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Switching induced by spin Hall effect in an in-plane magnetized ferromagnet with the easy axis
parallel to the current
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Magnetization switching in a fine-structured ferromagnet of nanoscale by the spin-transfer torque excited via
the spin Hall effect has attracted much attention because it enables us to manipulate the magnetization without
directly applying current to the ferromagnet. However, the switching mechanism is still unclear in regard to
the ferromagnet having an in-plane easy axis parallel to the current. Here we develop an analytical theory of the
magnetization switching in this type of ferromagnet, and reveal the threshold current formulas for a deterministic
switching. It is clarified that the current should be in between a certain range determined by two threshold
currents because the spin-transfer torque due to a large current outside the range brings the magnetization in an
energetically unstable state, and causes magnetization precession around the hard axis.
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I. INTRODUCTION

Spin-orbit interaction in a nonmagnetic metal scatters con-
ducting electrons in a direction perpendicular to both current
and spin angular momentum. Spin Hall effect is a physical
phenomenon generating pure spin current via such spin-orbit
interaction [1–3]. Attaching a ferromagnet to the nonmagnet,
the pure spin current injected into the ferromagnet excites
spin-transfer torque [4,5] and induces magnetization dynam-
ics such as switching and auto-oscillation [6–18]. These
magnetization dynamics have gained much attention from
viewpoints of both fundamental and applied physics because
these dynamics are interesting examples of nonlinear phenom-
ena in nanoscale [19], and can be used for practical devices
such as three-terminal magnetic random access memory [20].

The physical systems related to the spin Hall effect are
classified into three different types. The first one is the system
with a ferromagnet having an in-plane easy axis orthogonal to
the current direction [6,8,9] named as type Y in Ref. [18]. In
this case, the spin polarization of the spin current is parallel
to the easy axis. The theoretical analysis for the system is
well developed because the system is similar to two-terminal
magnetic multilayers proposed for the original concept of
the spin-transfer torque [4,5,21–25], where the magnetization
dynamics is excited as a result of the competition between
the spin-transfer torque and the damping torque. The second
one is the system with a ferromagnet having a perpendicu-
lar easy axis [7,8,10–17,26,27], named as type Z [18]. The
magnetization switching in this system has been extensively
studied [28–34], particularly due to its applicability to prac-
tical devices. The third one is the system with a ferromagnet
having the easy axis parallel to the current direction, named
as type X [18]. This system is easy to fabricate, and a small
cross-section area for the current injection is also preferable
for practical purposes. In addition, it was shown that the

system is able to achieve a fast magnetization switching [18].
Despite these fascinating properties, however, the physical
mechanism of the magnetization switching in this system has
not been investigated yet, which prevents us from establishing
a comprehensive dynamical theory of the magnetization.

The purpose of this work is to develop theoretical formu-
las of the magnetization switching caused by the spin Hall
effect in the ferromagnet having the easy axis parallel to
the current. Solving the Landau-Lifshitz-Gilbert (LLG) equa-
tion numerically, phase diagrams clarifying the magnetization
state in a steady state are obtained. An analytical formula
is derived for the critical current inducing the magnetization
switching, showing good agreement with the phase diagram.
The magnetization state after turning off the current is also
investigated. The numerical simulation reveals the existence
of another threshold value of the current for the switching, i.e.,
a deterministic switching can be achieved when the current is
in between a range determined by two threshold currents. An
analytical formula for this second threshold is also obtained.
The results contribute to building a comprehensive view of the
magnetization manipulation by the spin Hall effect.

The paper is organized as follows. In Sec. II we provide
a system description, and show the phase diagram of the
magnetization in a steady state. In Sec. III the critical cur-
rent formula destabilizing the magnetization from the initial
state is derived. In Sec. IV the condition for a deterministic
switching after turning off the current is studied. In Sec. V
the comparison of the critical current with that in the different
systems are discussed. Section VI summarizes the conclusion
of this work.

II. SYSTEM DESCRIPTION

The system we consider is schematically shown in
Fig. 1(a). The unit vector pointing in the magnetization
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FIG. 1. (a) Schematic view of the system. The unit vector point-
ing in the magnetization direction is m. The electric current density
and the external field are denoted as j and Happl, respectively.
(b) Schematic view of the constant energy curve in the absence of
the external field.

direction of the ferromagnet is denoted as m. The z axis is
perpendicular to the plane, while the x axis is parallel to the
electric current density j in the nonmagnet. The spin Hall
effect in the bottom nonmagnet generates pure spin-current
flowing in the z direction with the spin polarization in the y di-
rection, and excites the spin-transfer torque. An external field
Happl is applied in the z direction. The magnetization dynamics
in the ferromagnet is described by the LLG equation,

dm
dt

= −γ m × H − γ Hsm × (ey × m)+ αm × dm
dt

, (1)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. The magnetic field is given
by

H = HKmxex + (Happl − 4πMmz )ez, (2)

where HK is the in-plane magnetic anisotropy field in the x
direction, whereas −4πM is the shape anisotropy field in the
z direction. The strength of the spin-transfer torque by the spin
Hall effect is

Hs = h̄ϑ j

2eMd
, (3)

where ϑ is the spin Hall angle of the nonmagnetic heavy
metal, and M and d are the saturation magnetization and
thickness of the free layer, respectively. The values of the
parameters used in this work are derived from typical exper-
iments and simulations of the spin Hall phenomena and/or
magnetic multilayers as M = 1500 emu/cm3, HK = 200 Oe,
ϑ = 0.4, d = 1.0 nm, γ = 1.764 × 107 rad/(Oe s), and α =
0.005 [13,31,32]; see also Appendix A for the calculation
details.

We note that the macrospin model is used to derive the
analytical formulas of the threshold currents. This model
has been used to analyze the switching dynamics in both
two-terminal and three-terminal devices [23,24,29,31–33]. It
is known that the macrospin model is applicable to small
devices. For example, the applicability of the model to the
two-terminal perpendicularly magnetized system was inves-
tigated in Refs. [35–37]. The applicability of the macrospin
model for the present three terminal was verified in the exper-
iment carried out in Ref. [18], where the thickness of the free
layer was 1.48 nm, whereas the short and long axes, corre-
sponding to the y and x directions in the present geometry,
were 160 and 400 nm, respectively. Therefore, we believe

that using the macrospin model is reasonable to analyze the
switching behavior of the present system.

For the latter discussion, it is useful to introduce the mag-
netic energy density E as E = −M

∫
dm · H,

E = −MHapplmz − MHK

2
m2

x + 2πM2m2
z . (4)

Note that the energy density E has two minima corresponding
to

m0± =
(±m0x

0
m0z

)
, (5)

where m0z = Happl/(HK + 4πM ) and m0x =
√

1 − m2
0z. The

minimum energy density is

Emin = −M
H2

appl + HK(HK + 4πM )

2(HK + 4πM )
. (6)

The saddle point of the energy density locates at

md± =
( 0

±mdy

mdz

)
, (7)

where mdz = Happl/(4πM ) and mdy =
√

1 − m2
dz. The saddle-

point energy density is

Ed = −MH2
appl

8πM
. (8)

An example of the constant energy line is shown in Fig. 1(b),
where the external field is assumed to be zero; see also
Appendix A for the values of the energy density. In this
case (Happl = 0) in particular, the minimum points locate at
m0± = ±ex, whereas the saddle points are md± = ±ey. These
minimum and saddle points play a significant role in the
determination of the switching condition, as discussed below.

Figure 2(a) summarizes mx in a steady state in the presence
of the current. The initial state is m0+, which is close to
mx = 1 shown by the red color. The magnetization stays near
the initial state around small current and/or field regions. On
the other hand, when the current magnitude becomes larger
than critical values, the magnetization moves from the initial
state. The critical current density is positive for Happl < 0,
whereas it becomes negative for Happl > 0. In this paper we
denote these critical current densities as jc,+ and jc,−, as
shown in Fig. 2(a). Figure 2(b) shows mx in a steady state,
where the initial state is m0− close to mx = −1 shown by the
blue color. Similar to Fig. 2(a), the magnetization moves from
the initial state when the current density exceeds the critical
value. In this case, the critical current is positive for Happl > 0,
whereas it becomes negative for Happl < 0. The first purpose
of the following discussion is to derive a theoretical formula of
the critical currents to move the magnetization from the initial
state.

It should also be noted that the magnetization state after
turning off the current is also of interest, in particular for prac-
tical applications. Note that the magnetization finally saturates
to m0+ or m0− because these are energetically stable states.
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FIG. 2. Phase diagrams of mx in a steady state (a) and (b) in the
presence of the current, and (c) and (d) after turning off the current.
The initial states are m0+ in (a) and (c), whereas it is m0− in (b) and
(d). The black lines with labels ± jc,± and ± jth,± in (a) and (b) and
(c) and (d) correspond to Eqs. (17) and (20), respectively.

Figure 2(c) shows mx in a steady state after the current is
turned off, where the initial state is m0+. Comparing Fig. 2(c)
with Fig. 2(a), the existence of another threshold current for
the switching is found. For example, the relaxed state of
the magnetization in Fig. 2(c) is m0− (mx � −1 shown by
the blue color) when the current density is slightly larger
than the critical current density determining the boundary
between the states of mx � 1 and mx � −1 found in Fig. 2(a).
However, when the magnitude of the current density further
increases, both m0+ (red) and m0− (blue) states coexist, as
can be seen in a large current region of Fig. 2(c). This fact
indicates that, even if the magnetization direction moves to
a position close to the switching state, which is mx � −1 in
this case, by the spin-transfer torque, it moves back to the
initial state (mx � 1), depending on the value of the current
density. Therefore, the current density should be smaller than
a certain value for a deterministic switching. In this paper we
denote the threshold current density determining the upper
boundary of the deterministic switching as jth,±, as can be
seen in Fig. 2(c). A similar behavior is observed when the
initial state is m0−, as shown in Fig. 2(d). The second purpose
of the following discussion is to clarify the origin of these
complex phase diagrams and to derive the threshold current
formula for the deterministic switching.

III. CRITICAL CURRENT FOR
INSTABILITY THRESHOLD

In this section we derive the theoretical formula of the crit-
ical current density to move the magnetization from the initial
state. First, we study the case of the zero-field switching.
Second, the theory is extended to the case of the finite-field

switching. The role of the thermal fluctuation at finite temper-
ature is also discussed.

A. Switching condition for zero-field case

Let us first investigate the magnetization dynamics in the
absence of the external magnetic field. In the meantime we
consider the dynamics caused by a positive current, and as-
sume that the initial state is m0+, which is parallel to the x
axis as m0+ = +ex for Happl = 0.

We should first note the definition of the critical current
density for the zero-field case. The spin-transfer torque due
to the spin Hall effect moves the magnetization parallel to
the y axis. The precession torque due to the magnetic field
also becomes zero when the magnetization is parallel to the y
axis because the point corresponds to the saddle point of the
energy density. Therefore, the critical current density in the
zero-field case is defined as a current density over which the
magnetization saturates to the saddle point.

Figure 3(a) shows the time evolutions of the magnetization
components, mx (red), my (blue), and mz (black), when the
current density j = 221 × 106 A/cm2 is slightly smaller than
the critical value. Although the magnetization moves from the
initial state, it does not reach the saddle point. In particular,
mz moves from the initial state (mz = 0) to a certain value
monotonically.

On the other hand, Fig. 3(b) shows the dynamic trajectory
of the magnetization when the current density j = 222 ×
106 A/cm2 is larger than the critical value. Starting from the
initial state m0+, the magnetization saturates to the saddle
point md−. Figure 3(c) shows the dynamic trajectory observed
from a different view angle. The figure indicates that the
magnetization first moves to the negative z direction, and then
turns back to the xy plane because mz is zero for both the
initial (m0+) and final (md−) states. This fact can also be
confirmed from Figs. 3(d)–3(f), where the time evolutions of
the magnetization components are shown. Whereas mx and my

shown in Figs. 3(d) and 3(e) monotonically moves from the
initial to the final state, mz in Fig. 3(f) shows a local minimum
at which dmz/dt = 0. The inset in Figs. 3(d)–3(f) indicate
that the magnetization finally saturates to the saddle point
md− = −ey. Comparing Figs. 3(c)–3(f) with Fig. 3(a), we
conclude that the existence of the point satisfying dmz/dt =
0 determines a bifurcation between the switching and non-
switching states. Therefore, let us call the point of dmz/dt = 0
as a critical point, for convention; see also Figs. 3(c) and 3(f),
where the positions of the critical point in the real and time-
domain spaces are shown, respectively.

Figure 3(b) also indicates that the switching occurs without
accompanying magnetization precession. This is in contrast
to the original idea of the spin-transfer torque switch-
ing [4,23,24], where the spin-transfer torque compensates for
the damping torque, and therefore, the precession torque due
to the magnetic field, corresponding to the first term on the
right-hand side of Eq. (1), is dominant. The fact that the
switching in the present system does not accompany preces-
sion dynamics implies that the switching occurs as a result
of the competition between the precession torque and the
spin-transfer torque. Therefore, the damping torque, which
is proportional to the small constant α, can be neglected to
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FIG. 3. (a) Time evolutions of the magnetization components for j = 221 × 106 A/cm2, which is slightly below the critical value. (b) and
(c) Dynamic trajectories from different viewpoints, where the current density j = 222 × 106 A/cm2 is larger than the critical value. (d)–(f)
Time evolutions of the magnetization components (red for mx , blue for my, and black for mz) for j = 222 × 106 A/cm2. The insets show the
time evolutions in a long time range, indicating that the magnetization finally saturates to m = −ey. The dotted arrow in (c) and line in (f)
indicate the position satisfying dmz/dt = 0, which is called a critical point. The external magnetic field is zero in these figures.

determine the switching condition. In fact, we confirmed from
the numerical simulation that the critical current is unchanged
even when we use a damping value of α = 0.02, which is four
times larger than that used in Fig. 3.

We note that the monotonic evolutions of mx and my shown
in Figs. 3(d) and 3(e) indicate that the signs of dmx/dt and
dmy/dt are fixed. Therefore, the following conditions should
be satisfied,

1

γ

dmx

dt
� (4πMmz + Hsmx )my < 0, (9)

1

γ

dmy

dt
� −(HK + 4πM )mxmz − Hs

(
m2

x + m2
z

)
< 0, (10)

Equations (9) and (10) should be satisfied for the switching
process of 0 � mx � 1 and −1 � my � 0. Note that the crit-
ical point satisfying dmz/dt = 0 exists when the switching
occurs, as mentioned above. The LLG equation for mz indi-
cates that the critical point is determined by the condition

HKmx + Hsmz = 0. (11)

Substituting Eq. (11) into Eqs. (9) and (10), we find that the
switching condition at the critical point becomes(

Hs − HK4πM

Hs

)
mx > 0. (12)

Since mx > 0 during the switching in the present case, we
find that Eq. (12) becomes Hs >

√
HK4πM, which gives the

critical current formulas as

jc = 2eMd

h̄ϑ

√
HK4πM. (13)

The value of Eq. (13) for the present calculation is 221 ×
106 A/cm2, which shows good agreement with the numerical
simulation shown in Fig. 3. Considering that the above discus-
sion focuses on the switching by positive current, it should be
mentioned that negative current can also induce the switching,
where the critical current density is given by − jc. We denote
Eq. (13) as jc,+, whereas − jc is denoted as jc,−. When the
initial state is m0−, − jc,± are the critical current densities.

We note that Eq. (13) can be derived from Eq. (12) without
determining the value of mx at the critical point. It is, however,
useful to evaluate its value for the latter discussion. We find
that mx at the critical point is well approximated as (see also
Appendix B)

mx = 1
2 . (14)

The numerically evaluated value of mx at the critical point
is 0.520 [see Fig. 3(d) and Appendix B], which is close to
Eq. (14). In the next section we extend Eq. (14) to the finite
field case to derive the critical current formula.

At the end of this section we would like to provide a brief
comment on two timescales observed in Fig. 3. Whereas the
magnetization moves from the initial state to the critical point
fast, it takes a long time to saturate from the critical point
to the fixed point (m → −ey). This result is in contrast with
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the spin-transfer torque switching in two-terminal devices, as
well as that in the three-terminal type-Y device, where the
switching time has a simple relation to the current as 1/t ∝
j − jc [23,38]. In addition, long-time dynamics as such are
not observed for the switching in the presence of an external
magnetic field, as shown in the next section. We note that
investigating the origin of two timescales is of interest, and
further work will be necessary in the future.

B. Switching condition for finite field case

Let us extend Eq. (13) to the system in the presence of
a finite external field. Figures 4(a) and 4(b) show the time
evolutions of the magnetization components and the dynamic
trajectory for j = 61 × 106 A/cm2 and Happl = −5.0 kOe.
The initial state is m0+. In comparison with the zero-field
case shown in Fig. 3, the magnetization can move close to
the switched state (m0− � −ex). This is because the points
at which the spin-transfer torque and the precession torque

due to the magnetic field become zero are different from the
case without external magnetic field. We also notice that the
magnetization does not show a precessional motion before
(t � 0.3 ns) reaching the boundary (mx = 0) between two
stable states, although the precessional motion appears after
the magnetization overcomes the boundary. This fact indi-
cates that the critical current is mainly determined by the
competition between the precession and spin-transfer torques,
as in the case of the zero-field switching. In fact, we con-
firm that the critical current density is 63 × 106 A/cm2 for
α = 0.02, which is close to that for α = 0.005, indicating that
the damping torque does not play a critical role to determine
the instability threshold. The fact that the switching occurs
without accompanying the precessional motion also indicates
that the conditions that dmx/dt and dmy/dt have fixed signs,
used in the derivation of Eq. (13), can also be used for the
derivation of the critical current formula. Then, we find that
the critical current density can be determined by the following
condition:

−Happl +
(

Hs − HK4πM

Hs

)
mx > 0. (15)

Equation (15) becomes Eq. (12) in the limit of Happl → 0.
We should, however, evaluate the value of mx at the critical
point for the finite field case, in contrast with the derivation of
Eq. (13) where evaluating the value of mx in Eq. (12) was not
necessary. For example, the critical point satisfying dmz/dt =
0 appears at t = 0.133 ns for j = 61 × 106 A/cm2 and
Happl = −5.0 kOe, as shown by the dotted line in Fig. 4(a). To
proceed with the analysis, we extend the derivation of Eq. (14)
to the finite field case, and find that mx at the critical point is
given by (see also Appendix B)

mx = HK(HK + 4πM )Hs

2HKHs
√

(HK + 4πM + Happl )(HK + 4πM − Happl ) + Happl
(
H2

s − H2
K

) . (16)

For example, the value of Eq. (16) for j = 61 × 106 A/cm2 and Happl = −5.0 kOe is 0.755, which is close to the result of the
numerical simulation in Fig. 3(a), where mx = 0.750 at the critical point appeared. Substituting Eq. (16) into Eq. (15), we find
that the critical current density for the finite field case is given by

jc,± = ±2eMd

h̄ϑ

HK(HK + 4πM )
√

HK4πM ± HapplHK
√

(HK + 4πM + Happl )(HK + 4πM − Happl )

HK(HK + 4πM ) − H2
appl

. (17)

Note that jc.+ is the critical current density for Happl > 0,
whereas jc,− is that for Happl < 0. On the other hand, when
the initial state is m0−, the critical current density for Happl >

(<)0 is − jc,−(+). The value of jc,+ estimated from Eq. (17)
is 59 × 106 A/cm2 for Happl = −5.0 kOe, which shows good
agreement with the result of the numerical simulation where
the switching occurs for the current density of j = 61 ×
106 A/cm2, as shown in Fig. 4(a).

C. Dynamics at finite temperature

This work mainly focuses on the magnetization dynam-
ics at zero temperature to derive the critical current formula
for the switching. Simultaneously, however, the role of the

thermal fluctuation at finite temperature [39] is also of great
interest. In this section we discuss the magnetization dynam-
ics at finite temperature by solving the LLG equation with
the random torque numerically. In particular, we focus on the
current range near the critical value jc where the thermal fluc-
tuation is expected to play a critical role on the magnetization
switching [29,38,40–52].

The thermal fluctuation provides a torque,

τ = −γ m × h, (18)

which should be added to the right-hand side of Eq. (1). The
components hk (t ) (i = x, y, z) of the random field h obeys the
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figure shows the time evolution of mx near the switching, whereas the inset shows that over a long range of time. (b) Dependencies of the
switching probabilities P( j) on the current density for the current pulses of 5 μs (blue triangles) and 50 ns (green squares). The switching
probability is evaluated from the 1000 trials of the LLG equation, where the initial state is reset at every trial. (c) The dependencies of the current
density maximizing dP( j)/d j on the external magnetic field for the long (blue triangles) and short (green squares) pulses. For comparison, the
critical current densities at zero temperature, estimated from Eq. (17) (black line), and the numerical simulation (red circles) in Sec. III B are
also shown.

fluctuation-dissipation theorem [39],

〈hk (t )h�(t ′)〉 = 2αkBT

γ MV
δk�δ(t − t ′), (19)

where V = Sd is the volume of the free layer consisting of
the cross-section area S and the thickness d . According to
Ref. [18] where the applicability of the macrospin model
was confirmed, we assume that S = π × 80 × 200 nm2. The
temperature T is fixed to T = 300 K. The calculation method
to solve Eq. (1) with Eq. (18) are summarized in Appendix C.

Figure 5(a) shows an example of the magnetization dy-
namics at finite temperature, where the external magnetic
field and the current density are Happl = −5.0 kOe and j =
59 × 106 A/cm2, respectively. We remind the readers that the
critical current density estimated from the numerical simula-
tion at zero temperature is 61 × 106 A/cm2, as mentioned in
Sec. III B. The figure is an enlarged view near the switching,
whereas the inset shows the time evolution of mx over a long
range of time (0 � t � 5 μs). Since the current density is
smaller than the critical value at zero temperature, the mag-
netization stays near the initial state with random motion for
a long time. When, however, the magnetization comes close
to the critical point and the random torque further assists the
motion to overcome the point, the switching is achieved.

Next, let us show the dependence of the switching proba-
bility P on the current density. We note that the existence of
the random torque does not guarantee the switching, although
Fig. 5(a) shows an example of the probabilistic switching. We
also emphasize that the time at which the switching occurs
is random. In particular, we note that a long time is nec-
essary to observe a finite probabilistic switching, especially
for the current density much lower than the critical value at
zero temperature. On the other hand, for practical purpose,
a short current pulse is used to achieve a fast switching.
Therefore, we calculate the switching probabilities for both
long (tmax = 5 μs) and short (tmax = 50 ns) current pulses,
where we regard the magnetization switched when, starting
from the initial condition mx(t = 0) > 0, the magnetization
at t = tmax satisfies mx(t = tmax) < 0; see also Appendix C

for the evaluation method of the switching probability. Fig-
ure 5(b) shows the switching probabilities for the cases of
the long (blue triangles) and short (green squares) pulses,
where Happl = −5.0 kOe. For the case of the long pulse, the
switching is observed even at the current density relatively
smaller than the critical value (61 × 106 A/cm2) evaluated
by the LLG simulation at zero temperature. The switching
probability shows a gradual evolution from P = 0 to P = 1.
On the other hand, the switching probability increases near
the critical current density for the short-pulse case. Figure 5(c)
summarizes the magnetic field dependence of the current den-
sity at which the switching probability increases most rapidly,
i.e., the current density maximizing dP( j)/d j, which is re-
garded as the switching current density at finite temperature.
For comparison we also shows the critical current density
at zero temperature, where the black line is obtained from
Eq. (17), whereas the red circles are obtained by the numerical
simulation, as done in Sec. III B. For the long-pulse (tmax =
5 μs) case, the switching current densities at finite temperature
are reduced to roughly 90% of those at zero temperature;
for example, the switching current density for Happl = −5.0
kOe is estimated to be 54.8 × 106 A/cm2, whereas that for
zero-temperature case was 61 × 106 A/cm2, as mentioned in
Sec. III B. On the other hand, the switching current densities
for the short-pulse (tmax = 50 ns) case are slightly lower but
nearly overlap the zero-temperature results; for example, the
switching current for Happl = −5.0 kOe is estimated to be
59.7 × 106 A/cm2. These results indicate that, although the
thermal fluctuation provides a possibility to switching the
magnetization by the current lower than the critical value, the
critical current formulas derived in this work will be useful to
analyze the magnetization switching, particularly for a short-
pulse switching required in practical applications.

D. Summary of this section

In this section we derive the critical current formula to
move the magnetization from the initial state. The main results
are Eqs. (13) and (17). Equation (13) is the critical current
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formula for the zero-field case, whereas Eq. (17) is the exten-
sion to the finite field case. Equation (17) reproduces Eq. (13)
in the limit of Happl → 0.

The black solid lines in Figs. 2(a) and 2(b) are jc,± and
− jc,±. respectively. As shown, the formula of the critical
current density given by Eq. (17) well explains the boundary
between the initial and switching states in the presence of the
current, showing the validity of Eq. (17).

IV. DETERMINISTIC SWITCHING

Finally, we discuss the theoretical condition for the de-
terministic switching. In many cases including practical
purposes, the magnetization state not only in the presence of
the current but also the state after turning off the current is of
great interest. The phase diagrams in Figs. 2(c) and 2(d) reveal
the existence of the current range in which a deterministic
switching is achieved, as mentioned in Sec. II. For example,
for Happl = −5.0 kOe, the deterministic switching occurs in
the current range of 70 � j � 270 × 106 A/cm2, as shown
in Fig. 2(c), where the lower boundary, 70 × 106 A/cm2

is well explained by Eq. (17). Here we note that the cur-
rent density in Fig. 2 varies by 10 × 106 A/cm2 step, and
thus, the deterministic switching range here is mentioned as
70 � j � 270 × 106 A/cm2. However, to be more precise, as
mentioned in Sec. III, the detail value of the lower boundary
is 61 × 106 A/cm2. There is, in addition, another threshold
value, which is 270 × 106 A/cm2 in this example. Above this
second threshold, both m0+ (red) and m0− (blue) appear as
a final state, as shown in Fig. 2(c), which is sensitive to the
values of the parameters such as the current and field. Let us
derive the theoretical formula of the second threshold current
here.

Before the discussion we briefly note that the word “deter-
ministic” in this section is used to express the switching which
is not sensitive to the values of the external magnetic field and
the current density, and is not used to distinguish from the
dynamics at finite temperature studied in Sec. III C. Since the
phase diagram in Fig. 2 is obtained by the zero-temperature
simulation, the magnetization states are determined determin-
istically. The results in Fig. 2 reveal, however, that there are
the regions where the relaxed state of the magnetization is
sensitive to the values of the external magnetic field and the
current density, even at zero temperature. Such a region should
be avoided for practical purposes because careful control of
the field and/or current is required for reliable operations.

Note that the switched and nonswitched states coexist
above this second threshold, and as a result, the phase diagram
shows a complex structure, as shown in Figs. 2(c) and 2(d).
We notice that such a complex structure appears due to the
magnetization precession around the hard (z) axis. To explain
this behavior we show the constant energy curve of the fer-
romagnet in the presence of the external field in Fig. 6(a);
see also Appendix A. There are two energetically stable states
bounded by m0± and md±. The stable states correspond to the
region of E < Ed in Fig. 6(a), where the saddle-point energy
density is given by Eq. (8). There are also two energetically
unstable states, corresponding to the region of E > Ed. After
turning off the current, the magnetization starts the precession
on the constant energy curves, and slowly relaxes to the stable
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FIG. 6. (a) Schematic view of the constant energy lines for
Happl = −5.0 kOe. (b) The red solid line is the trajectory of the
magnetization for j = 300 × 106 A/cm2 and Happl = −5 kOe. The
blue dotted line represents the trajectory after turning off the current.
Time evolutions of the magnetization components in the presence of
the current and after turning off the current are shown in (c) and (d),
where the origin of the time is set to be t = 0 in (d), for simplicity.
Practically, the dynamics starts after turning off the current.

states. The magnetization directly relaxes to the closest stable
state when the steady-state solution in the presence of the
current locates inside one of the stable regions, i.e., when the
energy density given by Eq. (4) with m in the presence of
the current is smaller than Ed. In this case, the deterministic
switching can be realized. On the other hand, when the steady-
state solution in the presence of the current locates in one of
the unstable states, the magnetization first starts the precession
on the constant energy curves around the z axis. In this case,
even if the magnetization in the presence of the current is
close to the switched state, the magnetization can switch back
near the initial state. Figure 6(b) shows an example of such
a dynamics, where the red solid line represents the dynamic
trajectory in the presence of the current, whereas the blue
dotted line shows the relaxation dynamics after turning off
the current. Figures 6(c) and 6(d) show the time evolutions of
the magnetization components in the presence of the current
and after turning off the current, respectively. Although the
magnetization moves close to the switched state (m � −ex)
when the current is injected, it turns back close to the initial
state (m � +ex) due to the precession around the hard (z) axis.
Such a dynamics is the origin of the complex structure in the
phase diagram in Fig. 2(c).

Summarizing these considerations, the second threshold
current bounding the deterministic switching to m0− is de-
rived from the condition that the steady-state solution locates
inside the energetically stable region, and is given by (see also
Appendix D)

jth,± = 2eMd

h̄ϑ

HapplHK ± √
HK4πM(HK + 4πM )

4πM
. (20)

We note that jth,+(−) for a negative (positive) Happl is the
threshold current density to guarantee that the final state after
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turning off the current is m0−, whereas − jth,± for a negative
(positive) field determines the boundary that the final state is
m0+. The black solid lines in Figs. 2(c) and 2(d) are Eq. (20)
and − jth,± for these cases, indicating the validity of the for-
mula.

In summary, the existence of the threshold current below
which the deterministic switching is achieved is found. We
remind the readers that the critical current formula derived
in Sec. III determines the instability threshold to move the
magnetization from the initial state. On the other hand, the
threshold current formula derived in this section determines
the relaxed state of the magnetization after turning off the
current. Summarizing these discussions, the current density
j should be in the range determined by two current scales.
For example, the current density should be in the range of
jc,+ < j < jth,+ for the deterministic switching when the ex-
ternal field is applied to the negative z direction (Happl < 0)
and the initial state is close to the positive x direction (m0+),
as shown in Fig. 2(c).

V. COMPARISON TO OTHER SYSTEMS

In this section we discuss the comparison between the
present and previous works.

First, we mention that the experimentally observed value
of the critical current density for the same device structure
in Ref. [18] is, at maximum, one order of magnitude smaller
than that found in the present work in the small Happl limit.
This is because both the in-plane and perpendicular magnetic
anisotropy fields are one order of magnitude smaller than
those used in the present work. As implied from Eq. (13), the
critical current density of the present system is roughly scaled
as

√
HK4πM in the small Happl limit. Therefore, the critical

current density in Ref. [18] was small due to the smallness of
HK and 4πM. In Ref. [18] the perpendicular demagnetization
field 4πM is suppressed by using the interfacial magnetic
anisotropy effect at the CoFeB/MgO interface [53–55].

When we compare the the critical current of the present
system, named as type X, with another system named type
Y, we should first emphasize that a fair comparison is diffi-
cult because the deterministic switching in the type-X device
requires the external magnetic field, whereas the switching
in the type-Y device can be achieved without, in principle,
applying the external field. The experimentally observed value
of the critical current density for the type-Y device was on
the order of 107 A/cm2 [8], which was well explained by
the critical current formula derived by the macrospin assump-
tion. The critical current density of the type-X system can
be either small or large compared with this value, depend-
ing on the magnitude of the applied field. If we focus on
the small field limit, however, the type Y shows a small
critical current density compared with that in the type X.
This is due to the smallness of the damping constant. The
critical current density of the type-Y device is proportional
to the damping constant α [23,24], whereas the dependence
of the critical current density of the type-X device on the
damping constant is weak, as mentioned above. The ratio
of these two critical current densities are roughly given by
jtype Y
c / jtype X

c ∼ α
√

4πM/HK, where we use Eq. (13) and the
fact that the critical current density in the type-Y device is

given by jtype Y
c � [2αeMd/(h̄ϑ )](HK + 2πM ). The damping

constant of the ferromagnet, such as CoFeB, conventionally
used in spintronics devices is on the order of 10−3–10−2 [56].
Therefore, the critical current density of the type-Y device is
usually smaller than that of the type-X device, even though
4πM/HK 
 1. Regarding these facts, the type-Y device has
several advantages, such as the zero-field switching and small
critical current, with respect to the type-X device. However,
we emphasize that the fast switching in the type-X device is
preferable for practical applications, compared with a slow
switching in the type-Y devices.

The critical current density of the type-Z device has been
found to be on the order of 106–108 A/cm2 [7,10–17,26,27],
which are comparable to that found in the type-X device. In
both the type-X and type-Z devices, the external magnetic
field is necessary for the deterministic switching. We note
that the critical current densities of both type X and type Z
are nearly independent of the damping constant [28,32], and
are dominated by the perpendicular magnetic anisotropy field.
We should, however, note that the roles of the perpendicular
magnetic anisotropy field on these devices are different. The
perpendicular magnetic anisotropy field in the type-Z device
has a positive sign, indicating the magnetic easy axis is par-
allel to the z axis. The perpendicular magnetic anisotropy
energy of the type-Z device determines the thermal stability
of the ferromagnet. On the other hand, the perpendicular
magnetic anisotropy field in the type-X device, −4πM, has a
negative sign, indicating that the in-plane magnetized state is
energetically stable. The thermal stability of the ferromagnet
is determined by the in-plane magnetic anisotropy field HK.
Therefore, the low critical current density and sufficient ther-
mal stability might be simultaneously achieved in the type-X
device by suppressing the perpendicular magnetic anisotropy
field by, for example, the interfacial effect [53–55]. It should,
however, be noted that the current-field range for the de-
terministic switching, bounded by jc and jth in Fig. 2, is
relatively narrow in the type-X device compared with that of
the type-Z device; see Ref. [32], where we note that the spin
Hall angle used in the calculations in Ref. [32] is smaller than
that in the present work. This result means that the type-Z
device has wide tunability of the external parameters (current
and field) compared with the type-X device.

Summarizing these switching properties, the three device
structures, type X, Y, and Z, have both advantages and dis-
advantages for practical applications. An appropriate choice
of the device structure, depending on the purpose, will be
necessary.

VI. CONCLUSION

In conclusion, theory of the magnetization switching
caused by the spin Hall effect was developed for a ferromagnet
having the easy axis parallel to the current direction. The
analytical formula of the critical current for the magnetiza-
tion switching was obtained from the theoretical condition of
monotonic switching as a result of the competition between
the spin-transfer torque and the precession torque. It was
also found that a deterministic magnetization switching after
turning off the current is achieved only when the current is
in a certain range determined by another threshold current.
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Outside the current range, the final state of the magnetization
becomes sensitive to the parameters such as the current and
the magnetic field, and therefore, a precise manipulation of
the magnetization becomes difficult. This is because the spin-
transfer torque due to a large current brings the magnetization
in an energetically unstable state, and induces the magnetiza-
tion precession around the hard axis. The theoretical formula
of another threshold current was also derived, showing good
agreement with the result of numerical simulation. Summa-
rizing these results, the current density for the deterministic
switching should be in a certain range determined by two
current scales. These results provide a solid direction for
designing the three-terminal magnetic devices with in-plane
easy axis.
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APPENDIX A: CALCULATION DETAILS AT
ZERO TEMPERATURE

The LLG equation was solved by the fourth-order Runge-
Kutta method with the time step of 5 × 10−3 ns. First, we
solve the LLG equation with the current (spin-transfer torque)
from t = 0 to t = 5 μs, and estimate the fixed point the mag-
netization saturates. In general, the time range (tmax = 5 μs) is
sufficient to evaluate the saturated state of the magnetization.
After that, second, we solve the LLG equation without the
current to evaluate the relaxed state of the magnetization. In
the first step, the initial state of the magnetization is chosen to
be the energetically minimum point, whereas the initial state
of the second step is the fixed point obtained by the first step.

The constant energy curves in Figs. 1(b) and 6(a) are ob-
tained by solving the Landau-Lifshitz (LL) equation, where
the damping constant α and the current density j are set to
be zero. In Fig. 1(b), the constant energy curves, from top
to bottom, are obtained by the LL equation with the initial
conditions of θ = 30◦ (top red), 60◦ (top orange), 80◦ (top
green), 83◦ (top light blue), 85◦ (purple), 88◦ (red-purple),
97◦ (bottom light blue), 100◦ (bottom green), 120◦ (bot-
tom orange), and 150◦ (bottom red) with ϕ = 0◦ or 180◦,
where the zenith and azimuth angles θ and ϕ are defined
as m = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). The corresponding en-
ergy densities estimated from Eq. (4) are 10.54, 3.42, 0.28,
0.06, −0.04, −0.13 × 106 erg/cm3 for θ = 30◦, 60◦, 80◦, 83◦,
85◦, and 88◦, respectively. Note that the energy density is the
same for θ and 180◦ − θ in Fig. 1(a) because the external
field is absent. On the other hand, Fig. 6(a) is obtained by
solving the LL equation with the initial conditions of θ = 30◦
(top red), 60◦ (top orange), 90◦ (top green), 99◦ (top light
blue), 100◦ (purple), 101◦ (red-purple), 112◦ (bottom light
blue), 120◦ (bottom green), and 150◦ (bottom orange), corre-
sponding to the energy densities of 17.06, 7.17, −0.15, −0.97,
−1.02, −1.06, −0.95, −0.33, and 4.07 × 106 erg/cm3. We
should emphasize here that Figs. 1(b) and 6(a) are made to
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FIG. 7. The dynamic trajectories of the magnetization in the
xz plane obtained from the numerical simulation of Eq. (1) (black
solid lines) and the approximated trajectories near the initial state
estimated from Eqs. (B2) and (B4) (red dashed lines). The values of
the external magnetic field Happl and the current density j are (a) 0
Oe and 222 × 106 A/cm2, and (b) −5.0 kOe and 70 × 106 A/cm2,
respectively. The position of the initial state is indicated as m0+,
whereas the location of the critical point satisfying dmz/dt = 0 is
indicated by the blue arrow.

catch the overviews of the energy landscapes, and these values
of the energy density are not explicitly used to develop the
theory in the main text.

APPENDIX B: DYNAMIC TRAJECTORY FROM THE
INITIAL STATE

In this Appendix we discuss the derivations of Eqs. (14)
and (16). The initial state is m0+, for convention.

First, let us consider the zero-field case. We notice that the
dynamic trajectory from the initial state to the critical point in
the xz plane is well approximated to be linear, as can be seen
in Fig. 3(c). The gradient of this approximated linear line is
given by

ṁz

ṁx
= HKmx + Hsmz

4πMmz + Hsmx
, (B1)

where the damping torque is neglected, as mentioned in the
main text. Substituting m0+ = (1, 0, 0) for Happl = 0 into
Eq. (B1), the dynamic trajectory in the xz plane with a linear
approximation is described as

mz = HK

Hs
(mx − 1). (B2)

Figure 7(a) shows the dynamic trajectory of the magnetization
in the xz plane obtained from the numerical simulation of
Eq. (1) by the black solid line, whereas the red dashed line
is Eq. (B2). The values of the parameters are Happl = 0 and
j = 222 × 106 A/cm2, as in the case of Fig. 3(c). As shown,
approximation obtained as Eq. (B2) well describes the dy-
namic trajectory from the initial state m0+ to the critical point.
The intersection between Eq. (11) and (B2) is the critical point
at zero field, which is given by Eq. (14). As mentioned in
the main text, the numerically evaluated value of mx at the
critical point satisfying dmz/dt = 0 is 0.520, which is close
to Eq. (14).

Next, let us extend the above discussion to the finite field
case. We again approximate the dynamic trajectory from the
initial state to the critical point to be linear. The gradient of
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the linear line is
ṁz

ṁx
= HKmx + Hsmz

−Happl + 4πMmz + Hsmx
. (B3)

Therefore, the approximated dynamic trajectory in the xz
plane is

mz = HKm0x + Hsm0z

−Happl + 4πMm0z + Hsm0x
(mx − m0x ) + m0z, (B4)

where m0x and m0z are given by Eq. (5). Figure 7(b) shows
the dynamic trajectory of the magnetization in the xz plane
obtained from the numerical simulation of Eq. (1) by the
black solid line, whereas the red dashed line is Eq. (B4).
The values of the parameters are Happl = −5.0 kOe and j =
70 × 106 A/cm2, as in the case of Fig. 4(b). Again, using
Eq. (B4) as an approximation well describes the dynamic
trajectory from the initial state m0+ to the critical point. The
numerically evaluated value of mx at the critical point satisfy-
ing dmz/dt = 0 is 0.806, which is close to the value of 0.828
estimated as the intersection between Eq. (11) and (B4), as
mentioned in the main text.

APPENDIX C: CALCULATION METHOD
AT FINITE TEMPERATURE

The LLG equation, with the random torque given by
Eq. (18), is solved by adding the random field satisfying
Eq. (19) to the magnetic field H in Eq. (1) [57]. The k compo-
nent (k = x, y, z) of the random field is given by

hk (t ) =
√

2αkBT

γ MV 
t
ξk (t ), (C1)

where the time step of the numerical simulation is 
t =
5 × 10−3 ns, as mentioned in Appendix A. White noise ξ is
derived from two random numbers, ζk and ζ�, in the range
of 0 < ζk, ζ� � 1 by the Box-Muller transformation as ξk =√−2 log ζk sin(2πζ�) and ξ� = √−2 log ζk cos(2πζ�).

We calculate the LLG equation with the white noise N =
1000 times for a given set of the applied field Happl and
the current density j to evaluate the switching probability.
Starting from the initial state in the positive x region, we
evaluate the x component mx of the magnetization at tmax =
5 μs or t = 50 ns. We note that the time step 
t is kept to
5 × 10−3 ns for both cases. We count the number n of the
trial where mx(tmax) < 0, and define the switching probabil-
ity as P( j) = n/N . We note that the initial state is reset at
each trial. The range of the current density for the switching
probability is chosen as jc,+ − 
 j1 � j � jc,+ + 
 j2 with
the step of δ j = 0.1 × 106 A/cm2, where jc,+ is the analyt-
ical value of the critical current density given by Eq. (17),

whereas 
 j1 = 10 × 106 A/cm2 and 
 j2 = 3 × 106 A/cm2.
The probability density is calculated as dP( j)/d j ∝ [P( j +
δ j) − P( j − δ j)]/2 to evaluate the current density where the
switching probability increases most rapidly.

APPENDIX D: BOUNDARY OF
DETERMINISTIC SWITCHING

In this Appendix we show the derivation of Eq. (20). As
mentioned in the main text, the deterministic switching occurs
when the steady-state solution in the presence of the current
locates inside one of the energetically stable regions. The re-
sult of the numerical simulation indicates that the steady-state
solution in the presence of finite field and current locates at
my = 0; see, for example, Figs. 4(a) and 4(b). We notice that
dmx/dt = 0 and dmz/dt = 0 are naturally satisfied at this
point, as can be confirmed from the LLG equations for mx

and mz. On the other hand, using my = 0, the condition of the
steady state for my, dmy/dt = 0, becomes

−Happlmx + (HK + 4πM )mxmz = −Hs. (D1)

Although an exact solution satisfying Eq. (D1) can be ob-
tained by, for example, introducing a variable θ defined as
mx = sin θ and mz = cos θ , the solution is complex and is
not useful. Instead, we use the fact that the switched state
m0− is close to the easy axis direction −ex. Then, mx � −1
and mz � (Happl + Hs)/(HK + 4πM ). Substituting these val-
ues into Eq. (4), we find that the energy density at the steady
state is approximately given by

E− = −MHappl

( Happl + Hs

HK + 4πM

)
− MHK

2

+ 2πM2
( Happl + Hs

HK + 4πM

)2

. (D2)

On the other hand, the saddle-point energy density is given by
Eq. (8). The condition that E− < Ed gives Eq. (20), which is
the threshold current density for the deterministic switching
to the stable state of m0−.

We note that the condition to keep the magnetization near
the initial state can also be derived in a similar way. In this
case, mx � +1 and mz = (Happl − Hs)/(HK + 4πM ). The en-
ergy density at this point is

E+ = −MHappl

( Happl − Hs

HK + 4πM

)
− MHK

2

+ 2πM2
( Happl − Hs

HK + 4πM

)2

. (D3)

The threshold current for the switching to m0+ obtained from
the condition E+ < Ed is − jth,±.
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