below, we will show a strong support for this physi-
cal argument by the numerical Monte Carlo calculation of
the superfluid density. This calculation confirms that the in-
teraction between particles does not drastically affect the
picture of superfluidity by Feynman even in the presence of
dissipation.

IV. RESULT OF THE NUMERICAL CALCULATION

We calculated the superfluid density for the boson system
characterized by the action (1) with the worm algorithm in
continuous space [39,40] using the winding number formula
[35,36]. We implemented the canonical version [41,42] where
the Monte Carlo moves do not change the number of particles
and employed the Aziz potential [43] for the interaction. We
performed the numerical calculation for three-dimensional
and two-dimensional systems. We set the particle number
N , the particle density ρ, and the temperature T to be N =
64, ρ = 0.02198 Å−3, and T = 2 K for the three-dimensional
system and N = 25, ρ = 0.0432 Å−2, and T = 0.5 K for the
two-dimensional system. We note that the numerical calcula-
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FIG. 2. The superfluid fraction ρs/ρ and the kinetic energy EK

for the three-dimensional system as a function of η̃ = ηd2/h̄, where
d = 3.570 Å is the interparticle distance. The number of particles is
N = 64, the particle density is ρ = 0.02198 Å−3, the temperature is
T = 2 K, the imaginary time step is 5 × 10−3 K−1, and the cutoff of
the bath is set to be τc = 0.2. The blue circles represent the kinetic
energy, while the green triangles represent the superfluid fraction.

tion performed in the clean system with the Aziz potential and
same ρ gave the transition temperature Tc = 2.193 ± 0.006 K
for the three-dimensional system and Tc = 0.653 ± 0.010 K
for the two-dimensional system [39,40]. Note that the transi-
tion in two dimensions corresponds to the Kosterlitz-Thouless
transition. The convergence was checked by binning analysis
[44]. Following Ref. [40], we employed the Chin approxima-
tion [45] for the interaction term. The dissipative term was
discretized as [46,47]

η

2π

∑
i

∑
k>k′

π2

N2
τ

[�ri(k) − �ri(k′)]2

sin2[ π
Nτ

(k − k′)]

=:
∑

i

∑
k>k′

K (k − k′)[�ri(k) − �ri(k
′)]2, (4)

where Nτ is the number of the Trotter step, and k and k′ label
the time slice. To avoid the divergence associated with the
discontinuity at k = 0 and Nτ , we introduce the UV cutoff for
K as K (k − k′) = K[(1 − τc)Nτ ] for (1 − τc)Nτ � k − k′ �
Nτ − 1; this form of cutoff is naturally realized if we introduce
the ultraviolet cutoff for the spectrum of the heat bath. We set
τc = 0.2 for the three-dimensional system and τc = 0.05 for
the two-dimensional system.

The result of the calculation for the three-dimensional sys-
tem is shown in Fig. 2 (green triangle). We can clearly see that
ρs monotonically decreases as a function of η̃. We also cal-
culated the kinetic energy (blue circles), which characterizes
how strong the bosons fluctuate in imaginary time. We can
see the increase of the kinetic energy as a function of η̃, which
comes both from the suppression of fluctuation of each boson
and from the suppression of the exchange event by dissipation.
We note that the fluctuation and the exchange event are known
to lower the kinetic energy [36].

Another important quantity is the off-diagonal density ma-
trix, which can be easily calculated in the worm algorithm. We
numerically estimated the off-diagonal density matrix n(r),
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FIG. 3. The off-diagonal density matrix in three dimensions for (a) the system with a single particle and (b) the system with many particles
(N = 64). The particle density is ρ = 0.02198 Å−3, the temperature is T = 2 K, the imaginary time step is 5 × 10−3 K−1, and the cutoff of
the bath is set to be τc = 0.2. η̃ = ηd2/h̄, where d = 3.570 Å. The solid lines for the single-particle case denote an analytical result based on
Eqs. (2) and (3).

defined as [36]

n(|�r − �̃r|) = V

Z

∫
d�r0

2 . . . d�r0
N

∫ {�r1(β ),�r2(β ),...,�rN (β )}={�̃r,�r0
2 ,...,�r0

N }

{�r1(0),�r2(0),...,�rN (0)}={�r,�r0
2 ,...,�r0

N }
D�r1(τ ) . . . D�rN (τ )e−S, (5)

where V is the volume of the system and Z is the partition
function defined as

Z =
∫

d�r0
1 d�r0

2 . . . d�r0
N

∫ {�r1(β ),�r2(β ),...,�rN (β )}={�r0
1 ,�r0

2 ,...,�r0
N }

{�r1(0),�r2(0),...,�rN (0)}={�r0
1 ,�r0

2 ,...,�r0
N }

D�r1(τ ) . . . D�rN (τ )e−S. (6)

The numerically estimated n(r) in three dimensions for the
single-particle system and the many-particle (N = 64) sys-
tem are shown in Figs. 3(a) and 3(b). For the single-particle
case, Fig. 3(a), we showed the off-diagonal density matrix
obtained both from the numerical calculation (blue circles
and orange crosses) and from the analytical expression for
the single-particle off-diagonal density matrix, Eq. (2), where
〈p2〉 is given by Eq. (3) (black curves). We can see that
the numerically obtained off-diagonal density matrix agrees
well with the analytic expression. As we can see, the effect
of dissipation appears as the decrease of the width of the
Gaussian distribution. For the many-particle case, Fig. 3(b),
we can see that the dissipation does not change the width very
much, but it leads to the decrease of the asymptotic value of
the off-diagonal density matrix. The asymptotic value of the
off-diagonal density matrix gives the condensate fraction ñ0,
and the numerically estimated ñ0 is shown in Fig. 4. We can
see the monotonic decrease of ñ0 as a function of η̃, associated
with the suppression of the exchange event.

We also show the result of the numerical calculation in two
dimensions to show that the suppression of superfluidity by
dissipation occurs independently of the dimensionality of the
system. The superfluid fraction ρs/ρ, the kinetic energy EK ,
and the off-diagonal density matrix are shown in Figs. 5(a)
and 5(b). As we can see from Fig. 5(a), the superfluid frac-
tion decreases as a function of η̃. Also, from Fig. 5(b), the

tail of the off-diagonal density matrix is suppressed in the
presence of dissipation. Therefore, the numerical results in
the two-dimensional system also support the suppression of
superfluidity by dissipation.

V. FIELD THEORETICAL MODEL

Here, we discuss the effect of dissipation on the superflu-
idity in the following field theoretical model:

S =
∑
ωn,k

(
−iωn + k2

2m
− μ

)
ψ̄n,kψn,k + g

2

∫
dτdrψ̄ψ̄ψψ

+ α
∑
ωn,k

|ωn|ρn
kρ−n

−k ,

(
ρn

k =
∑
ωm,q

ψ̄n+m,k+qψm,q

)
, (7)

where ψ and ψ̄ are the bosonic annihilation and creation op-
erator, ωn is the Matsubara frequency for bosons, g is the
interaction strength, and α is the strength of the dissipation.
This model obviously breaks the Galilean invariance because
of the last term.
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0.00
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FIG. 4. The condensate fraction at zero momentum, ñ0, es-
timated from the off-diagonal density matrix, for the three-
dimensional system. The number of particles is N = 64, the particle
density is ρ = 0.02198 Å−3, the temperature is T = 2 K, the imagi-
nary time step is 5 × 10−3 K−1, and the cutoff of the bath is set to be
τc = 0.2. η̃ = ηd2/h̄, where d = 3.570 Å.
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FIG. 5. (a) The kinetic energy EK and the superfluid fraction ρs/ρ and (b) the off-diagonal density matrix for the two-dimensional system.
The number of particles is N = 25, the particle density ρ is ρ = 0.0432 Å−2, the temperature is T = 0.5 K, the imaginary time step is 5 ×
10−3 K−1, and the cutoff of the bath is set to be τc = 0.05. η̃ = ηd2/h̄, where d = 4.811 Å.

The idea behind the model Eq. (7) is the following. In
the first quantized model above, each particle is subject to
dissipation. This can be mapped to the finite diffusion constant
or the conductivity of the many-particle system, and hence
the dissipation enters as the many-body interaction. More
explicitly, the propagator of the density ρ(q, ω) is expressed
by

�(q, ω) = 〈ρ(q, ω)ρ(−q,−ω)〉 = N (0)Dq2

Dq2 + |ω| (8)

where N (0) is the density of electronic states at the Fermi en-
ergy, and D is the diffusion constant related to the conductivity
σ = e2N (0)D. In the action, the inverse of �(q, ω) appears
in front of ρ(q, ω)ρ(−q,−ω), which is 1

N (0) + |ω|
N (0)Dq2 . For

simplicity, we replace Dq2 in the denominator by a constant.
Then we obtain the last term of Eq. (7).

We calculated the superfluid density by the Bogoliubov ap-
proximation, i.e., substituted ψ = √

ρ0 + φ and ψ̄ = √
ρ0 +

φ̄ and retained the terms up to quadratic order in φ, φ̄. From
the general argument [48,49], the normal component ρn =
ρ − ρs can be obtained from the transverse current-current
response function χ t (ω, q) as ρn/m = limq→0 χ t (0, q). At
one-loop order, it is given as [50] xs

ρn

m
= lim

q→0

∫
dεk

2π

dω

2π

εk

4i
tr
[
σ3GK

ω,kσ3
(
GR

ω,k+q + GA
ω,k−q

)]
,

(9)

where we assumed the two-dimensional system. The Green’s
functions are given as

GR/A
ω,k = 1

ω2 − ω2
k ± 2iηωεk

×
(
ω + εk + gρ0 ∓ iηω −gρ0 ± iηω

−gρ0 ± iηω −ω + εk + gρ0 ∓ iηω

)
,

and GK
ω,k = coth(βω/2)[GR

ω,k − GA
ω,k], where η = 2ρ0α. The

number density can be calculated as

ρ = ρ0 + 1

V

∑
k

∫ ∞

−∞

dω

2π
nB(ω)i

[(
GR

ω,k

)
11 − (

GA
ω,k

)
11

]
.

(10)

From now on, we consider the zero-temperature case, where
the destruction of the superfluidity comes purely from the dis-
sipation. The finite temperature case can be treated in a similar
manner. We introduced the cutoff for η as η �(ω2

c − ω2),
where �(x) is the step function, and the hard cutoff for the
energy εk at εc. We chose εc < ωc, so that the whole en-
ergy spectrum of the system is coupled to the heat bath. To
calculate ρs, we regard η as a control parameter, calculate
ρ0 as a function of η, and then calculate ρs(η, ρ0(η)). We
used the parameters εc/(ρg) = 900, ωc/(ρg) = 1000, mg =
1. The result of the calculation is shown in Figs. 6(a) and 6(b).
We can see that ρs rapidly decreases and vanishes so the super-
fluidity is destroyed by the dissipation. This kind of behavior
is also shown in Ref. [27], where the authors discussed the
destruction of the superfluid by the static impurity potential,
which is in contrast to our system where the translational
symmetry is preserved but the time nonlocal action breaks the
Galilean invariance.

Also, from Figs. 6(a) and 6(b), we can see that, at the criti-
cal η where ρs = 0, ρ0 remains finite. This behavior is similar
to the system with disorder [27,28], but the depletion of ρ0 is
large in this parameter region, so our one-loop calculation can-
not determine whether or not ρ0 is finite at the critical point.
In fact, assuming the smooth behavior of the single-particle
Green’s function at the critical point, the Josephson relation
[51,52] requires that both ρ0 and ρs become zero. In spite of
this uncertainty, we believe that the transition to the phase with
ρs = 0 in this model remains intact, as is supported by our
numerical calculation in a model with the different source of
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FIG. 6. (a) ρs/ρ and (b) ρ0/ρ obtained from Eqs. (9) and (10).
The parameters are εc/(ρg) = 900, ωc/(ρg) = 1000, mg = 1.
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α2 [Å−2]

(a)

0.0 0.2 0.4 0.6
η̃

0.00

0.25

0.50

α4 [Å−4]
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FIG. 7. The fitting parameters (a) α2, (b) α4, and (c) α6, as a function of dissipation strength for the of-diagonal density matrix n(r) in three
dimensions. The fitting function is ñ0 + (1 − ñ0 ) f (r), where f (x) = exp(−α2x2/2! + α4x4/4! − α6x6/6!).

the Galilean symmetry breaking, i.e., Eq. (1), as we can see
from Figs. 2 and 5(a).

VI. DISCUSSION

Our scenario predicts several experimental consequences.
First, the Bose metal appears only in the clean superconduc-
tors where h̄/τ  δ ∼ �2/εF , while it does not appear in the
superclean case h̄/τ � �2/εF . The latter can be realized for
the superconductors with the large superconducting gap �

and short coherence length. Once the disorder is stronger, it
will pin the vortices and again the metallic state of vortices is
rather difficult. The Anderson localization [53] becomes also
relevant, and the superconductivity based on these localized
states belongs to a different class [54]. The earlier studies on
granular superconductors or dirty limit thin films correspond
to this case, where the superconductor-insulator transition
occurs without the metallic region between them. However,
our scenario applies also to the dirty superconductors with
h/(e2kF ξ ) � ρn � h/e2 (kF , Fermi wave number; ξ , coher-
ence length of the superconductor; ρn, residual resistivity in
the normal state). The expected behavior of the resistivity
ρ of Bose metal at zero temperature is ρ ∼ ρn(B/Bc2) with
Bc2 being the second upper critical field, since the motion of
the vortices remains classical due to the suppressed quantum
coherence, i.e., we expect a giant magnetoresistance, as is
observed experimentally [1,55]. For a clean superconductor
with ρn � h/e2, the resistivity can be much smaller than the
quantum resistance h/e2. We note that the long-range inter-
action between the vortices does not spoil our scenario if we
include the effect of the screening [30,56–58]. Also, the Berry
phase of vortices [59], which is absent in the present paper
since we assume the integer filling of the electrons, leads
to the interference of the exchange events so that the super-
fluidity is further suppressed if we include the Berry phase
term.

We also speculate that the effect of the normal core or dissi-
pation discussed above affects the phase transition associated
with the proliferation of the vortices, i.e., the transition not
associated with the magnetic field. The point is that, if we
extend the above dissipative action to the closed loop in the
space-time, in the parameter region where the typical size of
the vortex ring in the space-time is macroscopic, the exchange
process between the rings is still suppressed for the same rea-
son as above. Therefore, we expect a different phase compared
to the usual proliferation of vortices in the bosonic superfluid.
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APPENDIX: THE DETAILS OF THE CALCULATION
OF ñ0

We estimated the condensate fraction ñ0 in Fig. 4
by fitting the off-diagonal density matrix n(r) with the
function ñ0 + (1 − ñ0) f (r), where f (x) = exp(−α2x2/2! +
α4x4/4! − α6x6/6!). This form of the fitting function is moti-
vated by the one used in the absence of dissipation [60]. Here
we ignored the contribution from the coupling term [60], since
the form of the coupling term seems to be inapplicable in the
presence of the dissipation. The ignorance of this term leads
to an overestimation of n0, but we believe that the qualitative
trend as a function of η̃ can be captured by this simple fitting.
We show the estimated value of α2, α4, and α6 as a function
of η̃ in Fig. 7. Although α2, which represents the second
cumulant of the distribution, does not change drastically as
a function of η̃, α4 and α6 decrease, which indicates that the
distribution becomes more and more Gaussian-like.
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