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skyrmions, and antiskyrmions

Flaviano José dos Santos ,1,2,* Manuel dos Santos Dias ,1 and Samir Lounis 1

1Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
2Department of Physics, RWTH Aachen University, 52056 Aachen, Germany

(Received 15 May 2020; accepted 10 September 2020; published 30 September 2020)

Spin waves in antiferromagnetic materials have great potential for next-generation magnonic technologies.
However, their properties and their dependence on the type of ground-state antiferromagnetic structure are still
open questions. Here, we investigate theoretically spin waves in one- and two-dimensional model systems with
a focus on noncollinear antiferromagnetic textures such as spin spirals and skyrmions of opposite topological
charges. We address in particular the nonreciprocal spin excitations recently measured in bulk antiferromagnet α-
Cu2V2O7 utilizing inelastic neutron scattering experiments [Phys. Rev. Lett. 119, 047201 (2017)], where we help
to characterize the nature of the detected spin-wave modes. Furthermore, we discuss how the Dzyaloshinskii-
Moriya interaction can lift the degeneracy of the spin-wave modes in antiferromagnets, resembling the electronic
Rashba splitting. We consider the spin-wave excitations in antiferromagnetic spin-spiral and skyrmion systems
and discuss the features of their inelastic scattering spectra. We demonstrate that antiskyrmions can be obtained
with an isotropic Dzyaloshinskii-Moriya interaction in certain antiferromagnets.

DOI: 10.1103/PhysRevB.102.104436

I. INTRODUCTION

The search for new technologies that are faster and more
energy efficient than present-day electronics stimulated the
development of spintronics [1] and magnonics [2], which
exploit magnetic degrees of freedom instead of only mo-
bile charges as in conventional electronics. The spin of the
electron is central to spintronics, while magnonics builds
upon spin waves or magnons, which are collective motions
of magnetic moments. Both traditionally involve ferromag-
netic materials, but recently antiferromagnets were recognized
to have potential advantages, which led to the development
of antiferromagnetic spintronics [3–6] while antiferromag-
netic magnonics is still in its infancy [7,8]. Skyrmionics
can be seen as an interesting crossover between these two
fields [9–16]. Here, the key entity is the magnetic skyrmions
[17–20] (topologically-quantized windings of the background
magnetic structure), which can be very robust against per-
turbations and also highly mobile under relatively small
applied currents. Skyrmions have been theoretically studied
in antiferromagnetic materials [21–27] but have not yet been
experimentally discovered.

Broadening the applications of antiferromagnetic materi-
als, for instance, to advance antiferromagnetic magnonics,
requires understanding the properties of their spin waves. The
basic quantities are the spin-wave energy, how it relates to
the wave vector, and what kind of precession of the mag-
netic moments takes place. The pioneering works of Kittel
and Keffer [28,29] explain antiferromagnetic resonance (zero
wave vector) in collinear antiferromagnets and how it depends

*f.dos.santos@fz-juelich.de

on the internal magnetic anisotropy and the external mag-
netic field. For larger wave vectors, the spin-wave energies
are controlled by the magnetic exchange interaction and the
Dzyaloshinskii-Moriya interaction (DMI) [30,31]. The DMI
is a chiral coupling that arises from the relativistic spin-orbit
interaction and was originally proposed to explain weak fer-
romagnetism in collinear antiferromagnetic materials. It can
also lead to noncollinear antiferromagnetic structures, such
as spin spirals and potentially antiferromagnetic skyrmions
[32,33]. In ferromagnetic materials, the DMI leads to the
nonreciprocity of the spin-wave dispersion [34–37], so that
the spin-wave energy is different for wave vectors of equal
length and opposite direction. A similar effect was recently
observed in an antiferromagnetic material [38]. While spin
waves are now well understood in skyrmion-hosting ferro-
magnetic materials [39], only some theoretical studies report
on their antiferromagnetic counterparts [26,27], as they re-
main to be discovered.

A complete experimental characterization of the spin-wave
modes in an antiferromagnetic material is challenging, espe-
cially detecting what kind of precession is associated with
each mode. Antiferromagnetic resonance can be accessed by
broadband spectroscopy [7,40], while inelastic neutron scat-
tering can survey the spin-wave spectrum across the whole
Brillouin zone, as shown for the antiferromagnetic spin-spiral
system Ba2CuGe2O7 [41]. Polarized neutron scattering exper-
iments give access to the information about the precession
but are very difficult to perform. Resonant inelastic x-ray
scattering is a new technique that holds promise for detecting
spin waves in bulk materials [42] and is applicable down
to a single layer [43]. Recently, we presented a theoretical
analysis of spin-resolved electron-energy-loss spectroscopy
(SREELS) [44], which is a proposed extension of an existing
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surface-sensitive experimental method [45–48], and explained
how the polarization analysis can be used to understand the
nature of the spin-wave precession. Employing SREELS, one
has access to various spin-scattering channels, where the scat-
tered electrons experience processes of spin-flip nature or
not. In contrast to collinear magnets, where only spin-flip
processes are responsible for the emission of spin waves,
non-spin-flip processes can generate spin excitations in non-
collinear materials. These general concepts are also applicable
to other spectroscopies.

In this paper, we study the inelastic scattering spectra of
various noncollinear antiferromagnetic spin structures in one
and two dimensions using atomistic model systems. In partic-
ular, we address the nonreciprocity induced by the combined
action of the DMI and an external magnetic field. We compare
our results to inelastic neutron scattering measurements on
a bulk antiferromagnet, α-Cu2V2O7 [38], providing a novel
understanding of the experimental data. In two dimensions,
we explore antiferromagnetic systems with the C4v and C2v

symmetries. We showed that DMI in these systems can induce
a spin-wave Rashba-like effect characterized by a linear-
angular-momenta locking. Furthermore, we demonstrate that
antiskyrmions are natural skyrmionic occurrences in antifer-
romagnetic p(2 × 1) materials, even when the system has the
C4v symmetries. Finally, we calculate the inelastic scattering
spectra of antiferromagnetic skyrmion and antiskyrmion lat-
tices, identifying the spectral signature of its characteristic
modes.

II. THEORETICAL FRAMEWORK AND MODEL SYSTEMS

We employ the generalized Heisenberg model for spins Si

(we take S = 1) on a lattice, and we measure lengths in units
of the nearest-neighbor distance a = 1. The corresponding
Hamiltonian restricted to nearest-neighbor interactions reads

H =
∑
〈i, j〉

Ji j Si · S j −
∑
〈i, j〉

Di j · (Si × S j )

− K
∑

i

(
Sz

i

)2 −
∑

i

B · Si. (1)

Here the exchange interaction Ji j is taken to be uniform
and antiferromagnetic J > 0, except in one of the considered
models. The Dzyaloshinskii-Moriya interaction Di j = D n̂i j is
taken to be uniform in magnitude D, with the direction for
each bond given by n̂i j . We also include a uniaxial magnetic
anisotropy with K > 0 and easy axis along z, and the external
uniform magnetic field B with magnitude B, also along z for
most of the models. The brackets indicate a sum over the
nearest-neighbor pairs.

For the various investigated cases, we extract the most
stable magnetic configuration either by analytical means or
by using atomistic-spin-dynamics simulations by solving the
Landau-Lifshitz-Gilbert equation with the Spirit code [49].
For that, we used a supercell approach with periodic bound-
ary conditions. Once the ground state or a metastable state
is found, we compute the adiabatic spin-wave modes and
the corresponding inelastic scattering spectrum, based on
time-dependent perturbation theory. The associated theoret-
ical framework was presented in Refs. [44,48]. Although we

FIG. 1. Inelastic scattering spectrum of a collinear antiferro-
magnetic spin chain. (a) The ground state, where the spins align
antiparallel among neighbors. (b) Inelastic scattering spectrum for
the antiferromagnetic spin chain depicted in (a). The single spin-
wave mode dispersing away from X is doubly degenerate and the
excitation gap is due to the magnetic anisotropy. (c) A magnetic field
is applied along the z axis, which breaks the degeneracy of the two
modes. Model parameters: D = 0, K = 0.05J , B = 0.2J .

have access to several distinct scattering channels, in this work
we present results for the total inelastic scattering spectrum
due to spin waves (the sum over all scattering channels), as
one would measure in an experiment with an unpolarized
scattering experiment.

An important property of the spin-wave quantum is its an-
gular momentum. In ferromagnets, spin waves have quantized
angular momenta oriented antiparallel to the spins forming
the background magnetization. Meanwhile, noncollinear sys-
tems can host spin-wave modes with nonquantized angular
momenta pointing in various directions, or even of vanishing
magnitude [44]. Spin waves with finite angular momenta cor-
respond to excitations with circular polarization and are also
called rotational or gyroscopic modes. In contrast, modes with
vanishing angular momenta are linearly polarized and can be
seen as longitudinal excitations. Recently, we have shown that
the angular momentum of a spin wave is connected to its
handedness (chirality), determining how the spin-wave prop-
erties respond to the DMI [37]. Experimentally, this angular
momentum can be measured via spin-resolved inelastic scat-
tering spectroscopy. That is because the angular momentum
determines in which scattering channels a given mode may
be observed [44]. We used the theoretical SREELS spectra to
determine the spin-wave angular momenta in this work.

III. ANTIFERROMAGNETISM IN A SPIN CHAIN

To set the stage, we first study the case of one-dimensional
antiferromagnetic spin chains.

A. Collinear antiferromagnetic chains: The effect of the DMI
and the magnetic field on the spin waves

When B and D are zero, i.e., considering only the magnetic
exchange interaction and the magnetocrystalline anisotropy,
the ground state of the system corresponds to a collinear
alignment of the spins along the anisotropy easy axis z. The
nearest-neighbor spins are antiparallel to each other, as shown
in Fig. 1(a), the inelastic scattering spectrum shows a single
mode even though one could expect two, given that there are
two magnetic sublattices (one for up and the other for down
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FIG. 2. Inelastic scattering spectrum of a collinear antiferromag-
netic spin chain with DMI. (a) The Dzyaloshinskii-Moriya vectors
pointing along the easy axis break the spin-wave mode degener-
acy. The dispersion curves shift in opposite directions. (b) When a
magnetic field is applied (B = 0.2J), the spectrum becomes nonre-
ciprocal. Despite the DMI, the system has the same collinear ground
state shown in Fig. 1(a), stabilized by the magnetic anisotropy. Model
parameters: D = 0.2J , K = 0.05J , B = 0.2J . The wave vector is
given in units of π/a (we set the lattice spacing a = 1).

spins), see Fig. 1(b). This spin-wave mode is doubly degener-
ate, having its lowest excitation energy at � (with vanishing
scattering intensity) and at the Brillouin zone border, X = π ,
with an energy gap (a finite minimum excitation energy)
opened by the magnetic anisotropy. The degeneracy of the
two modes is lifted by an external magnetic field parallel to
the easy axis. As the modes have opposite angular momenta
(they can be measured individually with spin-resolved inelas-
tic scattering spectroscopy [44]), the magnetic field raises the
energy of one mode while lowers the energy of the other, as
seen in Fig. 1(c).

In the absence of an external magnetic field, the
Dzyaloshinskii-Moriya interaction can also lift the degen-
eracy. Introducing the DMI vectors collinear with the easy
axis but with magnitude below the critical value Dc =√

(J + K
4 )K , see Appendix A, preserves the collinear anti-

ferromagnetic ground state. The DMI splits the modes apart
shifting their dispersion curves in opposite directions in the re-
ciprocal space, as shown in Fig. 2(a). These spin-wave modes
have their minimum excitation energies at X ± q, which were
symmetrically shifted away from the Brillouin zone bound-
ary. This happens because the spiralization induced by the
spin waves is energetically favored by the DMI, such that
q = arctan(D/J ). Also, the energy gap is now smaller than in
the absence of DMI, and it closes completely for the critical
DMI magnitude Dc. This phenomenon is analogous to the
Rashba effect [50], where electrons acquire a finite group
velocity at zero wave vector due to the spin-orbit coupling.
Furthermore, in the electronic Rashba effect, electrons prop-
agating to opposite directions with the same wavelength have
opposite spins. Similarly, the two spin-wave modes in Fig. 2
have opposite angular momenta along the z axis, thus perpen-
dicular to the propagation direction y. Despite many parallels
between the two phenomena, there are also differences. On
one hand, the basic physics mechanism behind the electronic
Rashba effect is the spin-orbit interaction, which gives rise
to the DMI and consequently to the Rashba-like spin-wave
effect. On the other hand, the dispersion curve in the electronic
Rashba effect is isotropic in the xy-reciprocal plane, while it
is anisotropic in the Rashba-like spin-wave effect. The former
has a profound impact on the behavior of Rashba electrons.
For instance, for energies above (below) the crossing of the

FIG. 3. Inelastic scattering spectrum of an antiferromagnetic spi-
ral spin chain. (a) The ground state generated by a spin-flop transition
induced by an external magnetic field along z. The spins lie in the
plane perpendicular to the applied field forming an antiferromagnetic
spin spiral. A small component of each spin still points along z that
makes it a conical spin spiral. (b) Spin-wave scattering spectrum of
the antiferromagnetic spin spiral depicted in (a). The spectrum is
symmetric and formed by an intense gapped mode centered at X,
enclosed by two faint gapless modes dispersing away from ±Q =
X ± q, where q is the wave vector of the spiral. Model parameters:
D = 0.2J , K = 0.05J , B = 0.8J .

two bands, the electronic density of states behaves like a
two-dimensional (one-dimensional) gas. This seems not to be
the case for the antiferromagnetic spin waves.

Finally, we can turn on the external magnetic field parallel
to the easy axis in the presence of the DMI. Again, one of
the curves is raised in energy, while the other is lowered.
This causes a break of the symmetry in the reciprocal space,
which is a phenomenon known as nonreciprocity, as observed
in Fig. 2(b). Note that the isolated action of either the magnetic
field or the DMI preserves the reciprocity of the spectrum.

B. Antiferromagnetic spin spirals

In the current situation, we have an external magnetic field
which is parallel to half of the spins and antiparallel to the
other half. Therefore, increasing the magnetic field does not
affect the total energy of the collinear AFM state shown in
Fig. 1(a). However, when the magnetic field is large enough,
the system undergoes a spin-flop transition, where the spins
are mostly perpendicular to the easy axis but with a small
component parallel to the field. Furthermore, an antiferromag-
netic spin spiral can form with a rotational axis parallel to the
easy axis such as to gain energy from the DMI, see Fig. 3(a).
This new state is unfavored by the magnetic anisotropy, but the
loss is compensated by the Zeeman and the DMI energy gains.
The pitch of the antiferromagnetic spin spiral is given by
q = arctan(D/J ) just as for ferromagnetic systems, as shown
in Appendix A. The inelastic scattering spectrum of this new
state becomes reciprocal again. Despite the stronger magnetic
field, which previously was causing the nonreciprocity in
combination with the DMI, the inelastic scattering spectrum
of this new state is reciprocal. The signal is formed by a cen-
tral feature surrounded by two side modes of lower intensity,
whose energy minima occurs at ±Q = X ± q.

In Ref. [38], Gitgeatpong et al. measured for the first
time the nonreciprocity of spin waves in antiferromagnets by
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FIG. 4. Inelastic neutron scattering spectra of bulk α-Cu2V2O7. (a) Nonreciprocal scattering spectrum due to an external magnetic field,
B = 6 T. The system is collinear antiferromagnetic. (b) For a high field, B = 10 T, the system undergoes a spin-flop transition into a spin spiral
and the spectrum becomes symmetric. The arrows denote the magnetic Bragg peaks. Figure reprinted with permission from G. Gitgeatpong
et al., Ref. [38].

performing inelastic neutron scattering experiments on the
bulk antiferromagnet α-Cu2V2O7. The spin-wave physics of
this compound is analogous to the model just described. The
nonreciprocity is observed by applying an external magnetic
field as shown in Fig. 4(a), which resembles Fig. 2(b). Our
results establish a perfect parallel with their measurements.

We now present our understanding of these experimental
results. A spin spiral hosts three universal spin-wave modes
[44], instead of two for collinear two-sublattice antiferro-
magnets. Two of the spin-wave modes of the spiral have
dispersion curves with minima in the wave vector of the
spiral ±Q and are rotational modes with equal and opposite
net angular momenta. The third mode is symmetric around
a high-symmetry point (� or X), and it has no net angular
momentum but corresponds to a longitudinal oscillation of
the net magnetization, which is generated perpendicularly to
the plane of rotation of the spiral (see a related discussion
in Ref. [44]). This longitudinal (linear polarized) mode is the
one responsible for the high-intensity feature in the inelastic
scattering spectrum, as obtained theoretically in Fig. 3(b) and
measured in Fig. 4(b). Furthermore, our theoretical calcula-
tion enlightens the existence of two weaker features in the
inelastic scattering spectrum, see Fig. 3(b). These two modes
have energy minima at the magnetic Bragg peaks of the anti-
ferromagnetic spin spiral, which are given by the spiral wave
vector ±Q. Therefore, the shifts of the minima out of the
high-symmetry point are only related to the DMI indirectly
through Q. Although signatures of these two feeble branches
also appear in the experimental data shown in Fig. 3(b), the
insufficient counts and lack of theoretical support probably
led the authors of Ref. [38] to leave them unremarked.

To close this section, we remark that the nonreciprocity
of spin waves in noncollinear systems is discussed at length
in Ref. [37], where we present a general theory of how to
detect asymmetries in the inelastic scattering spectrum due to
the DMI.

IV. TWO-DIMENSIONAL ANTIFERROMAGNETS

In the previous section, we have considered a one-
dimensional antiferromagnetic spin chain, which allowed
us to study the spin-wave Rashba effect due to the

Dzyaloshinskii-Moriya interaction as well as the reciprocal-
symmetry breaking in response to an applied magnetic field.
Now, we place our focus on the properties of spin waves
in two-dimensional antiferromagnetic systems, which have
the minimal dimension to host antiferromagnetic skyrmionic
structures as discussed, for example, in Refs. [21,27]. First, we
consider the formation of antiferromagnetic spin spirals and
subsequently the occurrence of antiferromagnetic skyrmions
and antiskyrmions.

A. Antiferromagnetic spin spirals and Rashba spin locking

When the magnetic exchange interaction between neigh-
boring atoms is dominant and antiferromagnetic, the forma-
tion of collinear structures of antiparallel spins takes place.
Considering a two-dimensional square lattice, the most com-
mon ones can be labeled according to the notation for
surface reconstructions as the c(2 × 2) and p(2 × 1), shown
in Figs. 5(c) and 5(d). In the c(2 × 2) structure, a spin moment
is antialigned to all its nearest neighbors. In the p(2 × 1),
spins are antiparallel to their nearest neighbors along a given
direction but align parallel along the perpendicular direction.

Here, we consider two related models with only nearest-
neighbor interactions between spins on a square lattice. In
Model I, all nearest-neighbor exchange interactions are anti-
ferromagnetic, which has the c(2 × 2) structure as the ground
state, see Figs. 5(a) and 5(c). In an isotropic medium, be-
yond nearest-neighbor interactions are required to stabilize
the p(2 × 1) structure [51]. To stick to only nearest-neighbor
interactions, we circumvent this obstacle with a spatially
anisotropic exchange interaction in model II, such that Ji j =
−J along the y and Ji j = +J along the x directions, as illus-
trated in Fig. 5(b). Its ground state, the p(2 × 1) structure, is
shown in Fig. 5(d). The respective low-energy spin excitations
have wave vectors around the M point for the c(2 × 2) struc-
ture and around the X point for the p(2 × 1) structure. The M
point (π, π ) corresponds to a precession where a given spin
is dephased by π with respect to all its nearest neighbors. For
the c(2 × 2) structure, this means that nearest-neighbor spins
are kept perfectly antiparallel throughout the whole precession
revolution. Such an excitation, therefore, costs no energy and
corresponds to the Goldstone mode. Similarly, the X point
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FIG. 5. Two-dimensional antiferromagnetic structures on a square lattice. (a) and (b) represent model I and II, respectively. The gray atoms
interact antiferromagnetically with the nearest-neighbor atoms in red and ferromagnetically with the ones in blue. Both models also include
an easy-axis magnetic anisotropy along z (normal to the lattice plane). (c) and (d) show the c(2 × 2) and p(2 × 1) phases, which are the
ground states of model I and II without DMI, respectively. (e) and (f) show spin spirals formed due to Dzyaloshinskii-Moriya interactions in
Models I and II, respectively. The energy per atom of the configuration in (c) and (d) is E = −4.050J and in (e) and (f) E = −4.052J . Model
parameters: D = 0.2J , K = 0.05J , and B = 0.

(π, 0) guarantees a precession phase of π between spins along
horizontal lines, and no phase shift along the vertical ones,
minimizing the excitation energy for the p(2 × 1) structure.

Since we want to study whether chiral skyrmions are
supported by these antiferromagnetic systems, we need to
consider the effects of the Dzyaloshinskii-Moriya interac-
tions. Thus, we add to both models in-plane isotropic nearest-
neighbor Dzyaloshinskii-Moriya vectors, which circulate
counterclockwise perpendicularly to the bonds. Furthermore,
both models include an easy-axis magnetic anisotropy favor-
ing the spins to align along z. The DMI favors a noncollinear
alignment among the spins, while the anisotropy defines a pre-
ferred direction for the spin to point along. The competition
between the DMI, the magnetic anisotropy, and the exchange
interaction determines the characteristics of the possible non-
collinear states, such as spin spirals and skyrmions.

The ground states for models I and II with DMI are shown
in Figs. 5(e) and 5(f), respectively, which we shall call c(2 ×
2) and p(2 × 1) spirals. They were obtained by considering
a 20 × 2 supercell for model I and a 20 × 1 supercell for
model II. Notice that in the structures c(2 × 2), p(2 × 1), and
p(2 × 1) spiral there are always certain directions where the
spins are aligned ferromagnetically. Only the c(2 × 2) spiral
does not present such a feature. Instead, we observe along
its diagonals a smooth spin rotation forming a helical spin
spiral. The wave vector of both spin spirals is q = q x̂ with
magnitude q = π/10.

Next, we focus on the spin-wave spectra of these antiferro-
magnetic spin spirals. In Fig. 6(a), we show the total inelastic

FIG. 6. Inelastic scattering spectra for 2D antiferromagnetic spin
spirals. (a) and (b) show the dispersion curves for the c(2 × 2) and
p(2 × 1) spirals, respectively. Paths along the spin-spiral wave vector
q are shown in the left-hand side and paths perpendicular to it on the
right-hand side. The inset in (b) depicts the high symmetry points
of the Brillouin zone for the underlying square lattice (the scattering
process unfolds the spectra). Both the c(2 × 2) and p(2 × 1) spirals
feature the three universal helimagnon bands, seen on the left-hand
side. Model parameters: D = 0.2J , K = 0.05J .

104436-5



DOS SANTOS, DOS SANTOS DIAS, AND LOUNIS PHYSICAL REVIEW B 102, 104436 (2020)

FIG. 7. Inelastic scattering spectra along the X-M-X path for model I on the c(2 × 2) spiral, whose parameters were modified as follows.
We increased the DMI from (a) D = 0.2J to (b) D = 0.3J without relaxing the spin structure (B = 0). In (a) the energy minima are located
at M ± 0.048, while for (b) they are at M ± 0.072. Wave vectors are given in units of π . Thus the scaling on D is linear. Due to the further
splitting, a third mode can be distinguished, which is centered at M. (c) Next, we apply an external magnetic field B = 0.2J along q to the
case in (b). The spectrum becomes nonreciprocal, with the magnetic field raising the excitation energies of one mode and lowering those of
the other. Parameter: K = 0.05.

scattering spectrum for model I in the c(2 × 2)-spiral state.
Two different reciprocal-space paths around the M point were
considered, parallel and perpendicular to the spiral wave vec-
tor q. Similarly, Fig. 6(b) displays the total spectrum around
the X point for Model II in the p(2 × 1)-spiral state. Both
spectra resemble each other and display features that we al-
ready encountered for the one-dimensional antiferromagnetic
spin spiral in Sec. III B. Namely, the three modes that are
seen on the two left panels of Fig. 6 are precisely the two
gapless rotational spin-wave modes dispersing away from the
magnetic Bragg peaks of the spin spiral at M(X) ± q, while
the central and more intense one is the longitudinal mode
gapped by the magnetic anisotropy. The energy scale of the
spin waves of the p(2 × 1) spiral along q is roughly half of
that for the c(2 × 2) spiral. The spin waves propagating along
the x axis have polarization along y, while the ones dispersing
along y are polarized along x. These observations uncover a
locking between the linear and angular momenta of the spin
waves, which is another characteristic of the Rashba effect
discussed in Sec. III A.

On the paths perpendicular to the spin-spiral wave vector
(panels on the right-hand side in Fig. 6), we initially ob-
serve two modes whose energy minima are shifted from the
high-symmetry point. Interestingly, the location in the recip-
rocal space of these minima is not related to the spin-spiral
wave vector but directly to the strength of the Dzyaloshinskii-
Moriya interaction in a linear manner. We demonstrate this in
Figs. 7(a) and 7(b), where we increased the DMI strength from
D = 0.2J to D = 0.3J without relaxing the spin structure,
which resulted in a change of the minima from M ± 0.048
to M ± 0.072 (π ). Furthermore, the larger splitting induced
by the enhanced DMI reveals a third mode that was indistin-
guishable before, see also Figs. 6(a) and 6(b) (right-hand-side
panels). Finally, Fig. 7(c) demonstrates that the two DMI-
shifted modes are susceptible to external magnetic fields.
An applied field along the x axis, therefore parallel to the
polarization of these modes, breaks the reciprocal symmetry
around the band center, increasing the energy of one mode
while decreasing the energy of the other one. The inelastic
scattering spectra of ferromagnetic and antiferromagnetic spin
spirals have some similarities, such as the characteristic three
helimagnon branches. However, only the antiferromagnetic
case displays DMI-shifted branches in all reciprocal space
directions.

B. Antiferromagnetic skyrmions

In the previous section, we considered two model Hamil-
tonians with c(2 × 2) and p(2 × 1) antiferromagnetic spin
spirals as ground states. Next, we performed atomistic-spin-
dynamics calculation using a square simulation box matching
the wavelength of those spin spirals with periodic bound-
ary conditions. Thus, we obtain antiferromagnetic skyrmionic
lattices as metastable configurations of models I and II. On
one hand, model I, whose atoms have an antiferromagnetic
exchange interaction with all their nearest neighbors, gives
rise to an antiferromagnetic skyrmion, as can be seen in
Fig. 8(a). On the other hand, model II stabilizes an antiferro-
magnetic antiskyrmion, see Fig. 8(b), which has an anisotropy
profile around the core in contrast with the isotropic profile
of the antiferromagnetic skyrmion. Here, it is important to
notice that model I and II share the same set of isotropic
DMI. Their only difference lies in the set of exchange in-
teractions, where for model II the exchange parameter J
changes sign for different directions. For a given set of
DMI, the antiferromagnetic alignment reverses the chirality
of the spin spirals in comparison to the chirality of a ferro-
magnetic arrangement, see Fig. 8(c). As the p(2 × 1) state
has a ferromagnetic cross section along y and an antifer-
romagnetic cross section along x, the antiskyrmion is the
natural occurrence for this type of antiferromagnets. We also
confirmed this result by employing a next-nearest-neighbor
isotropic Hamiltonian with C4v symmetries that favors the
p(2 × 1) state through exchange frustration, therefore, with-
out invoking a spatially anisotropic magnetic exchange
interaction.

Next, we investigate the inelastic scattering spectra re-
lated to these skyrmionic structures. Figure 9(a) shows the
spectra for the antiferromagnetic skyrmion, which is related
to the c(2 × 2) antiferromagnetic structure, while Fig. 9(b)
corresponds to the antiferromagnetic antiskyrmions, whose
background is a p(2 × 1) antiferromagnet. Overall, both spec-
tra have a lot more structure in comparison to those of the
parent antiferromagnetic spin spirals, with many faint modes
almost forming a continuum of spin-wave excitations. Yet, it
is possible to clearly resolve distinct intense modes through-
out most of the reciprocal path.

For small excitation energies around M or X, we can
observe that the modes disperse mostly linearly with the
changing wave vector. This is in contrast to the quadratic
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FIG. 8. Skyrmionic structures in antiferromagnetic backgrounds. (a) Antiferromagnetic skyrmion that is formed when the exchange
interaction with all nearest neighbors is negative, model I. The skyrmion lives in a c(2 × 2) antiferromagnetic background. (b) Antiferro-
magnetic antiskyrmion, which results from spatially anisotropic exchange interactions. J is negative along x and positive along y, model II.
The antiskyrmion lies in a p(2 × 1) antiferromagnetic background. (c) Cross sections along the x and y directions of the antiferromagnetic
antiskyrmion in (b). They correspond to spin spirals with different chirality despite the same DMI, whose orientation is represented by the
black circles. Model parameters: D = 0.2J , K = 0.05J , and B = 0. The total energy of both spin configurations is E = −4.041J .

FIG. 9. Inelastic scattering spectra for antiferromagnetic skyrmionic lattices. (a) Spectrum for the antiferromagnetic skyrmion in the c(2 ×
2) background. (b) Spectrum for the antiferromagnetic antiskyrmion in the p(2 × 1) background. In contrast to the spin spirals, the intense
features for the skyrmion lattices are much more broadened. The inset in (b) depicts the high symmetry points of the crystal Brillouin zone.
Model parameters: D = 0.2J , K = 0.05J , and B = 0.
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behavior of the low-energy spin-wave modes for ferromag-
netic skyrmion lattices [44]. The polarization of the modes
responsible for the high intensity regions in the spectra are
in general complex and rapidly varying for different wave
vectors. In Fig. 8(a), we singled out a few points in the
spectrum with features common to all four panels. Videos
with the associated real-space dynamics are available in the
Supplemental Material [52]. The arrow labeled A indicates a
continuous dispersing mode (video A). Its spectral signature
in different scattering channels corresponds mostly to a circu-
lar polarization along +y (−y) on the left-hand (right-hand)
half of the Y-M-Y path and rotates to the x direction in the
X-M-X path, for example. The B arrow indicates a hotspot
due to a breathing mode (video B) seen in all four panels
with nonvanishing energy and localized at the high symme-
try points. It corresponds to a mode with linear polarization
along z. The intensity marked by the C arrow is due to two
degenerate modes at the M point of vanishing energy which
are linearly polarized along (1,1,0) and (1,−1, 0) directions,
respectively (video C). The modes dispersing out of the Bragg
peaks, such as the one indicated by D, are linearly polarized
such as for C (video D). The precession nature and relative
energy alignment of the excitations due to points B and C
are in accordance with the ones reported by Kravchuk et al.
for antiferromagnetic skyrmions confined in nanodiscs [26].
We also find that the B mode is a breathing mode, but the C
modes are actually linearly polarized instead of being rota-
tional modes. This discrepancy could be due to the difference
between our lattice model and the continuum model employed
in Ref. [26].

Notice that all the spectra are symmetric with respect to the
high-symmetry points. As the net magnetization is zero and
no magnetic field has been applied, the spin-wave energies
must be reciprocal. Nevertheless, hidden nonreciprocity of
individual spin-wave modes induced by the DMI could be
observed as an asymmetry in the inelastic scattering spectra
if spin-polarized spectroscopies are to be used [37].

V. CONCLUSIONS

We studied simple models of magnetic materials whose
magnetic exchange interaction is predominately antiferro-
magnetic, intending to contribute to the development of
antiferromagnetic spintronics and magnonics. We first con-
sidered one-dimensional antiferromagnetic spin chains. We
observed that the DMI can lift the degeneracy of the two
spin-wave modes in the collinear antiferromagnetic structure,
resulting in a mode splitting similar to the Rashba effect for
electronic bands. Because these two spin-wave modes have
opposite angular momenta, a magnetic field can induce a
nonreciprocity of the spectrum. For even higher fields, the
collinear state gives way to a spin-flop state where a spin spiral
is formed. The new state has a reciprocal spin-wave spectrum
formed of the three universal helimagnon modes [39]. Our
calculations compare well with the recent experimental results
obtain with inelastic neutron scattering for the bulk material
α-Cu2V2O7 [38] and explain some unremarked features in the
measurements.

We also investigated noncollinear spin textures in two
dimensions. In particular, we computed the inelastic scatter-

ing spectra for two model systems with spin-spiral ground
states, one with spatially-isotropic and another with spatially-
anisotropic magnetic exchange interactions sharing the same
set of isotropic DMI. The isotropic interactions favor the
c(2 × 2) checkerboard antiferromagnetic structure in the
isotropic case and the p(2 × 1) row-wise antiferromagnetic
structure in the anisotropic case, and the DMI leads to spi-
ral structures based on those reference collinear states. The
spin-wave spectra have some similarities with those for fer-
romagnetic spin spirals studied in Ref. [44] but are centered
at high-symmetry points at the edges of the Brillouin zone
instead of at the zone center. The different modes were charac-
terized in terms of their precessional character, which is tied to
the chosen path in reciprocal space in a way that is once again
reminiscent of the Rashba spin-momentum locking. With
the same models, we could also stabilize antiferromagnetic
skyrmion lattices. We demonstrated that antiskyrmions are the
natural skyrmionic occurrence in p(2 × 1) antiferromagnets
because the antiferromagnetic alignment imposes a chirality
switch. Remarkably, these antiskyrmions can be obtained with
isotropic DMI, which is in contrast to ferromagnetic materi-
als. Lastly, we calculated the inelastic scattering spectra for
the antiferromagnetic skyrmion and antiskyrmion lattices and
identified breathing and gyroscopic modes in the resulting
spectra.
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APPENDIX: ANTIFERROMAGNETIC SPIN SPIRALS

1. Spin-spiral model

Let us suppose that we have the magnetic properties of
a given system. That is, we have the spin moment of each
site and the magnetic interactions, both the exchange and the
Dzyaloshinskii-Moriya, from each pair of atoms in a Bravais
lattice. We want to determine whether a spin spiral can be an
energetically more favorable state than a collinear antiferro-
magnetic phase. However, there can be many types of spin
spirals, with different orientations, wave vectors, etc. Thus,
we restrict our search among spirals given by the following
equation:

Si = cos φi sin θ n1 + sin φi sin θ n2 + cos θ n3, (A1)

where n3 is a unity vector defining the axis around which the
spins rotate, and that forms an orthonormal basis set for the
three dimension space together with n1 and n2. θ is the conical
angle between the spins and n3. φi = (qAF + q) · Ri, where
qAF accounts for a collinear antiferromagnetic phase, q is the
spiral wave vector and Ri the position vector of the ith spin.
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2. Spin-spiral energy

Regarding the Hamiltonian of Eq. (1), the classical energy
(per atom) of such a spin spiral can be decomposed in four
terms.

The exchange one:

εJ (q) = 1

N

∑
i j

Ji jSi · S j

= 1

N

∑
i j

Ji j[cos ((qAF + q) · Ri j ) sin2 θ + cos2 θ ].

(A2)

The Dzyaloshinskii-Moriya term:

εD(q) = − 1

N

∑
i j

Di j · Si × S j

= − 1

N

∑
i j

sin2 θD3
i j sin ((qAF + q) · Ri j ), (A3)

where we used the symmetry property of the Dzyaloshinskii-
Moriya interaction that imposes Di j = −D ji.

The uniaxial magnetocrystalline anisotropy contribution:

εK (q) = −K

N

∑
i

(K̂ · Si )
2

= −K

[
1

2
sin2 θ

(
(K1)2

(
δq,{0,qAF} + 1

)
+ (K2)2

(
1 − δq,{0,qAF}

))
+ sin 2θ

(
K1K3δq,qAF

) + cos2 θ (K3)2

]
, (A4)

where we considered that q is restricted to the first Bril-
louin zone. The unit vector that represents the magnetic
anisotropy axis decomposes as K̂ = K1n1 + K2n2 + K3n3

with
∑α (Kα )2 = 1. Thus, we can see that the anisotropy

energy is a constant for every wave vector different from
zero:

εK (q �= 0) = −K
{

1
2 sin2 θ [(K1)2 + (K2)2] + cos2 θ (K3)2

}
,

(A5)

and it contains a singularity for the antiferromagnetic state:

εK (q = 0) = − K[sin2 θ (K1)2 + cos2 θ (K3)2]. (A6)

The component K2 does not appear in this last result because
for q = 0 in the definition of the spin spiral, Eq. (A1), the
circular components of the spins point along n1 only.

The magnetic field term is given by:

εB(q) = −
∑

i

B · Si

= −
∑

i

B3 cos θn3,
(A7)

where Bα = B · nα .

3. One-dimensional model

We now consider the one-dimensional model introduced
in Sec. III, with D = Dẑ, K = ẑ, and B = Bẑ. Energy of the
antiferromagnetic state with spin parallel to the anisotropy
easy axis reads

εAF = − 2J − K. (A8)

Meanwhile, the energy of the antiferromagnetic spin-spiral
state with rotational axis along z is

εspiral(q) = −2J[cos(aq) sin2 θ − cos2 θ ] − 2D sin(aq) sin2 θ

− K cos2 θ − B cos θ. (A9)

The spiral wave vector that minimizes the total energy is
given by

∂εspiral(qmin)

∂q
=2a(J sin(aqmin) − D cos(aqmin)) sin2 θ = 0

⇒ tan(aqmin) = D

J
. (A10)

Thus, the minimum energy is achieved when the spin-
spiral wave vector satisfies tan(aqmin) = D/J . Replacing
this result in the total energy, we have that the minimum
energy is:

εspiral(qmin) = −2
√

J2 + D2 sin2 θ

− (−2J + K ) cos2 θ − B cos θ, (A11)

where we used the transformation sin(aq) = D/
√

J2 + D2

and cos(aq) = J/
√

J2 + D2.
The spin spiral becomes more favorable when its energy is

lower than the antiferromagnetic state energy thus satisfying:

εAF − εspiral(qmin) > 0


ε = (2
√

J2 + D2 − K + 2J ) sin2 θ − 4J + B cos θ > 0.

(A12)

The first term is larger than zero when K < 2
√

J2 + D2 + 2J ,
where it is maximized for θ = π/2. The term that depends
on the magnetic field is maximized for θ = 0. For B = 0 and
θ = π/2, the condition is satisfied when

D >

√(
J + K

4

)
K . (A13)

Let us find the global maximum of the energy difference as
a function of θ :


ε(θ ) = (2
√

J2 + D2 − K + 2J ) sin2 θ − 4J + B cos θ

∂

∂θ

ε(θ ) = (2

√
J2 + D2 − K + 2J )2 sin θ cos θ − B sin θ,

∂2

∂θ2

ε(θ ) = (2

√
J2 + D2 − K + 2J )2(2 cos2 θ − 1)

− B cos θ. (A14)

The critical points are given by (we only need to check for
0 � θ � π ):

θ1 = 0, cos θ2 = B

2(2
√

J2 + D2 − K + 2J )
. (A15)
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Analyzing the concavity of these points, we have:

∂2

∂θ2

ε(θ1) = (1 − cos θ2)

B

cos θ2
> 0,

∂2

∂θ2

ε(θ2) = (cos2 θ2 − 1)

B

cos θ2
< 0,

(A16)

because 0 � cos θ2 � 1. Therefore, θ2 should be the global
maximum with energy difference given by


ε(θ2) = B

2

(
1

cos θ2
+ cos θ2

)
− 4J. (A17)
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