
PHYSICAL REVIEW B 102, 104428 (2020)

Topological quantization of the classical stochastic transport of a magnetic skyrmion
driven by a ratchetlike spin-polarized electric current at finite temperature
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We consider a magnetic skyrmion driven by a spin-polarized electrical current that is periodic in time,
and is periodic and asymmetric in a direction different from that of the current itself. We study its classical
stochastic transport in a finite temperature, by using the Fokker-Planck equation of the probability distribution,
derived from the stochastic equation of motion, the Langevin equation. We also perform numerical simulation of
the original Landau-Lifshitz-Gilbert equation describing the spins constituting the skrymion. The probabilistic
average velocity of the skyrmion is along the direction of the periodicity. When the thermal energy is much
lower than the potential energy, and their ratio is also much smaller than that between the time periodicity and
the diffusion time, the time and probabilistic average velocity is the ratio between the spatial and temporal
periodicities multiplied by topological integer called the Chern number. This result provides a practical way of
realizing topological numbers in classical stochastic systems and suggests a convenient way of manipulating
skyrmions at finite temperatures.
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I. INTRODUCTION

Magnetic skyrmions have attracted a lot of attention both
experimentally and theoretically [1], at least since its obser-
vation in the chiral magnetic material MnSi [2]. Many studies
have been made on its visibility [3–5], its motion driven by a
spin-polarized electric current [6–10], its transport in presence
of a temperature gradient [11–13], the thermal effects [14–16],
and the effect of Magnus force [17], among others.

In this paper, we consider a magnetic skyrmion moving
on a two-dimensional space at a finite temperature, driven by
a spin-polarized electric current that is periodic in time and
is periodic and asymmetric in a certain direction. Moreover,
there exists a random magnetic field with thermal fluctuations,
representing the effect of a finite temperature. Therefore, its
motion is described by a two-dimensional Langevin equation
obtained from the stochastic Landau-Lifshitz-Gilbert (SLLG)
equation for the constituent spins. We show that it turns out
to be a two-dimensional generalization of thermal ratchet adi-
abatically driven by an asymmetric potential that is periodic
in both space and time, in addition to the thermal fluctuations
[18].

Consequently, when the temperature is low enough, the
time and probabilistic average of the velocity of the magnetic
skyrmion is equal to a topologically invariant integer called
the Chern number multiplied by the ratio between the spatial
and temporal periodicities. This is referred to as topological
quantization. We have also performed numerical simulations
based on the SLLG equation, which not only confirm the
analytical result, but also demonstrate the breaking of the
quantization when either the adiabatic condition is unsatisfied
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or when the temperature is so high that the spins fail to
constituent a particlelike skyrmion even before the adiabatic
condition is violated. Finally, we also propose an experimental
setup for the demonstration of the topological quantization.

The rest of the paper is organized as the following. In
Sec. II, we give the Fokker-Planck equation describing the
stochastic motion of the skyrmion. In Sec. III, we obtain the
formula for the average velocity. In Sec. IV, we show that
the system is exactly a two-dimensional generalization of the
adiabatic thermal ratchet. In Sec. V, the condition is discussed
for the topological quantization of the time and probabilistic
average velocity. In Sec. VI, we present the numerical simula-
tions based on the SLLG equation for the constituent spins,
which demonstrate the topological quantization as well as
its breakdown for high enough temperature. An experimental
setup is designed in Sec. VII. A summary is made in Sec. VIII.

II. FOKKER PLANCK EQUATION FOR A SKYRMION

The dynamics of the constituent spins of the skrymion on
a two-dimensional space is described by the SLLG equation
[10–16]

∂n
∂t

+ (vs · ∇ )n = −1

h̄
n × (Heff + R)

+αn × ∂n
∂t

+ βn × (vs · ∇ )n, (1)

where n ≡ n(x, y) represents the direction of the spin at (x, y),
satisfying n2 = 1, α represents the damping effect, vs = − a3

2e j
is the spin velocity, where j is the spin-polarized electric
current density multiplied by its spin polarization and divided
by the magnetic saturation. a is the lattice constant of the
local spins, β is the nonadiabatic coefficient, usually β � α,
Heff ≡ − δHS

δn is the effective magnetic field, HS being the

2469-9950/2020/102(10)/104428(7) 104428-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2910-0684
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.104428&domain=pdf&date_stamp=2020-09-23
https://doi.org/10.1103/PhysRevB.102.104428


SHAN-CHANG TANG AND YU SHI PHYSICAL REVIEW B 102, 104428 (2020)

Hamiltonian, which is

HS =
∫∫

dxdy

[
J

2
(∇n)2 + D

a
n · (∇ × n)

− 1

a2
B · n − K

a2
n2

z

]
, (2)

in the continuous case, and is

HS = −J
∑
〈i j〉

ni · n j − D
∑
〈i j〉

êi j · ni × n j

− B ·
∑

i

ni − K
∑

i

n2
iz, (3)

in the discrete case [1], where J is the exchange interaction
constant, D is the Dzyaloshinskii-Moriya interaction strength
[19,20], B is the external magnetic field in the unit of en-
ergy, K is the anisotropic constant, and 〈i j〉 represents the
nearest neighbors. In our present work, a crucial element
is an additional random magnetic field R, which character-
izes the effect of the finite temperature T , with 〈Ri(r, t )〉 =
0, 〈Ri(r, t )Rj (r′, t ′)〉 = 2αh̄kBTa2δi jδ(r − r′)δ(t − t ′), where
i, j = x, y, h̄ is the Planck constant, and kB is the Boltzmann
constant.

A skyrmion is a topologically stable spin texture, character-
ized by a winding number, which is unchanged by continuous
deformation. Hence it can move as a particlelike object, gov-
erned by the equation of motion, which can be derived from
SLLG equation using Thiele’s method [14,21]. Because of the
randomness of R, the equation of motion of the skyrmion is a
Langevin equation

αd

[
q̇ − β

α
vs

]
+ αmẑ × [q̇ − vs] = ν(t ), (4)

where the stochastic variable q = (qx, qy) represents the po-

sition of the skyrmion as a whole, αd ≡ α
∫∫

dxdy( ∂n
∂x )

2
,

and αm ≡ ∫∫
dxdyn · ( ∂n

∂x × ∂n
∂y ) describe the effects from the

spin texture, namely, damping and magnus effects [17], ν =
(νx, νy) is the stochastic force due to the random magnetic
field R, satisfying

〈νi(t )〉 = 0, 〈νi(t )ν j (t
′)〉 = 2

αd kBTa2

h̄
δi jδ(t − t ′). (5)

The stochastic motion of the skrymion can also be de-
scribed in terms of the probability density ρ(r, t ), satisfying
the corresponding Fokker-Planck equation [22]

−∂ρ(r, t )

∂t
= DOρ(r, t ), (6)

where

D ≡ αd kBTa2

h̄
(
α2

m + α2
d

) ,

O = −∇2 + ∂

∂x
(C1vsx + C2vsy) + ∂

∂y
(−C2vsx + C1vsy),

with

C1 ≡ h̄
β

α
α2

d + α2
m

αd kBTa2
, C2 ≡ h̄

(
β

α
− 1

)
αm

kBTa2
.

The probability current density J = (Jx,Jy) is given by

Jx = D
[
(C1vsx + C2vsy) − ∂

∂x

]
ρ, (7)

Jy = D
[

(−C2vsx + C1vsy) − ∂

∂y

]
ρ. (8)

One can find that the probability current
∫∫

J dxdy gives
the instantaneous velocity q̇ averaged over probability distri-
bution, that is,

〈q̇〉 = J =
∫∫

J dxdy. (9)

III. PROBABILISTIC AVERAGE VELOCITY
OF A SKYRMION

The Fokker-Planck equation can be solved by transforming
the Fokker-Planck operator to an Hermitian operator, under
the condition [22]

∂

∂y
(C1vsx + C2vsy) = ∂

∂x
(−C2vsx + C1vsy). (10)

Without loss of generality, we choose the direction of the
driving electric current to be x direction, that is, vsx = vs,
vsy = 0. Hence the above condition is reduced to

∂vs

∂y
+ κ

∂vs

∂x
= 0, (11)

where

κ ≡ C2

C1
=

(
β

α
− 1

)
αdαm

β

α
α2

d + α2
m

.

Therefore the most general form of vsx is

vs(x, y, t ) = M(x − κy) + N (t ), (12)

where M(x − κy) is a function of x − κy, N is a function of t .
Consider a coordinate transformation(u

v

)
= W

(x
y

)
, (13)

where

W ≡ 1√
1 + κ2

(1 −κ

κ 1

)
. (14)

The Fokker-Planck operator can be rewritten as

O = −∇2 + ζ
√

1 + κ2
∂

∂u
[M(

√
1 + κ2u) + N (t )], (15)

where

ζ = 1

D

β

α
α2

d + α2
m

α2
d + α2

m

= h̄
β

α
α2

d + α2
m

αd kBTa2
.

The probability current density can be rewritten as J =
(Ju,Jv ), with

Ju = D
{
ζ
√

1 + κ2[M(
√

1 + κ2u) + N (t )] − ∂

∂u

}
ρ, (16)

Jv = −D ∂

∂v
ρ. (17)
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The stochastic variable q can be rewritten as q = (qu, qv ),
with (qu

qv

)
= W

(qx

qy

)
, (18)

satisfying

q̇u = − D∂qu
(qu) + ξu, (19)

q̇v =ξv, (20)

with (
ξu

ξv

)
= W

(
ξx

ξy

)
. (21)

The components of the probabilistic average velocity are

〈q̇u〉 =
∫∫

Jududv, (22)

〈q̇v〉 =
∫∫

Jvdudv. (23)

Note that in terms of coordinates (u, v), the system is still
two dimensional. Nevertheless, the motion on v direction is
purely diffusion. It is straightforward to obtain 〈q̇v〉 = 0. In
the following, we set out to calculate 〈q̇u〉.

In terms of


(u, t ) = −ζ
√

1 + κ2

∫ u

0
du′M(

√
1 + κ2u′)

− ζ
√

1 + κ2N (t )u, (24)

the Fokker-Planck operator O can be transformed to a Hermi-
tian operator

H = e
/2Oe−
/2 = −∇2 + U, (25)

where

U = −1

2

∂2


∂u2
+ 1

4

(∂


∂u

)2

. (26)

Consequently, the Fokker-Planck equation is transformed to a
Schrödinger-like equation

−∂ψ (u, v, t )

∂t
=

(
DH − 1

2

∂


∂t
− ∂ ln

√
Z

∂t

)
ψ (u, v, t ),

(27)
where

ψ (u, v, t ) = ρ(u, v, t )e
/2
√

Z (28)

with Z ≡ ∫∫
e−
dxdy.

The probability current, i.e., the probabilistic average of the
velocity, which is on u direction rather than x direction, is thus

Ju(t ) =
∫∫

Ju(u, v, t )dudv

= −2D
∫∫

ψ0(u, v, t )
∂

∂u
ψ (u, v, t )dudv, (29)

where ψ0 = 1√
Z

e−
/2 is the “ground state wave function”

corresponding to the equilibrium state ρ0 = 1√
Z

e−
.

IV. STOCHASTIC MOTION OF THE SKYRMION
AS A TWO-DIMENSIONAL THERMAL RATCHET

We first recall the thermal ratchet. Consider an overdamped
particle moving along one-dimensional space, governed by
the Langevin equation

ηẋ = −V ′(x, t ) + ξ (t ), (30)

where V is the total potential periodic in both the one-
dimensional coordinate x and in time t , and is asymmetric in x,
ξ (t ) is a random force satisfying 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (s)〉 =
2ηkBT δ(t − s), η is the proportional constant between the
frictional or damping force and the velocity. Because of the
existence of the time-dependent force, a nonzero unidirec-
tional current develops [23], which would be absent if there
were no time-dependent force even though the potential is
asymmetric.

For model (30), it has been shown that when the temper-
ature is low enough, the average velocity of the particle is a
basic unit multiplied by a Chern number, a topologically in-
variant integer [18]. The quantitative criterion for the lowness
of the temperature is

kBT

V0
� min

(
1,

T
τD

)
, (31)

where V0 is the amplitude of the potential energy V , T is the
time periodicity of the potential, τD = L2/D is the diffusion
time over the spatial period L of V . kBT

V0
� 1 represents the

dominance of the potential energy over the thermal fluctua-
tion, while kBT

V0
� T

τD
is the further requirement of adiabaticity

in this case [18].
We now show that the stochastic motion of the skyrmion

is exactly a two-dimensional generalization of this adiabatic
thermal rachet. For this purpose, we rewrite the Langevin
equation of the skyrmion (4) as

q̇ = −D∇
(r, t ) + ξ(t ), (32)

where ξ(t ) = (ξx(t ), ξy(t )), with ξx = αd νx+αmνy

α2
d +α2

m
, ξy =

−αmνx+αd νy

α2
d +α2

m
, 
 is exactly as given in (24).

It can be seen that the skyrmion becomes a two-
dimensional generalization of the thermal rachet if M(x − κy)
is inversion-symmetric and periodic in x − κy, in other words,
M = M(

√
1 + κ2u) is periodic in u, with periodicity denoted

as L, while N (t ) is periodic in time t , with the temporal
periodicity denoted as T . Note that the direction of the electric
current, i.e., x direction, is not the direction of u, along which
M is periodic. Hence our model is truly two dimensional.
Below we will envisage an experimental setup realizing such
a situation.

The inversion-asymmetry of M can be maintained even
though its gradient is inversion-symmetric, for example, if
M is a sine function u, which is inversion-asymmetric, its
gradient is a cosine function, which is inversion-symmetric.

V. TIME AVERAGE OF THE PROBABILITY CURRENT

The probability current is just the probabilistic average
of the velocity. Now we calculate its time average, which is
called the time and probabilistic average velocity.
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We consider the case that the potential energy dominates
the thermal energy, that is,


0 	 1, (33)

where 
0 is the amplitude of 
 [18]. In this case, the Bloch
bands of H is derived from the low levels in the deep potential
wells of U , which typically contains a double-well structure
in each period of the ratchet, even if 
 has one well in each
period, as the dominant term (∂u
)2 in U has only half the
period of 
, and thus must contain two wells in each period
of 
. These two wells are made inequivalent by the weaker
term, ∂2

u 
, which has the full periodicity of V . The band gap
�E can thus be estimated to be ∼∂2

u 
 [18]. Thus

�E ∼ 
0

L2
. (34)

The adiabatic condition is

T 	 1

D�E
, (35)

where �E is the gap between the lowest and the second-
lowest eigenvalues of H. Hence in the case that the potential
energy dominates the thermal energy, by substituting Eq. (34)
to the adiabatic condition (35), one obtains

T 	 L2

D
0
. (36)

We can define 
0 ≡ V0/kBT , then the condition (31) is
reproduced.

Under this condition, one can use the adiabatic perturbation
theory to obtain time and probabilistic average velocity [18],

〈u̇〉 = L

T C,
(37)〈v̇〉 = 0,

where C is an integer called Chern number. In terms of the
original coordinates (x, y),

〈ẋ〉 = 1√
1 + κ2

L

T C,

(38)
〈ẏ〉 = − κ√

1 + κ2

L

T C,

which indicates that the average velocity of the skrymion is
the basic unit multiplied by an integer. It is “quantized” in the
sense that is an integer multiply of a basic unit, though it is a
classical system.

VI. NUMERICAL SIMULATION

We have also performed numerical simulations of the
SLLG equation, by using the Runge-Kutta method on a 100 ×
864 lattice with the periodic boundary condition. The size is
so chosen as 100/864 ≈ κ . Inspired by a numerical work on a
thermal ratchet [24], we assume the polarized electric current
to be

jx = − jc
[
cos kc(x − κy) + 1

2
cos 2kc(x − κy)

]

− A cos
(2π

T t
)
, (39)

which is in the unit of 2e
a2τ

, where τ ≡ h̄
J is the time unit. Hence

vsx = a
τ

jx.
We first examine the parameter regimes for the dominance

of the potential energy and the adiabatic condition. Substitut-
ing Eq. (39) into Eq. (24), we obtain


(u, t ) = −
β

α
α2

d + α2
m

αd
kBT

J a
jc

[
sin(

√
1 + κ2kcu)

+ 1

4
sin(2

√
1 + κ2kcu)

]

−
β

α
α2

d + α2
m

αd
kBT

J a

√
1 + κ2A cos

(
2π

T t

)
u, (40)

which is then estimated by using the following magni-
tude: sin(

√
1 + κ2u) + 1

4 sin 2k(
√

1 + κ2u) ∼ 1, u ∼ L,
A cos( 2π

T t ) ∼ A
2 . Thus the potential energy dominates the

thermal energy when


0 ∼
β

α
α2

d + α2
m

αd
kBT

J

L

a

( jc
2π

+ A

2

)
	 1, (41)

which is substituted into the gap formula (34), reducing the
adiabatic condition (35) to

T 	 L

a

τ
jc

2π
+ A

2

. (42)

Supposing the parameter values to be αd ∼ 1, αm ∼ 10,
jc ∼ 0.1, A ∼ 0.1, L/a ∼ 100, as will be used in our simu-
lation, we have


0 ∼ 103
( J

kBT

)
	 1 (43)

as the condition for the dominance of potential energy, and

T 	 103τ (44)

as the adiabatic condition in this case. It can be found that
τD = L2

D = L2 h̄(α2
m+α2

d )
αd kBTa2 = τ

α2
m+α2

d
αd

L2

a2
1

kBT
J

≈ 102 × 104 × 10τ =
107τ .

Now we perform simulation in the case of potential energy
dominance 
0 	 1 and under the further adiabatic condition
T 	 103τ . In this limit, for various values of kBT/J , we
obtain the average velocity as a function of jc, as shown in
Fig. 1.

Exactly as our theory above has predicted, the simula-
tion result clearly indicates that for kBT/J < 0.1, the average
velocity of the skyrmion is indeed an integer multiply of

1√
1+κ2

L
T , which is about 0.02 in the unit of a/τ ,

At the highest value of the temperature used in our simula-
tion, kBT = 0.1, there is a small deviation from the quantized
value. Note that this is not because the adiabatic condition
is violated, but is due to the fact that the magnetic skyrmion
becomes unstable at such a temperature. At this temperature,
for the constituent spins, it becomes inappropriate to use the
equation of motion (4) for the whole particlelike skyrmion,
which is the basis of the above theory of topological quanti-
zation.

We have also made simulations for various values of the
driving period T . As shown in Fig. 2, the average velocity of
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8 10 12 14 16 18 20 22
0.00

0.01

0.02

0.03

0.04
〈x
〉(
a/
τ)

jc(0.02e/a
2τ)

kBT = 0
kBT = 0.001
kBT = 0.005
kBT = 0.01
kBT = 0.05
kBT = 0.08
kBT = 0.09
kBT = 0.1

FIG. 1. The skyrmion’s average velocity along x direction as a
function of the amplitude jc of the polarized electric current. The
unit of the velocity is a

τ
, while the unit of jc is 0.01 2e

a2τ
. Different

symbols and colors represent different values of kBT in unit of J , i.e.,
kBT/J . The grey line represents the analytically predicted value of
the velocity. The parameter values used in the simulation are k = 2π

100 ,
κ = 100

864 , T = 5000τ . The amplitude A in time oscillation is fixed to
be 0.2. The damping parameter α is 0.1, the magnetic field along
the z direction Bz is 0.015J , the Dzyaloshinskii-Moriya interaction
constant D is 0.12J; the anisotropic energy constant K is 0.01J .

the skyrmion is obtained, in terms of the basic unit 1√
1+κ2

L
T .

For T = 2000τ , the average velocity is quantized very well.
However, the quantization is gradually lost with the decrease
of the driving period, and is lost when T = 1700τ , which
violates the adiabatic condition, in consistency with the above
analysis.

8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈x
〉/v

st
an
da
rd

jc(0.02e/a
2τ)

T = 2000τ
T = 1900τ
T = 1800τ
T = 1700τ

FIG. 2. The average velocity of the skyrmion divided by the
basic unit 1√

1+κ2

L
T , which is denoted as vstandard here, as a function

of jc, for various values of the driving period T . The temperature is
fixed as kBT = 0.01J .

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

1.5

u

f0(u)
f(u)

FIG. 3. Comparison between functions f0(u) and f (u).

VII. EXPERIMENTAL REALIZATION

In our simulation above, the electric current is assumed to
be given in Eq. (39), which can be written as

jx = − jc f0(x − κy) − A cos

(
2π

T t

)
, (45)

with

f0(u) ≡ cos(kcu) + 1
2 cos(2kcu), (46)

where kc = 2π/L. In the simulation, we have chosen L =
100a.

Since the trigonometric functions are not easy to realize in
the experiments, we replace f0(u) as

f (u) =
{1.5, 0 � u < 20a,

−1 20a � u < 80a,

1.5, 80a � u < 100a,

(47)

moreover,

f (u + L) = f (u), (48)

where L = 100a in this example. As indicated in Fig. 3, f0(u)
and f (u) are close to each other. f (u) can be rewritten as

f (u) =
{1.5, −20a � u < 20a,

−1 20a � u < 80a.
(49)

Therefore, we propose a method of experimental realiza-
tion of the polarized electric current

jx = − jc f (u) − A cos

(
2π

T t

)
, (50)

with u = (x − κy)/
√

1 + κ2, as shown in Fig. 4. For easy
realization, the polarized electric current is constant locally, as
produced by local electrodes, but globally it satisfies Eq. (50),
implementing the ratchetlike polarized electric current.

On the sample are planted many small electrodes, of which
there are three kinds depicted as blue, red, and green. On each
line with the slope 1

κ
, are electrodes with a same color. The
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V+V- V-’ V+V- V-’

FIG. 4. A device that realizes the ratchetlike polarized electric
current.

lines with the three colors alternate. The distance between the
neighboring blue and red electrodes lines is

√
1 + κ2l1, while

that between the neighboring red and green lines is
√

1 + κ2l2.
Thus the spatial period along x direction is

√
1 + κ2L. L =

l1 + l2 is the period in u. According to the values in the
simulation, one can use l1 = 40a, l2 = 60a. But this is not
necessary.

The distance between the neighboring green and blue lines
is as small as possible. The red electrodes are all grounded,
with

V+ = 0. (51)

The voltage of each blue electrode is

V− = −
(

1.5 jc + A cos
2π

T
) 2e

a2τ

l1
√

1 + κ2

σ
, (52)

where σ is the electrical conductivity of the material. The
voltage of each green electrode is

V ′
− = −

(
1.0 jc − A cos

2π

T
) 2e

a2τ

l2
√

1 + κ2

σ
. (53)

Thus the electric current in the range of l1
√

1 + κ2 is
σ (V+−V− )

(−2e/a2τ )l1
√

1+κ2 = −1.5 jc − A cos ( 2π
T t ), the electric current

in the range of l2
√

1 + κ2 is σ (V ′
−−V+ )

(−2e/a2τ )l2
√

1+κ2 = 1.0 jc −
A cos ( 2π

T t ).
In the experiment, we should first generate a single

skyrmion on the sample. Then apply the above voltages on
the electrodes and measure the position of the skyrmion as
a function of time, from which velocity of the skyrmion is
obtained. The time and probabilistic average can be obtained
by the averaging over the process of the transport.

VIII. SUMMARY

In summary, we have studied a magnetic skyrmion adia-
batically driven by a ratchetlike polarized electric current and
subject to thermal fluctuations of magnetic field. We show
that the model exactly implements a two-dimensional general-
ization of an adiabatic thermal rachet, consequently, when
the temperature is so low that the potential energy dominates
the thermal energy while the adiabatic condition is also satis-
fied, the time and probabilistic average of its velocity is equal
to the ration between the spatial and temporal periodicities
multiplied by an integer called the topological Chern number.
In our model, the direction of the spatial periodicity is not
the direction of the electric current. This topological quan-
tization is confirmed by our numerical simulation directly
dealing with the constituent spins. We also design an exper-
imental setup to produce the ratchetlike electric current. The
topological quantization proposed here provides an interest-
ing way of robust control of the skyrmion transport at low
temperatures, which could be useful for magnetic storage and
communication.
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