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Superconducting pairing symmetry and spin-orbit coupling in proximitized graphene
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Graphene may exhibit different topological phases as a result of proximity to different substrates. We study
the effect of superconductivity in such systems using the effective Bogolyubov-de Gennes Hamiltonian with
different superconducting pairing order parameters. We analyze the topological phase transition and symmetry
class of the system in different parameter regimes. A particularly interesting situation occurs when nearest-
neighbor spin-singlet superconducting pairing is present in phases of proximitized graphene that exhibit either
inverted band or quantum spin Hall behavior. Both superconducting phases show similar characteristics in the
low-energy range, including the appearance of robust edge states, and are neighboring phases across a transition
that closes the quasiparticle gap as the chemical potential changes. Detailed construction and analysis of the
existence and nature of edge states are presented in different system regimes.
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I. INTRODUCTION

Graphene is distinguished by the existence of charge
neutrality points where the density of states vanishes [1].
However, the Fermi level can be moved away from these Dirac
points by doping or electrical gating, allowing for various
possible behaviors to emerge, including different supercon-
ducting phases [2–5]. Possible pairing symmetries and order
parameters have been investigated theoretically, based on dif-
ferent Hubbard models and approaches [3,6,7], resulting in a
host of interesting phases.

Similarly, lattice inversion asymmetries introduced by
applied fields [1] or proximity to nearly commensurate sub-
strates may open gaps at the Dirac points [8]. As such, it is
expected that proximity of graphene to a host of other mono-
layers or substrates would result in a rich spectrum with strong
spin-orbit effects competing with the Dirac physics [9–12].
These proximitized properties would in turn affect and may
even enhance the different superconducting phases in the hy-
brid graphene-multilayer system.

Significant interest is focused on topological superconduc-
tors, due to the intriguing properties of such systems [13–15].
Much progress also relies on the proximity effect, with dif-
ferent ways proposed to induce correlations in time-reversal
invariant systems. One of these approaches places a node-
less s-wave superconductor in proximity to a semiconductor
with strong spin-orbit coupling (SOC) to produce Majorana
edge bound states [16]. Similarly, inducing superconductivity
by proximity in silicene promises interesting properties [17].
Most important is the recent growing interest both experimen-
tally and theoretically in studying bilayer graphene systems at
low twisted angles, resulting in the appearance of supercon-
ducting and other interesting phases [12,18–20].
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Prominent examples of materials to be used as substrate for
graphene are transition-metal dichalcogenide (TMD) mono-
layers [9], as they are structurally and chemically the most
stable as free monolayers, and the technology to create such
hybrid structures is extremely well developed [21–23]. The
quantum confinement in TMD monolayers yields a direct
band gap at the corner points of their hexagonal Brillouin
zone, while the heavy metal atoms generate an Ising-type
SOC that preserves the Sz component [24]. The effect of SOC
is observed on time-reversed spin-valley locking (K and K’),
which can be seen as a pseudo-Zeeman field with opposite
signs on each valley [25]. A similar pseudo-Zeeman field is
transferred onto graphene via proximity to semiconducting
TMDs [26–29], producing several additional terms in the low-
energy Hamiltonian of the system. These terms strongly affect
the dynamics, spin structure of the eigenstates, and even the
topological character of the system [29,30]. Superconducting
correlations in such interesting single-particle spectra have
not been studied, especially as the role of pseudo-Zeeman
effect and other competing interactions may have interesting
consequences on the resulting superconductor.

Our work here focuses on the dynamical effects of con-
sidering various pairing symmetries or channels on the
proximitized graphene’s honeycomb structure over a range
of chemical doping and pairing strengths. To achieve this,
we write a proximitized graphene effective Hamiltonian to
properly describe the SOC and staggered potential effects
induced by its proximity to TMDs, and consider different
superconducting pairings. We focus here on s-wave singlet
and f-wave triplet pairing between nearest-neighbor sites (NN,
atoms A and B in the unit cell), and between next-nearest
neighbors (NNNs, sites A and A (or B and B) in neighboring
cells), as examples of the simplest symmetries.

The competition of different materials or experimental con-
ditions in the TMD-graphene hybrid results in single-particle
states with different Berry curvatures and associated charac-
teristics transferred onto graphene. The perturbations include
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a staggered potential that breaks sublattice symmetry, as well
as enhanced intrinsic and Rashba SOC that provide interesting
spin texture to the eigenstates. It is the competition between
these different interactions that results in a rich phase dia-
gram for the hybrid multilayer, with three different regimes:
direct band gap, inverted mass, and a topological insulator
quantum spin Hall (QSH) phase [28,30,31]. (Note that the
inverted mass regime is also referred to at times as inverted
bands or Mexican-hat bands [10,28,29]; we use these terms
interchangeably.) As we will show, the interplay of different
band structure and superconducting pairing symmetries result
in interesting ground states, which can be achieved by varying
applied gate fields or chemical doping. We find that including
NN s-wave correlations results in the system exhibiting a
phase transition between distinct phases, separated by gap-
closing conditions. The edge-state characterization of these
two phases is correspondingly different, as one exhibits gap-
less edge states while the edges of the other are fully gapped.
We are also able to calculate the Z2 invariant of the different
phases, using the classification for systems that preserve both
time-reversal and charge conjugation, and find them to be in
the same trivial category. The edge states are protected by the
honeycomb lattice structure, but do not impart the system with
topological protection in the superconducting regime. The
interplay between different interactions in this structure leads
to complicated correlated electron-hole dynamics, depend-
ing on the system features and conditions. For example, the
QSH superconducting regime exhibits different spin-resolved
quasiparticle (QP) states from those in the inverted band case.
Also, states resulting from different superconducting order
parameters (i.e., singlet or triplet pairings) show distinctive
particle-hole admixtures, as will be shown in Figs. 3-5 (see
Sec. III A).

We also see that shifts in the chemical potential create
interesting modifications of these mixtures, as the modified
correlations explore and exploit the different spin textures of
the single-particle spectra. The resulting QPs in turn change
the behavior of this hybrid system.

The paper is organized as follows. In Sec. II, we introduce
the effective single-particle Hamiltonian for proximitized
graphene and the different superconducting pairing symme-
tries we want to study via a Bogoliubov-de Gennes approach.
In Sec. III A, we study the different QP spectra and charac-
teristics under various superconducting pairing symmetries.
Section III B reports on the topological structure of the spec-
tra, and the associated edge states and zero-energy modes
in finite-width ribbons of the material phase. Section III C

discusses relevant experimental systems where superconduc-
tivity is realized. Finally, Sec. IV is devoted to conclusions
and outlook.

II. MICROSCOPIC MODEL

The Bogoliubov-de Gennes Hamiltonian (BdG) [13,32]
to describe superconducting pairing on the proximitized
graphene system is given by

HBdG(k) =
(
He(k) − η �̂(k)

�̂†(k) Hh(k) + η

)
, (1)

where He is the effective graphene tight-binding Hamilto-
nian that incorporates the effects of being in proximity of
(deposited on) a TMD substrate and η is the chemical po-
tential of the system. The �̂(k) matrix represents the pairing
correlations in the system and will be described in Sec. II B
below. The hole component is obtained from the electronic
component as

Hh(k) = −T He(k)T −1, (2)

where T is the antiunitary time-reversal operator [13,32]. The
BdG spinors are written in the A and B sublattice and spin
basis

�
†
k = (c†

A↑(k), c†
B↑(k), c†

A↓(k), c†
B↓(k),

cA↓(−k), cB↓(−k), cA↑(−k), cB↑(−k)), (3)

so the time reversal operator is given by T = isyτ0σ0K , where
K is the complex conjugation operator, and s j, τ j, and σ j

are Pauli matrices acting on spin, particle-hole, and pseu-
dospin sublattices, respectively, with j = 0, x, y, z. Notice that
the BdG system is particle-hole symmetric, as it satisfies
CHBdG(k)C−1 = −HBdG(−k), where C is the particle-hole ex-
change operator [13]. Let us now introduce the minimal model
Hamiltonian of TMD-proximitized graphene represented
by He.

A. Topological phases of proximitized graphene

The Hamiltonian of proximitized graphene includes per-
turbations that describe the use of TMD as substrate
material [26–29,33]. As such, the graphene system includes
staggered (�), intrinsic SOC (S), pseudo-Zeeman SOC (L),
and Rashba SOC (R) terms that can be described as follows:

He(k) =

⎛
⎜⎜⎜⎝

� + (S + L) f (k) T (k) 0 R(k)

T (k)† −� − (S − L) f (k) R(−k) 0

0 R(−k)† � − (S + L) f (k) T (k)

R(k)† 0 T (k)† −� + (S − L) f (k)

⎞
⎟⎟⎟⎠, (4)

written in the basis φk = (A ↑, B ↑, A ↓, B ↓)T , where k is the 2D momentum space vector measured from the � point and

T (k) = t (1 + eik·a1 + eik·a2 ), R(k) = −i

3
R(1 + e−iφeik·a1 + eiφeik·a2 ), f (k) = −2

3
√

3
[sin(k · a1) − sin(k · a2) + sin(k · a3)],

(5)
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FIG. 1. Band structure near the Brillouin zone K point of TMD-
proximitized graphene Hamiltonian in Eq. (4). Panels show (a) direct
and (b) topological band-gap system where the larger staggered �

(a) or intrinsic SOC S (b) interaction term is largest and causes
the system gap. Consequently, the left (middle) panel describes a
trivial (nontrivial) topological phase, in which edge states are absent
(present) in finite systems. Panel (c) shows system with inverted
bands, dominated by the pseudo-Zeeman interaction L. This phase
exhibits edge states, even when it is topologically trivial. Red (blue)
describes the spin-up (-down) Sz spin projection for these bands—
-see scale in (a). Parameters (�, S, L) used for each phase are
(a) direct gap (0.2, 0.05, 0.02), (b) QSH phase (0.05, 0.2, 0.02),
(c) inverted mass phase (0.05, 0.05, 0.2). All panels include the same
Rashba SOC, R = 0.1. Energies in units of NN hopping constant t .

with φ = 2π
3 , and a j are the real space vectors which define

the unit cell of graphene,

a1 = a(1, 0),

a2,3 = a(1/2,±
√

3/2), (6)

where a = 2.46 Å is the lattice constant. The two Dirac cones
at K and K’ symmetry points of the Brillouin zone are at
(± 4π

3a , 0). In the rest of this paper, we will set the NN hopping
constant t � 3eV as the unit of energy.

The competition between different perturbations leads to
three distinct topological electronic phases in the Hamiltonian
of Eq. (4), which we now briefly discuss [29–31]. First, a
direct band-gap regime, in which the system is topologically
trivial, is obtained when the Hamiltonian is dominated by
the staggered potential � [34]. A second gapped regime that
is topologically nontrivial and exhibits QSH effect with two
propagating edge states is obtained when the intrinsic SOC
S term dominates [31]. The third gapped regime of inverted
mass bands is obtained when the pseudo-Zeeman perturbation
L dominates; this regime also exhibits conducting edge states,
although of a different type, while having a trivial topological
structure [28,30]. Examples of these three phases are shown in
Fig. 1. They can be reached in experiments by exploring dif-
ferent TMDs, relative twist, or voltage potential between the
layers, as well as external pressure, as the various Hamiltonian
parameters change differently with external environmental

fields [28]. Transitions between these phases require closing
of the gap as parameters change.

B. Superconductivity order parameter

Several studies have been carried out to study possible
superconducting order parameters in the graphene honeycomb
lattice, their symmetries, and topological properties [13,15],
with some controversial results [6]. Differences in doping
level and symmetries of interactions in such systems result
in a variety of interesting QP spectra. For instance, studies
have found a significant contribution to the superconducting
correlations involving NNs and NNNs in the lattice as s-wave,
f-wave, or even d-wave symmetries are present [6,35]. In
this paper, we study systems with singlet and triplet pairing
functions for coupling involving both NNs and NNNs. The
pairing matrix �̂ in Eq. (1) for different symmetries can be
described in terms of effective coupling amplitude functions
given by [6,35]

γ NN
s (k) = γ

3∑
n=1

eik·δn ,

γ NN
f (k) = γ

3∑
n=1

νneik·δn ,

γ NNN
s (k) = γ

6∑
n=1

eik·an ,

γ NNN
f (k) = γ

6∑
n=1

(−1)neik·an ,

(7)

with γ characterizing the strength of the superconducting
pairing. The first two lines describe s- and f-wave symmetry
coupling between NNs (A and B sublattices). The third and
fourth lines describe the corresponding s- and f-wave poten-
tials for NNN sites. Here, the lattice vector an connects A/B
to its NNN, the same sublattice in the neighboring unit cell;
νn = +1(−1) if the hopping is from A to B (B to A); δn

describes the three vectors that connect A-B NN sites in the
lattice.

The choices of pairing symmetries are consistent with the
trigonal symmetry of the honeycomb lattice structure. Singlet
pairings, such as �̂ = iσxsyγ

NN
s , have even parity under spatial

inversion, whereas the triplet pairings, e.g., �̂ = −iσysxγ
NN
f ,

are odd. Hence, these two pairings do not “mix” in lattices
with inversion symmetry. As the effective Hamiltonian con-
sidered here breaks such symmetry, it allows the overlap
between these two pairing order parameters [8]. For simplicity
and ease of analysis, we consider the two symmetries sepa-
rately, and discuss later on the case of mixed symmetry.

III. RESULTS AND DISCUSSION

As described above, the proximitized graphene system ex-
hibits three distinct gapped topological phases that cannot
be smoothly deformed into each other without closing the
single-particle excitation gap [28]. Correspondingly, the BdG
Hamiltonian inherits the single-particle spectral properties.
The resulting QP excitation spectrum exhibits phases with
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FIG. 2. Map of QP gap for different proximitized graphene su-
perconducting phases as function of chemical potential η and pairing
strength γ . The scale of the gap for each panel row is shown on right.
Top three panels show phases for nearest-neighbor s-wave pairing for
(a) direct (S-NN-D), (b) QSH (S-NN-Q), and (c) inverted (S-NN-I)
phases. The bottom middle panel (e) shows the near absence of gap
for the inverted band phase with NN f-wave pairing (T-NN-I). Also
shown are gaps for the inverted mass Hamiltonian for NNN (d) s-
wave (S-NNN-I), and (f) f-wave (T-NNN-I). Vertical and horizontal
dashed-dot lines in panels indicate cross sections shown in Figs. 3–5.
Energies in units of NN hopping constant t .

interesting Berry curvature features that cannot be smoothly
deformed into different phases without first closing the QP
gap. We exploit here this necessary (but insufficient) condition
for a phase transition and explore the possible phases that the
BdG Hamiltonian could exhibit upon variation of chemical
potential and/or strength of the superconducting pairing. We
study as well how the s or f symmetry of the �̂ matrix affects
the QP spectrum.

After exploring the excitation gap as a function of pa-
rameters for different regimes, we identify the topological
character of such phases.

A. Quasiparticle spectra and pairing symmetries

As the BdG Hamiltonian preserves particle-hole symmetry,
the QP bands must be symmetric around zero energy, which
allows for band crossings. As expected, the QP gap typically
lies close to (but not at) high symmetry points in reciprocal
space, moving around as γ and η values vary. Figure 2 shows
the η-γ dependence of the minimal spectral gap for the system
in the direct, QSH, and inverted phases for different singlet
and triplet superconducting pairing functions. We have ana-
lyzed different coupling parameters and phases, and focus the
discussion here on few regimes that show interesting features;
other parameter sets behave in a similar fashion.

The behavior of the gap function for NN pairing exhibits
qualitative differences between the singlet and triplet symme-
tries. The QP gap dependence for NN singlet s-wave pairing
potential is different in the different single-particle regimes.
The gap is symmetric around γ = 0, as well as being particle-
hole symmetric, as expected. For γ and η near zero, the

(a)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

FIG. 3. (a) QP spectral gap of the BdG Hamiltonian of graphene
modulated by NN s-wave pairing for inverted mass regime at fixed
strength γ = 0.2 vs chemical potential η, as indicated by the ver-
tical cyan line in Fig. 2(c). Different QP spectra at few selected
η values are shown in the panels below with frame color coded;
(b1)–(e1) show Sz spin projections of the QP spectra; (b2)–(e2) show
corresponding τz particle-hole projection. Notice complex QP spin
and particle-hole structure evolves as η changes, suggesting different
Berry curvatures across gap closing events. (b3)–(e3) show low-
energy spectra for zigzag ribbons in each corresponding parameter
regime. Robust metallic edge states are seen in (b3) and (c3), which
become hybridized with bulk states in (d3) and (e3). Energies in units
of NN hopping constant t .

QP gap is not zero, reflecting the single-particle gap in the
spectrum seen in Fig. 1, and inherited by the superconducting
phase, as seen in the top panels of Fig. 2. Notice that as
the absolute value of the chemical potential increases, the
gap has interesting behavior, closing at specific values and
having nonmonotonic dependence on the γ parameter. Notice
the QP gap is not symmetric under η reversal, which reflects
the structure asymmetry of the single-particle spectra seen in
Fig. 1.

To better understand the behavior of the system under
changing chemical potential, Fig. 3 shows the gap of the
superconducting system versus η along vertical lines (red and
cyan) in Figs. 2(b) and 2(c), as well as the corresponding QP
spectrum near the K symmetry point for selected parameter
sets. Notice that the spectral structures are separated by gap
closing points as η changes, suggesting one to look for possi-
ble changes in topology across those values.

Figure 3(a) shows the gap size as a function of η for the
inverted mass system of Fig. 2(c) [and single-particle spec-
trum in Fig. 1(c)]. The QP gap for η � 0 (green dot) is nearly
the same size as the single-particle spectral gap—-even as
γ = 0.2 here. As η increases, however, the QP bands begin to
overlap (blue dot) and a smaller superconducting gap appears.
The QP spectrum has increasingly distorted curvatures, as
seen in Figs. 3(c1) and 3(c2), as the inverted bands are increas-
ingly mixed by the pairing function, as shown in subsequent
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(a)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

FIG. 4. (a) QP spectral gap of the BdG Hamiltonian of graphene
modulated by NN s-wave pairing for QSH regime at fixed strength
γ = 0.2 versus chemical potential η, as indicated by red vertical line
in Fig. 2(b). Different QP spectra at selected η values are shown in
the panels below and color coded. (b1)–(d1) show Sz spin projections
of the QP spectra; (b2)–(d2) show corresponding τz particle-hole
projections. (b3)–(d3) show low-energy spectra for zigzag ribbons in
each corresponding parameter regime. Metallic edge state are clear
in (b3). Energies in units of NN hopping constant t .

panels of Fig. 3. Notice the spectral gap is largest for η � 0.2,
seemingly associated with the maximum of the inverted con-
duction band segment in Fig. 1(c). Figures 3(b1) and 3(b2)
show the spin and particle-hole components, respectively, for
η = 0, showing how the superconducting pairing produces
mixed τz values. Differences appear in both the spin and
particle-hole structure as η changes. The spin textures of the
single-particle spectrum are essentially preserved, except in
the band overlap/crossing region, where the pairing function
causes evident mixing. As the QP gap changes with η, we
see in Figs. 3(d) and 3(e) that particle-hole mixing is mostly
present near the QP gap, as one could expect. Yet, in Fig. 3(d2)
we notice clear particle-hole mixing even at E � ±0.3 (here
γ = 0.2 � η) illustrating the importance of the single-particle
spin textures strongly affecting the superconducting correla-
tions. In contrast, Figs. 3(c2) and 3(e2) show no particle-hole
mixing beyond the QP gap region. The system preserves time-
reversal symmetry, with the corresponding inverted spectrum
around the K’ point (not shown).

Figure 4(a) considers a different system, where the super-
conducting gap versus η in the QSH phase of Fig. 1(b) is
shown, along the red vertical line in Fig. 2(b) at γ = 0.2. For

FIG. 5. QP spectral edge near the gap for BdG superconductor
with NN s-wave pairing in proximitized graphene at constant η =
0.2, as shown by horizontal lines in Figs. 2(b) and 2(c), for different
γ values indicated in left panel. (a) describes system in QSH phase;
(b) system in inverted mass phase. Notice states at the K symmetry
point are only slightly affected by γ . Energies in units of NN hopping
constant t .

η � 0, the spectral gap is essentially that given by the single-
particle gap (�γ ), showing nearly no particle-hole mixing, as
seen in Fig. 4(b2). As η increases to � 0.2 (purple dot), we
notice that the spin structure in Fig. 1(b) and the symmetry-
breaking Rashba field give rise to a region of inverted mass
QPs with interesting spin texture and clear particle-hole mix-
ing near the gap edges. After a gap-closing event at η � 0.27,
the gap increases again (green dot) with near gap spin projec-
tions reversed from before, and concomitantly inverted Berry
curvature [Fig. 4(d1)]. Similarly, the particle-hole projections
appear strongly mixed near the QP gap edges in Fig. 4(d2).

We now analyze how the superconducting pairing strength
changes the system. Figure 5 shows the QP spectral edge near
the energy gap for different γ values and constant η [= 0.2,
horizontal lines in Figs. 2(b) and 2(c)]. The gapless spectra
at γ = 0 develop a superconducting gap as γ increases, at
points near each K and K’ valley. The gap grows as the pairing
strength increases at those k momenta, whereas the states at
K change only slightly with γ . One observes in the QSH
phase (left panel), that the parabolic band edges at the K point
remain essentially unchanged for all γ parameters, whereas in
the inverted band case (right panel), the once parabolic bands
convert into slightly inverted bands around the symmetry
point. Notice that the increasing gap with larger γ eventually
saturates, as seen in Fig. 2, as the the smallest overall gap
shown there is more a reflection of the single-particle spec-
trum at large γ .

Figure 2(e) shows that the gap for the triplet NN f-wave
superconductor vanishes nearly for all values of chemical
potential, with the system having a gap only for values of η

around zero (essentially the particle gap), while γ does not
induce much change. This puzzling gapless superconduct-
ing state is reminiscent of the “hidden order” reported for
p-wave symmetry in graphene [36], which here surprisingly
persists for all the single-particle regimes of the proximitized
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graphene Hamiltonian. Figure 2 also shows representative
examples of the (d) NNN singlet and (f) triplet pairing, both
in the inverted mass regime of Fig. 1(c). These phases exhibit
similar qualitative behavior for all three topological Hamil-
tonian regimes. For NNN coupling, for example, the QP gap
increases monotonically as γ increases, as seen in Figs. 2(d)
and 2(f) [37].

Finally, we should also comment that as the proximitized
graphene lacks spatial inversion, the superconducting state
could include a mixture of s- and f-wave symmetries, as
mentioned above. We have analyzed cases where both γs and
γ f are present. The resulting QP spectra acquires the main
features of the dominant pairing, smoothly evolving between
the two symmetries (not shown).

B. Topological invariants and edge states of SC gapped phases

We now analyze the topological invariants of the gapped
superconducting system in the different phases. The Hamil-
tonian in Eq. (1), as described, preserves time-reversal
and particle-hole symmetries. Hence, the 2D proximitized
graphene system belongs to the DII topological class and
its Z2 topological invariant determines the character of the
states [13,38]. Most important is that the nontrivial system
cannot be adiabatically connected to vacuum states and, to do
so, the excitation band gap needs to close. The Z2 index for the
different superconducting topological phases in this system
has been calculated using the Z2PACK [39]. This convenient
method allows calculating the topological invariant starting
from the BdG tight-binding model in Eq. (1).

We find that Z2PACK identifies all of the superconducting
gapped phases to be topologically trivial states. This classi-
fication is true for all three single particle regimes (direct,
inverted mass, and QSH) and all pairing symmetries consid-
ered here. One would have expected that the nontrivial nature
of the single-particle states in at least the QSH be carried
forward in the superconducting regime. However, the triv-
ial topology obtained in the BdG Hamiltonian is understood
as arriving from the presence of the two Dirac-like bands
separated in momentum space and related to each other by
time-reversal symmetry.

Study of the edge states in a finite system provides another
way to analyze the trivial topology of these systems. We use a
zigzag nanoribbon of the proximitized graphene system in the
appropriate regime [32,33,40] to obtain the QP spectrum. The
appearance of gapless edge states is a characteristic feature
of nontrivial topological phases, as per the bulk-boundary
correspondence. According to the anticipated trivial character,
we find no propagating edge states for systems with NNN
singlet and triplet SC pairing. Edge states are fully gapped
as well for NN singlets when in the direct gap regime.

However, interestingly different results are found in sys-
tems with NN singlet pairing for either the QSH or inverted
regimes, showing interesting metallic edge states closely re-
lated with those in the particle Hamiltonian in each phase.
These features can be seen in the QP spectrum for the zigzag
nanoribbon of each system/regime in the bottom panels of
Figs. 3 and 4. Each panel in the bottom row corresponds to
the different η values as indicated by the color dots above. In
Figs. 3(b3) and 3(c3), corresponding to η � 0, and 0.2, one

finds eight spin-polarized edge states propagating across the
gap. These eight mixed electron and hole states exist localized
at the zigzag boundaries of the system. As η increases, Figs.
3(d3) and 3(e3), the localized edge modes evolve to be hy-
bridized with the bulk, and eventually spread over the whole
nanoribbon structure. Notice that after the gap closing event
for η � 0.15 in systems with inverted mass, the metallic edge
states disappear.

In Fig. 4, the corresponding bottom row shows no metallic
edge states, except for η � 0, in Fig. 4(b3). Again, as η in-
creases, the edge states promptly hybridize with the bulk QPs.

It is interesting to more closely analyze the origin of these
edge states by looking at the eigenvector components. In
Fig. 3(c3), we find that the constituents of these edge modes
are from only one sublattice, i.e., Ae1 and Ah1, where the spin
is implicit and e (h) stands for electron (hole) components
of the BdG spinor. This behavior is reminiscent of that for
zigzag edges in graphene. Two of these four bands must be
associated with the hole part of the electron components due
to the preserved time-reversal symmetry.

We emphasize that regardless of the presence of metallic
edge states in different η and γ parameter ranges, there is no
true topological phase transition, since the superconducting
states are all characterized by a trivial topological invariant.
However, the presence of these well-defined edge states are
the consequence of the structural protection afforded by the
honeycomb lattice.

C. Possible experimental systems

Several experimental designs to induce superconductiv-
ity onto monolayer or few-layer systems have been reported
successfully over the last decade [2,41]. For example, mono-
layer MoS2 has been shown to be superconductor upon
strong gating [42,43]. Moreover, studies have shown s-wave
proximity-induced superconductivity in a MoS2 monolayer
when on a Pb thin film substrate, with a sizable gap measured
by STM [44]. A TMD monolayer with Zeeman-like SOC is
shown theoretically to allow spin-triplet pairings and induce
superconductivity in a half-metallic wire by proximity [45].
These results suggest that using intrinsic superconductor ma-
terials with strong Zeeman-like SOC such as NbSe2 would
provide a suitable platform to explore the model systems we
study here. Recent success on sandwiching graphene by dif-
ferent other monolayers (including BN and different TMDs,
as discussed in the Introduction) have also enhanced the ex-
perimental possibilities.

We note that the symmetries and nature of the emerging
superconducting gap are distinct in different structures, as the
various single-particle spectra contribute differently once the
pairing is present. Hence, the possibility of tuning the param-
eters in a given material system via the application of gate
voltages or relative layer twists to induce superconducting
gaps with different intriguing symmetries is very attractive.
We trust this versatility will motivate further exploration in
different labs.

IV. CONCLUSION

We have studied theoretically the role of superconducting
pairing interactions in proximitized graphene that may be in
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one of three distinct topological phases. These all feature mas-
sive Dirac fermions with tunable band gap and different band
curvatures, due to the competition of different spin-orbit and
staggered potential terms in the Hamiltonian. We have consid-
ered pairing functions with singlet s-wave and triplet f-wave
symmetries on the generalized honeycomb lattice graphene
model, considering NN and NNN couplings.

Despite the topologically different single-particle band
structure of proximitized graphene, we have found that all su-
perconducting regimes studied here are topologically trivial,
as determined by their Z2 index. This result arises from the
presence of time-reversed pairs of Dirac points in graphene
and the corresponding symmetry in the BdG Hamiltonian, and

remains valid over the entire range of chemical potential η and
pairing strength γ we studied.

In the QSH and inverted bands phases of the system, the
superconducting s-wave correlations produce interesting be-
havior. Both phases, although topologically trivial, are shown
to exhibit robust edge states, which eventually gap and hy-
bridize with bulk states after gap-closing transition, as the
chemical potential in the system is shifted. It would be in-
teresting to see this behavior in experimental systems where
the Fermi level can be controlled over a suitable range.
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