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Short-imaginary-time quantum critical dynamics in the J-Q3 spin chain
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We study the short-imaginary-time quantum critical dynamics (SITQCD) in the J-Q3 spin chain, which hosts
a quasi-long-range-order phase to a valence bond solid transition. By using the scaling form of the SITQCD
with a saturated ordered phase, we are able to locate the critical point at qc = 0.170(14). We also obtain the
critical initial slip exponent θ = −0.507(3) and the static exponent β/ν = 0.498(2). More strikingly, we find
that the scaling dimension of the initial order parameter x0 is close to zero, which suggests that the initial order
parameter is a marginal operator. As a result, there is no initial increase behavior of the order parameter in the
short-imaginary-time relaxation process for this model, which is very different from the relaxation dynamics
in the Ising-type phase transitions. Our numerical results are realized by the projector quantum Monte Carlo
algorithm.
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I. INTRODUCTION

Nonequilibrium dynamics of quantum phase transitions
has been an attractive topic in condensed-matter physics and
statistical physics in recent decades [1,2]. Among different
types of nonequilibrium dynamics, the quantum imaginary-
time relaxation stands out as a usual method to find the ground
state of quantum many-body systems. Moreover, algorithms
based on the imaginary-time relaxation were designed for
quantum computations recently [3,4]. In addition, studies on
the imaginary-time evolution also reap great benefits [5–9].
For example, it was shown that in the driven critical dynam-
ics, the imaginary- and real-time dynamics have considerable
similarities [5], but the former is much easier to realize numer-
ically, especially for systems in higher dimensions [5–7,10].
In addition, by comparing with the classical short-time crit-
ical dynamics in dissipative systems [11–13], the scaling
theory for the short-imaginary-time quantum critical dynam-
ics (SITQCD) was developed [14,15] by analogy with its
classical counterparts [16–20]. This theory provides efficient
methods to determine the critical properties in the short-time
region, overcoming the difficulties induced by the critical
slowing down [14,15,21].

In imaginary-time evolution, the system is controlled by
low-lying energy levels so that universal power-law be-
haviors can exist during the evolution after a transient
microscopic time [14,15,22]. In the Ising-type phase transi-
tion, the SITQCD theory shows that the critical initial slip of
the order parameter D(τ ) ∝ D0τ

θ exists when an initial state
with small D0 and zero correlation is prepared. Therein θ is
the critical initial slip exponent and is positive for the quan-
tum Ising model in both one and two dimensions [14,15,21].
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Namely, with a small initial value D0, in the early stage of
the evolution, D(τ ) does not decrease towards its ground-state
value of zero. Instead, D(τ ) counterintuitively experiences an
increasing stage, which scales as τcr ∼ D−z/x0

0 , with x0 being
the scaling dimension of D0 [14,15,21]. For the quantum Ising
model in both one and two dimensions, x0 is positive, and D0

is a relevant scaling variable, resulting the initial increase of
D(τ ).

Here, we study the SITQCD of the one-dimensional J-Q3

model by means of quantum Monte Carlo (QMC) simulations.
The Hamiltonian of the J-Q3 chain is given by [23,24]

H = −J
L∑

i=1

Pi,i+1 − Q
L∑

i=1

Pi,i+1Pi+2,i+3Pi+4,i+5, (1.1)

where J and Q are both antiferromagnetic (AF) couplings and
Pi,i+1 denotes the two-spin singlet operator

Pi,i+1 = 1
4 − Si · Si+1. (1.2)

The standard J interactions tend to form the quasi-long-range-
order (QLRO) phase that is in the class of the standard critical
Heisenberg chain, while the multispin Q terms favor a dou-
bly degenerate valence bond solid (VBS) phase. A transition
appears at qc = (Q/J )c ≈ 0.16 [24,25], separating the QLRO
phase from the VBS phase. The same kind of phase transition
also occurs in the well-studied J1-J2 spin chain [26,27] at the
coupling ratio J2/J1 = 0.241167(5) [27]. However, due to the
“sign problem” caused by the next-nearest-neighbor frustrat-
ing J2 interactions, QMC simulations of the J1-J2 model are
hardly available. In addition, a related J-Q2 chain in the same
J-Q family also has similar properties, but the VBS order
is weaker in it [23,24]. In two dimensions, the J-Q model
exhibits a fascinating deconfined quantum phase transition
between the Néel and VBS phases [23].
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The rest of the paper is organized as follows. In Sec. II,
we review the SITQCD theory and the scaling relations that
are useful in our study. The QMC method employed in this
work is outlined in Sec. III. We present our numerical results
in Sec. IV and discuss our findings in Sec. V. A summary is
given in Sec. VI.

II. SHORT-IMAGINARY-TIME QUANTUM CRITICAL
DYNAMICS SCALING THEORY

For a quantum state |�(τ )〉, the imaginary-time evolu-
tion of the wave function is described by the imaginary-time
Schrödinger equation [28,29]. Near the critical point, |�(τ )〉
is governed by the low-energy levels during the imaginary-
time evolution as the high-energy levels decay very fast.
According to the theory of SITQCD, observable O should
obey the following scaling form [14,15]:

O(τ, g, D0, L) = bφO(τb−z, gb
1
ν , D0bx0 , Lb−1), (2.1)

in which τ , g, D0, and L represent the imaginary time, the
distance to the critical point, the initial value of the order
parameter, and the system size, respectively. z is the dynamic
exponent, and ν is the correlation length exponent. x0 is the
dimension of D0, and φ is related to the quantity O studied.
For instance, φ = −β/ν (with β being the order parameter
exponent) for the order parameter, and φ = 0 for the dimen-
sionless variable. There are two apparent fixed points that
can be readily identified for D0: One is D0 = 0; the other is
D0 = Dsat, with Dsat being the maximum value of D (the satu-
rated value, which depends on the model studied). D0 = 0 and
D0 = Dsat represent completely disordered and ordered states,
respectively, which do not change under scale transformation.
Moreover, these two fixed points do not depend on the scaling
dimension of D0.

By choosing the scaling factor b = τ
1
z , one obtains the

scaling form of O,

O(τ, g, D0, L−1) = τ
φ

z fO(gτ
1
νz , D0τ

x0
z , L−1τ

1
z ), (2.2)

in which fO is the scaling function related to O. For small D0,
in the short-time region, fO can be expanded as a series of
D0τ

x0
z . Note that the correlation length ξ of the initial state has

to be very short as required by the SITQCD theory [11,14].
With ξ → 0, the derivatives of the free energy are analytic. In
addition, in the short-time region, fO is a continuous function
of D0τ

x0
z , so that one can perform series expansion of fO in

terms of D0τ
x0
z . Such treatment has proven to be valid in both

classical short-time critical dynamics [11] and the SITQCD
theory [14] already. Taking the order parameter D for an
example, the leading part of the scaling form obeys

D(τ, g, D0, L−1) = D0τ
θ fD(gτ

1
νz , L−1τ

1
z ), (2.3)

in which the critical initial slip exponent θ reads

θ = x0

z
− β

νz
. (2.4)

When θ > 0, the order parameter increases in the initial stage
of the evolution. This is the case for the quantum Ising model
in both one and two dimensions [14,21]. Therein the initial
order parameter is relevant, and x0 is larger than β/ν.

However, when the initial order parameter is marginal, i.e.,
x0 = 0, Eq. (2.4) gives θ = − β

νz . In this situation, the order
parameter will not increase with τ . Instead, it will decay as
D ∼ D0τ

− β

νz , similar to its long-time relaxation. We will find
that this is just the case for the J-Q3 spin chain (1.1) studied
here.

Moreover, when the initial order parameter D0 is chosen at
its apparent fixed points, i.e., D0 = 0 or D0 = Dsat, Eq. (2.1)
shows that the kth moment of the order parameter with D0

being at its fixed point satisfies

Dk (τ, L−1) = τ−k β

νz fDk ,D0
(gτ

1
νz , L−1τ

1
z ). (2.5)

Besides the order parameter, the SITQCD behavior also
manifests in the imaginary-time correlation function of
D [12,21,30],

C(τ ) = lim
D0→0

D(τ )

D0
= L〈D̂(0)D̂(τ )〉, (2.6)

in which D̂ is the operator of the dimer order parameter at
imaginary time 0 and τ . Here, 〈· · · 〉 represents the statisti-
cal average of the operators. It has been shown that C(τ )
satisfies C(τ ) ∝ τ θ in the thermodynamic limit, while for
finite-size systems, the scaling form of C(τ ) at the critical
point is [12,21,30]

C(τ, L) = τ θ fC (τL−z ). (2.7)

According to Eq. (2.7), when the initial order parameter is
marginal, C(τ ) decays as C(τ ) ∼ τ− β

νz , as will be seen in the
J-Q3 chain.

The scaling theory of the SITQCD can be employed to
determine the critical properties [14,15,21]. For example, to
determine the critical point, the initial order parameter D0

can be chosen to be its fixed values to lessen the variables
in Eq. (2.2). In this situation, the dimensionless variable, such
as the average sign of the order parameter I (τ ), defined as
I (τ ) = 〈sgn{D(τ )}〉 [31,32], satisfies

I (τ, g) = fI (τL−z, L
1
ν g). (2.8)

For a fixed aspect ratio τL−z, Eq. (2.8) shows that I (τ, g) cross
at g = 0 for different system sizes. Accordingly, the critical
point can be determined. In addition, by using Eq. (2.5) at
g = 0, one can determine the static exponent β/ν. Moreover,
θ can be estimated from Eqs. (2.3) and (2.7). For the case
where D0 is relevant, Eq. (2.7) is simpler in practice as it takes
the limit D0 → 0 in advance.

III. NUMERICAL METHOD

In this section, we will introduce the QMC method used
in our calculations briefly. The projector QMC method em-
ployed in this work is based on the stochastic series expansion
(SSE) QMC method [10].

In imaginary time, the Schrödinger equation describes the
evolution of a quantum state |�(τ )〉 as [28,29]

∂τ |�(τ )〉 = −H |�(τ )〉. (3.1)

A formal solution of the Schrödinger equation is given by

|�(τ )〉 = U (τ )|�(τ0)〉, (3.2)
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in which U (τ ) = e−τH is the imaginary-time evolution opera-
tor and τ0 is the starting time of the evolution. The expectation
value of an operator Ô at τ is then

O(τ ) = 1

Z
〈�(τ )|Ô|�(τ )〉, (3.3)

where the normalization is defined as

Z = 〈�(τ )|�(τ )〉 = 〈�(τ0)|e−τH e−τH |�(τ0)〉. (3.4)

The central idea of the projector QMC method is to perform
series expansion of U (τ ) in the normalization

Z =
∞∑

n

∑

Sn

〈�(τ0)|β
n

n!
Sn|�(τ0)〉, (3.5)

with Sn denoting the operator sequence and β = 2τ . The
expansion order n can be truncated to some maximum
length that causes no detectable error. The operator sequence
and states are then importance sampled, and measurements
can be done accordingly. To gain efficiency, we employ a
global loop-update scheme in the importance sampling proce-
dure [10,33]. In our calculations, we perform 105 equilibration
steps followed by at least 100 bins of successive measure-
ments, each with 105 Monte Carlo steps, in order to ensure
statistical errors are under control.

In comparison with the SSE method, in the projector
method, the imaginary-time axis can have different or fixed
boundary states, which is actually crucial for realizations of
different initial states in this study. In addition, for short evo-
lution times, a binomial weight factor should also be inserted
in Eq. (3.5) in order to obtain accurate expectation values as
different propagated states have different contributions when
τ is not large. At long times, the effect of the weight factor
becomes negligible, and the measurements can be done in
the “middle” of the projection axis far away from the bound-
aries [33].

In addition, in the projector QMC method, apart from
the standard Sz basis, the valence bond basis can also be
applied [24,34]. Here, we consider different initial states, in-
cluding VBS, AF, and disordered states. The valence bond
basis has Sz

tot = 0 so that it is convenient in realizing VBS
states. For disordered and AF states, the standard Sz ba-
sis is more useful. Therefore, in our calculations, different
bases will be used according to the initial state. Both the
SSE and projector QMC methods are well documented, and
here, we refer readers to details of the methods in the litera-
ture [10,33,34].

IV. NUMERICAL RESULTS

In this section, we present the QMC results of the SITQCD
in the QLRO-VBS transition of the J-Q3 chain. First, we
locate the critical point of the transition and then compute the
critical initial slip exponent θ . The static exponent ratio β/ν

is then determined. By comparing θ and β/ν, we find that
their absolute values are almost equal to each other, namely,
x0 very close to zero, indicating a marginal D0. The dynamical
exponent z of the J-Q3 chain is known to be z = 1 [10], which
will be set as the input.

0.1 0.2 0.3 0.4 0.5

q = Q/J

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

I
(τ

)

L = 64
L = 128
L = 256
L = 512
L = 1024
L = 2048

FIG. 1. I (τ ) for different coupling ratios q = Q/J with sizes
from L = 64 to 2048 at τL−z = 1/16. The error bars are much
smaller than the symbols (which is also the case in other figures).
The solid lines are polynomial fits to the data, up to cubic terms.

In the J-Q3 chain, the order parameter for the dimer order is
defined as D = [

∑L
i (−1)iSi · Si+1]/L or its z component Dz.

In the following, for simplicity, the full dimer order parameter
and its z component are both denoted as D.

A. Determination of the critical point

To locate the critical point, the system is prepared in the
VBS initial state and then relaxes in the imaginary time. Here,
Dsat = 3/8 (full order parameter). We compute I (τ ) for L =
48 to 2560 with a fixed aspect ratio τL−z = 1/16. In Fig. 1,
we plot I (τ ) for L = 64 to 2048 to show how the crossing
point of L and 2L evolves with the increase of L. The values
of I (τ ) are close to 1 for all coupling ratios q, indicating that
the system remains mostly in the VBS phase. It is obvious that
the evolution time τ = Lz/16 is too short for the system to get
rid of the remanence of the initial VBS state.

Using polynomials up to cubic terms to fit the data, we can
extract the crossing point qc of I (τ ) for L and 2L. The depen-
dence of qc on the system size L is shown in Fig. 2. Unlike
the usual cases where qc(L) converges rapidly as L increases,
here, qc(L) exhibits a convex behavior, which suggests that
the size effect in qc is not negligible even at the largest-size
system accessed. We use the form qc(L) = qc + aL−ω [35] to
fit qc(L) and find that in the limit of L → ∞, qc is 0.170(14),
which agrees with the exact diagonalization (ED) result qc =
0.16478(5) given in a recent study [36].

In the inset of Fig. 2, we show the dependence of qc on the
fitting range by changing the largest system size Lmax included
in the fitting. As Lmax increases, qc approaches the ED result
qc = 0.16478(5) rapidly. In Ref. [36], the authors also used
the equilibrium QMC technique to extract the critical point
qc = 0.21(4). In addition, our estimation of qc has approxi-
mately the same error level as the equilibrium QMC result in
Ref. [36]. However, since the accessible system size (up to
L = 256) is much smaller than our result, it is possible that
the equilibrium QMC study did not reach the region where
the size effect in qc(L) becomes clear. Even though our result
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FIG. 2. Dependence on system size of the crossing point of I (τ )
for L and 2L. The solid line is a fit with the form of qc(L) =
qc + aL−ω to extract qc in the thermodynamic limit. qc is given by
0.170(14), with a = 0.81(3), ω = 0.29(3), and χ 2 per degree of
freedom of 1.04. Inset: Dependence of qc on the largest system size
Lmax included in the fitting. The dashed line is a guide to the eyes.

for qc comes with a large error bar, the nonconverging convex
behavior of qc(L) and slow decay of I (τ ) on the QLRO side
help to explain why it is difficult for QMC studies (either
equilibrium or nonequilibrium) to extract the precise critical
point. Certainly, our result can be improved by accessing
larger system sizes and data of better quality, which will con-
sume much more computational resources, and we will leave
that to further studies. Since our estimation of qc = 0.170(14)
has only moderate precision, we will use the ED estimation
qc = 0.16478 [36] in the following.

In Fig. 2, the aspect ratio τL−z is fixed at 1/16, but we have
also tried different values of the aspect ratio (data not shown).
For larger τL−z, the curve of qc(L) moves downwards but
also becomes flatter compared to the one shown here, which
makes it more difficult to analyze the size effect. In addition,
as τL−z increases towards 1, the behavior of qc(L) converges
to ground-state results, requiring many more computational
resources. However, this does not mean that the smaller τL−z

is, the better. For small values, for instance, τL−z = 1/100,
the size required to reach the same scale of τ can be too large
to simulate since τ should also exceed the microscopic time
τmic so as not to fall in the nonuniversal stage. Therefore, it
is better to choose a medium τL−z based on the consideration
of balancing the shape of qc(L), the system size available, and
simulation time. Even so, the SITQCD can still save a large
amount of computation efforts.

B. Determination of the exponent θ

In order to determine θ , we compute the imaginary-time
correlation C(τ ) for different L ranging from 32 to 2560 with
D0 = 0 according to Eq. (2.7). The aspect ratio is fixed at
τL−z = 1/16. As shown in Fig. 3, C(τ ) does not increase with
τ in the J-Q3 spin chain, in contrast to the case of the quantum
Ising model [14,21]. Instead, it decays with τ as a power law

100 101 102

τ

10−1

100

C
(τ

)

C(τ)

Fit : aτθ
C(τ)

Fit : aτθ

FIG. 3. Dependence of C(τ ) on the evolution imaginary time τ

with fixed τL−z = 1/16. Power-law fitting shows the critical initial
slip exponent θ = −0.507(3) with a prefactor a = 0.704(6). Double
logarithmic scales are used.

C(τ ) ∼ τ θ with

θ = −0.507(3).

To double-check the exponent θ given by C(τ ), we study
the behavior of D(τ ) when the initial state has nonzero, but
very, small D0, which is close to its apparent zero fixed point.
For a system of length L, the smallest positive value of D
is 1/L (z component). This value is chosen as the initial D0

for each size, and the evolution of D is shown in Fig. 4. In
Fig. 4(a), it is clear that at the short-time stage, all D(τ ) for
various sizes satisfy a power law and the power-law range
extends as L increases. From Eq. (2.3), one finds that D(τ ) 	
D0τ

θ f (0, 0) + O(L−1τ 1/z ). Thus, θ can be fitted by the short-
time data of D(τ ). We obtain θ as θ = −0.518(1) from the
fitting of the data for L = 1000. This value is close to the
one obtained from C(τ ), as we discussed above. The deviation
between the two estimations may be due to the finite length of
the L = 1000 system, which is not large enough for D(τ ) to
get rid of the finite-size effect as for systems of different sizes,
θ drifts slightly.

Additionally, in Fig. 4(a), one finds that D(τ ) drops in
later times towards zero. The dropping time is earlier for a
system with a smaller size. This demonstrates that the finite-
size effects control the scaling in the late-time stage. Also, it
means that the higher-order terms of L−1τ 1/z in the expansion
of Eq. (2.3) dominate for large τ and small L. Moreover, for
g = 0, Eq. (2.3) is equivalent to

D(τ, g, D0, L) = D0Lθz fDL(L−zτ ) (4.1)

by the variable replacement. After rescaling D(τ ) for different
sizes according to Eq. (4.1) with θ = −0.507 as input, we find
in Fig. 4(b) that all curves collapse onto each other. This result
not only confirms the value of θ but also verifies Eq. (4.1).
Moreover, from Fig. 4(b), one finds that in the short-time re-
gion with small τ , fDL(L−zτ ) satisfies fDL(L−zτ ) ∝ (L−zτ )θ ,
which recovers Eq. (4.1) to D(τ ) ∝ D0τ

θ .
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FIG. 4. (a) Dependence of D(τ ) on the evolution imaginary time
τ for various sizes as marked. (b) Rescaled curves for (a) according
to Eq. (4.1). The dashed line in (a) is a power-law fit to show the
exponent of L = 1000, while the one in (b) is plotted to show the
power-law behaviors of the rescaled curves.

C. Determination of the static exponent β/ν

Next, let us consider the static critical exponent β/ν. As
pointed out already, D0 = Dsat and D0 = 0 are both apparent
fixed points of Eq. (2.1), giving the scaling form of Eq. (2.5).
Thus, we can estimate β/ν from these two different initial
states here.

First, we consider D0 = Dsat. Here, the calculations are
performed in the valence bond basis with Dsat = 3/8. It is ob-
vious that D(τ ) and D(τ )2 should scale as τ−β/νz and τ−2β/νz,
respectively, for g = 0 and a fixed τL−z. At longer times,
D(τ ) can be described using a power law. For τ = 32 − 160,
the fitting gives β/ν = 0.4919(2) along with a prefactor a =
0.383(1). For τ ranging from 96 to 160, we find

β/ν = 0.498(2),

with a = 0.394(3). To be on the safe side, the value of
0.498(2) is used as our final estimation of β/ν. We will use
this value to represent the asymptotic value of β/ν.

In order to include data from earlier times, by fixing β/ν =
0.498, we consider a logarithmic correction in the fitting as

D(τ ) = a1τ
−β/ν lnσ1 (τ/τ1). (4.2)

101 102

τ

10−5

10−4

10−3

10−2

10−1

100

D
(τ

),
D

2
(τ

)

Fit :

D, VBS

D2, VBS

D2, disordered

D, VBS

D2, VBS

D2, disordered

a1τ−0.498 lnσ1 (τ/τ1)

a2τ−0.996 lnσ2 (τ/τ2)

FIG. 5. Power-law decay of D(τ ) and D2(τ ) for different initial
conditions, with power corresponding to β/ν and 2β/ν, respectively.
Multiplicative logarithmic corrections to the power laws are included
in order to obtain good fits. The finial estimation of β/ν is given by
0.498(2).

As shown in Fig. 5, we find that all data are well accounted
for with the logarithmic correction. The fitting parameters
are given by a1 = 0.3862(5), σ1 = 0.021(1), and τ1 = 5.7(3).
The logarithmic correction is actually not weak in this case.

Moreover, we observe a similar behavior in D2(τ ) with
D0 = Dsat. With β/ν fixed at 0.498, we use the form of
D2(τ ) = a2τ

−2β/ν lnσ2 (τ/τ2) to perform the fitting. We find
that the curve is also well described, but the logarithmic cor-
rection appears to be stronger in D2(τ ) with a2 = 0.136(4),
σ2 = 0.34(2), and τ2 = 1.0(1).

To further confirm the value of β/ν, we consider the evolu-
tion starting from a disordered initial state with D0 = 0. In this
case D(τ ) remains zero, and we study the behavior of D2(τ ).
As seen in Fig. 5, the curve of D2(τ ) with D0 = 0 is almost
parallel to the corresponding curve with D0 = Dsat, indicating
identical critical exponents. By setting β/ν = 0.498 as the
input, we perform the fitting using the same functional form
and find a2 = 0.0025(2), σ2 = 0.88(2), and τ2 = 0.21(3) for
D2(τ ) with D0 = 0. The deviation between D2(τ ) in Fig. 5
comes from the different definitions of the order parameter
(full component for Dsat and the z component for the dis-
ordered case). In all cases, when including the logarithmic
term and allowing the power β/ν to vary, the fittings give β/ν

equal to 0.511(6), 0.48(1), and 0.53(3) for D(τ ), D2(τ ) with
D0 = Dsat, and D2(τ ) with D0 = 0, respectively. These results
are in agreement with 0.498(2) extracted from the behavior of
D(τ ) at longer times.

Even though the origin of the logarithmic corrections is
not totally clear to us, we hereby discuss the possible rea-
sons of their presence. In the fittings, these corrections are
introduced in order to include the data at earlier times with
β/ν fixed at the result extracted from the longer times, i.e.,
β/ν = 0.498. However, in the short-imaginary-time scaling
forms of D(τ ) and D2(τ ), we did not consider the short-
time corrections independently, like the finite-size corrections
considered in equilibrium studies. Therefore, it is possible
that the short-time scaling corrections are responsible for the
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presence of the logarithmic corrections. Another possibility
is the inaccurate estimate of the critical point. In the field-
theory description, the QLRO-VBS transition is driven by a
marginal irrelevant operator. This marginal operator causes
multiplicative logarithmic corrections in the QLRO phase, but
exactly at the critical point, the logarithmic correction should
vanish [37,38]. However, as pointed out already, it is difficult
to extract the exact critical point in our study. It is also possible
qc = 0.16478, which we took from the ED study [36], does
not catch the exact critical point, thus causing the logarithmic
corrections.

As mentioned above, the same kind of dimerization transi-
tion in this model also occurs in the frustrated J1-J2 spin chain.
A recent work [39] on the S = 1/2 J1-J2 XYZ chain pointed
out that for the isotropic J1-J2 spin chain, the dynamical ex-
ponent z = 1 and the critical exponent η should equal to 1,
which indicates that β/ν is 1/2, agreeing with our estimation
of β/ν = 0.498(2). This consistency between our result and
theirs not only confirms that the J-Q3 spin chain (1.1) be-
longs to the same universality class with the J1-J2 spin chain,
as pointed out previously [24,25,36,40,41], but also shows
again the validity of the SITQCD method. In addition, the
QLRO-VBS transition in the J1-J2 chain is closely related
to the spontaneous dimerization occurring in the spin-Peierls
compound CuGeO3 [42,43]. Our results for the J-Q3 chain
provide alternative access to the same physics and inspire
further experimental and computational explorations of the
nature of the dimerization transition [24,25,36,40,41].

D. D0 as a marginal scaling variable

By comparing the value of θ and β/ν, we can find that
their absolute values are very close to each other. According
to Eq. (2.4), we infer that the initial order parameter D0 is a
marginal scaling variable with x0 = 0. Under scale transfor-
mation in Eq. (2.1), D0 does not change. Accordingly, besides
the two apparent fixed points, i.e., D0 = 0 and D0 = Dsat,
all D0 with zero initial correlation are fixed points of the
transformation. As a result, Eq. (2.5) should be applicable for
all D0 but with different scaling functions fDk ,D0

(gL
1
ν , τL−z ).

Here, we argue that fD1,D0
(0, x) = D0 fD1 (0, x) for any D0.

This equation is a direct generalization of Eq. (2.3). Note
that in Eq. (2.3), a small D0 is required. Since θ = −β/νz
with z = 1, Eq. (2.3) becomes D(τ ) = D0τ

−β/νz fD(0, x) for
small D0. This scaling function is then identical to Eq. (2.5),
which is valid for D0 = Dsat since D(τ = 0) = D0. Namely,
the relation fD1,D0

(0, x) = D0 fD1 (0, x) is valid not only for
small D0 but also for the maximum Dsat. In addition, in the
short-time region, the scaling function is continuous in terms
of D0. Therefore, one can conjecture that this relation should
be valid for any value of D0, such that the evolution of D(τ )
satisfies

D(τ, L−1) = D0τ
− β

νz f (gτ
1
νz , L−1τ

1
z ), (4.3)

in which the scaling function f does not depend on D0.
To examine Eq. (4.3), we consider the imaginary-time re-

laxation of D(τ ) for various system sizes at g = 0. In Fig. 6(a),
we find that D(τ ) increases as D0 increases. Moreover, for
all D0, in the short-time stage, D(τ ) ∝ τ θ ∼ τ−β/νz. This
indicates that for the purpose of extracting θ or β/ν, D0 is
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FIG. 6. For a system with fixed L = 50, curves of D(τ ) versus τ

(a) before and (b) after rescaling according to Eq. (4.3). For different
D0, D(τ ) decays with almost the same exponent at earlier times, as
indicated by the dashed line in (a).

not necessarily restricted to small values in this situation. In
the late-time stage, the information contained in initial D0 is
“forgotten,” and the curves for various D0 tend to merge. In
Fig. 6(b), we rescale D(τ ) with D0 and find that all curves
match each other according to Eq. (4.3), showing that the
scaling function f does not depend on D0 indeed.

Based on this, it is tempting to examine the behavior of
D(τ ) when the initial state has magnetic order. We can infer
that even if the system is relaxed from an AF state with D0 =
0, Eq. (4.3) should still be satisfied as long as the correlation
length vanishes. In Fig. 7, we show the behavior of D2(τ )
instead of D(τ ) as D(τ ) is zero in this case. It is obvious that at
the critical point, D2(τ ) ∼ τ−0.996, multiplied by a logarithmic
correction with a = 0.10(4), τ0 = 0.04(3), and σ = 1.2(2).
The behavior of D2(τ ) is very similar to the results with D0 =
Dsat or D0 = 0 shown in Fig. 5. Such a result again reflects the
marginal role of D0 in the imaginary-time relaxation process.

V. DISCUSSION

Here, we discuss the possible reasons for the marginal D0.
In the quantum Ising model, the positive θ is induced by the
fact that the critical point is shifted down towards the ordered
phase compared with its mean-field value. Thus, the uncorre-
lated initial state “feels” an ordered phase when the system is
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FIG. 7. Dependence of D2 on τ at the critical point relaxed from
an AF starting state with τL−z = 1/16. D2(τ ) obeys Eq. (4.3) as well.

in the vicinity of the real critical point [14]. In contrast, in the
present case, the QLRO phase is a critical phase. Therefore,
there is no proper mean-field solution for this model. In ad-
dition, the gap in the VBS phase is induced by a marginally
relevant operator in the VBS phase from the field theory, and
this leads to the opening of an initially exponentially small
gap [37,38], in contrast to the Ising case in which the gap is
a power function of the distance to the critical point. These
elements make the phase transition seem quite soft compared
with the Ising case. The initial order parameter thus plays only
a marginal role in the imaginary-time relaxation process.

Since the perturbation which drives the dimerization tran-
sition in the J-Q3 model is marginally irrelevant in the QLRO
phase, we can infer that the scaling properties discussed above
are also applicable in the QLRO phase up to a logarith-
mic correction [37,38]. To examine this, we perform QMC
simulations with various initial states in the QLRO gapless
phase. We find that for fixed τL−z = 1/16, D2(τ ) satisfies
D2(τ ) ∼ τ−0.996 with a logarithmic correction, as shown in
Fig. 8(a). The fitting parameters are given by a1 = 0.1717(5),
τ1 = 6.8(6), σ1 = 0.021(5) for the VBS initial state; a1 =
0.044(3), τ1 = 1.0(2), σ1 = 0.44(3) for the disordered initial
state; and a1 = 0.021(6), τ1 = 0.12(9), σ1 = 0.7(1) for the
AF initial state. The exponent therein is quite close to 2β/νz
as at the critical point.

In addition, in Fig. 8(b), we also show the scaling behavior
of the magnetic order parameter, which is defined as Ms =
[
∑L

i (−1)iSi]/L. We find that the squared staggered magneti-
zation M2

s (τ ) also obeys the scaling behavior M2
s (τ ) ∼ τ−0.996

multiplied by a logarithmic correction term for the VBS and
disordered initial state. For the VBS case, we have a1 =
0.026(1), τ1 = 0.04(3), and σ1 = 1.2(2). For the disordered
case, a1 = 0.024(7), τ1 = 0.05(2), and σ1 = 1.3(1). When
the initial state has AF order, the logarithmic correction ap-
pears to be very weak, and we instead use the pure power-law
form in the fitting. We find the power is σ2 = 0.920(2) with
a2 = 0.620(4), slightly different from the other two cases.
This may because the AF state is very far from the QLRO
phase and the evolution time τ = Lz/16 is so short. Whether
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Fit : a2τ−σ2Fit : a2τ−σ2

101 102
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FIG. 8. Dependence of M2
s and D2 on τ when relaxed from the

AF/VBS/disordered state to q = 0.1 and q = qc with τL−z = 1/16.
The solid and dashed lines correspond to a power-law form with and
without logarithmic correction, respectively. The behaviors of M2

s (τ )
and D2(τ ) are discussed in the text.

there is a logarithmic correction in this situation needs more
careful analysis. In the inset of Fig. 8(b), we show M2

s (τ ) at
the critical point. We find that they obey the same scaling
behavior as in the QLRO phase. Here, we list the fitting
parameter at g = 0 for further reference. For the VBS case,
a1 = 0.05(1), τ1 = 0.11(6), and σ1 = 0.94(9). For the dis-
ordered case, a1 = 0.072(2), τ1 = 0.3(1), and σ1 = 0.82(9).
For the AF case, we use the pure power-law form, which
gives σ2 = 0.938(1) and a2 = 0.525(2). As discussed above,
the logarithmic corrections found here could be induced by
short-time scaling corrections or an inaccurate value of the
critical point. Finding the origin of the logarithmic corrections
is beyond the purpose of this study, and we will leave it to
future studies.

VI. SUMMARY

In this work, we studied the SITQCD of the QLRO-VBS
transition in the J-Q3 chain. Using the method based on
the scaling theory of the SITQCD, we determined its criti-
cal point to be qc = 0.170(14), in agreement with a recent
ED and QMC study [36]. Then we determined the critical
initial slip exponent θ = −0.507(3) and the static exponent
β/ν = 0.498(2). Moreover, by comparing the value of θ and
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β/ν, we found that the initial order parameter D0 is a marginal
scaling variable. This is quite different from the case in the
quantum Ising model, in which the initial order parameter
is a relevant scaling variable [14,21]. We showed that the
marginal D0 leads to a short-time decay of the order param-
eter, rather than the initial increase as shown in the quantum
Ising model [14,21]. We also argued that the reason for the
appearance of the marginal initial order parameter is that
this phase transition is induced by a perturbation which is
marginally irrelevant in the QLRO phase and marginally rele-
vant in the VBS phase [37,38]. Accordingly, we also showed
that the scaling theory of the SITQCD at the critical point is
also applicable in the QLRO phase only up to a logarithmic
scaling correction.

Recently, the critical initial slip behavior was also found
theoretically in the prethermal real-time dynamics [44–53]. In
particular, a negative initial slip exponent was also found in
the quench dynamics of the Dirac systems [54]. Accordingly,
it is instructive to study the real-time relaxation dynamics of
J-Q3 model, which we leave as future work. In addition, due
to the similarity between the imaginary-time relaxation and
boundary effect in real space, it is also interesting to consider

the effect of a marginal D0 in real space [55]. In a system
with the boundary set to have a fixed local D0, the dependence
of D on the distance to the boundary r should obey D(r) ∼
r−β/ν if D0 is marginal. The effect of D0 is not propagated
through space due to its marginal role. This issue is also worth
investigating. More interestingly, the two-dimensional J-Q3

model hosts a Néel-VBS quantum phase transition beyond
the Landau-Ginzburg-Wilson (LGW) paradigm [23,56]. The
SITQCD has proved applicable in LGW phase transitions
as well as topological quantum phase transitions [14]. The
SITQCD in the deconfined quantum phase transition frame-
work is very intriguing, and that work is in process.
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