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Typical skyrmions versus bimerons: A long-distance competition in ferromagnetic racetracks
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During the last years, topologically protected collective modes of magnetization have called much attention.
Among these, skyrmions and merons have been objects of intense study. In particular, topological skyrmions
are structures with an integer skyrmion number Q while merons have a half-integer skyrmion charge q. In
this paper, we consider a Q = 1 skyrmion, composed of a meron and an antimeron (bimeron), displacing in
a ferromagnetic racetrack, disputing a long-distance competition with its more famous counterpart, the typical
Q = 1 cylindrically symmetrical skyrmion. Both types of topological structures induce a Magnus force, and
then they are subject to the skyrmion Hall effect. The influence of the Dzyaloshinskii-Moriya interaction DMI
present in certain materials and able to induce DMI skyrmions is also analyzed. Our main aim is to compare the
motions (induced by a spin-polarized current) of these objects along with their own specific racetracks. We also
investigate some favorable factors which are able to give breath to the competitors, impelling them to remain in
the race for longer distances before their annihilation at the racetrack lateral border. An interesting result is that
the DMI skyrmion loses this hypothetical race due to its larger rigidity.

DOI: 10.1103/PhysRevB.102.104409

I. INTRODUCTION

Skyrmions [1] are topologically protected states that have
been introduced in the framework of the two-dimensional 2D
Heisenberg model (HM) by Belavin and Polyakov [2]. The
2D HM is defined by the Hamiltonian H = −J

∑
{i, j} �Si · �S j ,

where J > 0 is the ferromagnetic coupling constant, the sum
is over nearest-neighbor spins, and the spin field �S(�x) obeys
the constraint �S2(�x) = S2

x (�x) + S2
y (�x) + S2

z (�x) = S2, with S
being a constant. Topologically, skyrmions correspond to the
mapping of the spin-space sphere (

∑int )2 onto the contin-
uum plane �r = (x, y) [physical space (

∑phy)2]. Consequently,
they are characterized by a skyrmion integer number Q =
±1,±2, ..., and have finite energy Es = 4πJS2|Q|, indepen-
dent of the skyrmion size R, since the continuum limit of the
HM, i.e., the O(3) nonlinear σ model, is scale invariant.

Considering the mapping (
∑int )2 → (

∑phy)2, the Belavin-
Polyakov skyrmion configurations can have essentially two
faces as seen by different perspectives, which depend on the
boundary conditions (or stereographic projection). Really, due
to the O(3) symmetry, one can look at the situation as follows:
for �S(�r) → (0, 0,±S) as �r → ∞, one gets the |Q| core con-
figuration [type-I skyrmion, see Fig. 1(a)] while for �S(�r) →
(±S, 0, 0) as r → ∞, one gets the 2|Q| core configuration
(type-II skyrmion, Figs. 1(b) or 1(c)]. For the same Q, both
skyrmions (type I and type II) have the same energy. There-
fore, we mean that the core occupies a small localized region

in which S2
x + S2

y = 0 and, consequently, Sz = ±S. However,
depending on parameters like small anisotropies, external
magnetic fields, or others that should favor out-of-plane or in-
plane spins, structures similar to type-I or type-II skyrmions,
respectively, could be excited in a system. For instance, when
a small external magnetic field is applied along the magnetic
track, the spins tend to align in plane. After the field is turned
off, the tendency of the system is to create type-II skyrmions.
On the other hand, if the field is applied along the z direction
and it is turned off after some time, the track should host type-I
skyrmions. Moreover, magnetic materials with a small easy-
plane anisotropy should support excitations very similar to
type-II skyrmions. It is important to mention that, in quasi-2D
isotropic magnetic materials, skyrmions described above with
energy equal to Es were indirectly detected in experiments
using heat-capacity measurements [3] and electron paramag-
netic resonance linewidth measurements [4].

In our paper, we consider Q = ±1 skyrmions since
they are energetically favorable. Because type-I skyrmions
exhibit great potential to be used in storage and processing-
information technologies, much attention has been dedicated
to study such a spin texture [5,6]. However, for those appli-
cations, some intrinsic difficulties in generating and guiding
them along a nanostripe need to be overcome. For instance,
to use them in spintronic applications, the main barrier is the
inability to move skyrmions straight along applied currents.
Indeed, it is well known that type-I skyrmions suffer the
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FIG. 1. Spin projection along the z axis, normal to the racetrack
plane (x, y), is depicted in color. (a) Type-I skyrmion texture. (b) h
bimeron. (c) v bimeron. (d) DMI skyrmion. The current is applied
along the x direction and each type of skyrmion runs in its own lane.

effect of the Magnus force, which leads to the skyrmion Hall
effect. Among some theoretical propositions to suppress the
skyrmion Hall effect, there are possibilities of engineering
magnetic materials [7], the formation of coupled skyrmions
displacing in bilayer compounds [8–10], and spin-current
driven skyrmion dynamics [11]. Based on the above, it should
be relevant to analyze the dynamics of topological structures
with different shapes along pathways to get more insights to
prevail over intrinsic technological difficulties.

In this paper, we give attention to type-II skyrmion tex-
tures, also called bimerons [12]. These objects are not
cylindrically symmetric [13,14] and may also have important
consequences in quantum magnetism. For instance, consid-
ering 2D antiferromagnets with general spin S and the case
Q = 1, the merons [15] forming a double core skyrmion [16]
are spin-S spinons [17,18], which appear as essential objects
in the search for 2D quantum spin-liquid [19] states of spin
half (S = 1/2). On the other hand, another kind of bimeron
structure may also be found in thin chiral magnetic films [20]
induced by nonmagnetic impurities [21], as well as stabilized
in confined geometries [22].

The main goal of this paper is to analyze the trajectories
of both types of skyrmions described above in ferromagnetic
racetracks. In principle, it is shown that if we consider a
massless model to describe the dynamics of a bimeron, its
trajectory and velocity along a nanotrack would be the same
as that predicted for type-I skyrmions. Nevertheless, due to
its noncylindrical symmetry, the displacement of bimerons
mass-center induces an effective mass which is different from
the mass of its type-I skyrmion counterpart. Therefore, it
should move in a straight line for longer/shorter distances.

Thus, by means of analytical calculations and micromag-
netic simulations, we study type-II skyrmions, focusing on
their sensitivity to the Magnus force. The results are com-
pared with the trajectories obtained for type-I skyrmions. Here
we have to distinguish two categories of type-I skyrmions,
which depend on the specific materials in which they can
reside: type-I skyrmions living in ferromagnetic materials
with Dzyaloshinskii-Moriya interaction, described by a cou-
pling constant D, added to the Heisenberg Hamiltonian H ,
and genuine type-I skyrmions which subsist in ferromagnets
without Dzyaloshinskii-Moriya interaction (DMI). Although
they have very similar shapes, the small and basic contrasts
between them may lead to different dynamics. For instance,
when the DMI is present, the skyrmion has a more rigid
structure and its size (controlled by the ratio D/J) remains
practically constant during movement. For racetrack materi-
als with DMI, hereafter the skyrmions will be called DMI
skyrmions [see Fig. 1(d)] while type-I skyrmions will be held
for the natural counterpart of type-II skyrmions. The config-
urations of the four structures analyzed here are shown in
Fig. 1.

II. THEORETICAL MODEL

Type-II skyrmions or bimerons have two centers in which
a meron and an antimeron are positioned. A meron with a
winding number η = ±1 and core polarization P = ±1 has
a half-integer topological charge q = ηP/2 (the meron wraps
only half of the sphere). Therefore, a pair constituted by a
meron (η = 1) and an antimeron (η = −1) with the same
polarization (for example P = 1) has opposite skyrmion num-
bers adding to zero (Q = 0) and, thus, such a pair belongs
to the same topological sector as uniform ground states. This
object would be then topologically unstable since it can be
deformed continuously into a ground state with zero skyrmion
number. On the other hand, if a pair has a meron and an an-
timeron with antiparallel core polarizations, these half-integer
structures would have equal skyrmion numbers adding to a
total of +1 or −1, belonging to a nontrivial topological sector
and thus cannot be deformed continuously into a ground state.
It is exactly what occurs with bimerons, which are character-
ized by a topological invariant (the skyrmion number), defined
as [23]

Q = 1

8π

∫
d2�xεi jεαβδnα∂inβ∂ jnγ , (1)

where n̂(�x) = �S/S is the unit vector parallel to the local mag-
netization �S(�x).

The continuum limit of the 2D-isotropic ferromagnet de-
scribed by a Hamiltonian H consists in the famous O(3)
nonlinear σ model, given by (J/2)

∫
d2�x(∂ν �S)2, ν = 1, 2 and

the constraint �S2 = 1 (without loss of generality, we use an
unit spin vector). The explicit static spin configuration of a
bimeron can be obtained by using boundary conditions �S →
(1, 0, 0) at �r → ∞. Then, parametrizing the spin vector �S(�r)
by two scalar fields, the polar and azimuthal angles θ and
φ, �S = (sin θ cos φ, sin θ sin φ, cos θ ), this static solution with
Q = 1 (energy equal to 4πJ), size R (merons separated by
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a distance R) and mass center localized at the origin can be
written as

θ
v (h)
2c = arccos

(
R ci

ρ2 + R2/4

)
, (2a)

φ
v(h)
2c = arctan

(
ci − R/2

c j

)
− arctan

(
ci + R/2

c j

)
, (2b)

where ρ =
√

ζx2 + ξy2, and (ci, c j ) = (x, y) and (ci, c j ) =
(y, x) for type-II skyrmions with the cores aligned horizontally
(h bimeron) and vertically (v bimeron), respectively. If ζ = ξ ,
we obtain a regular rigid bimeron in which the two cores are
not deformed. If ζ �= ξ , we obtain a bimeron having an ellip-
tical shape. In Figs. 1(b) and 1(c), we show the vector field
of the above described model. In particular, Fig. 1(c) depicts
a v bimeron with the cores aligned vertically and ζ = ξ = 1.
Of course, there is only one type-II skyrmion but depending
on its orientation in relation to the x axis, it manifests as v or
h bimerons since this solution is not cylindrically symmetric.
The coexistence of different types of skyrmions in the same
material is not a trivial possibility since they live in systems
with different tendencies for spin arrangements (in plane or
out of plane).

Aiming to compare the dynamics of I and II skyrmions,
we can describe a Q = 1 I-skyrmion solution [Fig. 1(a)] with
characteristic radius R, energy equal to 4πJ , and placed at
(0,0), as

θ1c = arccos

(
R2 − ρ2

R2 + ρ2

)
, φ1c = arctan

(y

x
+ c

)
, (3)

where c is an arbitrary constant. In particular, c = 0 and c =
π/2 lead to skyrmions with Néel and Bloch characteristics
respectively. For the isotropic HM, such c does not have any
influence in our calculations. When DMI is taken into account,
Néel and Bloch skyrmions should exist in different materials
due to the break of the inversion symmetry. However, these
differences do not have an influence on dynamics results in-
vestigated here and, therefore, we use only the Néel skyrmion.

Micromagnetic simulations are performed to study the sta-
bilization and dynamics of these skyrmion structures. First,
we have stabilized the bimeron in a racetrack composed by
an isotropic Heisenberg ferromagnetic material at zero tem-
perature by relaxation and using the solutions of the O(3)
nonlinear σ model given by expressions Eqs. (2). The in-
vestigated racetrack has a width (distance between the upper
and lower lateral borders) equal to Ly = 80a and length Lx =
300a, where a is the lattice parameter. The calculations con-
sider periodic boundary conditions along the x direction and
open boundary condition along the y direction. The bimeron
was stabilized with the following parameters: J = 1 and R =
4a. Similar parameters are also used for type-I skyrmions
[Fig. 1(a)]. The tracks are organized in parallel to simulate
a hypothetical race between the I and II skyrmions. Since
we are studying four structures (I skyrmion, DMI skyrmion,
h bimeron, and v bimeron), our imaginary running track is
constituted by four lanes, each one made by a ferromagnetic
material with characteristics able to support its resident com-
petitor.

In the simulations, for stabilizing a bimeron in the HM, it
is sufficient to introduce in the track its configuration given by

Eqs. (2) and subsequently apply a spin-polarized current. So,
the bimeron texture relaxes, adjusting its configuration inside
the system. The same scheme is valid for the I skyrmion by
using the solution given by Eq. (3). Fourth-order Runge-Kutta
method is then employed to compute the dynamics of the
magnetic moment, �Si, by solving the the Landau-Lifshitz-
Gilbert LLG equation [24,25],

∂ �Si

∂t
= −γ �Si × Ĥ i

eff + α �Si × ∂ �Si

∂t
, (4)

where γ is the gyromagnetic ratio, Ĥ i
eff = − 1

μs

∂H
∂ �Si

is the net
effective magnetic field on each spin, and α is the Gilbert
damping coefficient. The spin-polarized current is introduced
by using the Berger spin-transfer torque [26]:

�τB = p
(�j · ∇)�S , (5)

and

�τBβ = pβ �S × (�j · ∇)�S , (6)

where Eqs. (5) and (6) are the adiabatic and nonadiabatic
torques, respectively. Here p is the spin polarization of the
electric current density �j, while the β parameter characterizes
its relative strength to the Berger’s torque [Eq. (5)].

III. RESULTS

After stabilizing the skyrmions, we have performed micro-
magnetic simulations to obtain their mass center position as a
function of time for four configurations: (i) a DMI skyrmion;
(ii) a I skyrmion; (ii) a v bimeron; and (iv) a h bimeron. Here,
the the concept of mass center is directly connected to the ge-
ometric center of the topological object, being more useful for
the noncylindrically symmetric type-II skyrmions. Before pre-
senting the main results, we have to say something about the
particularities of DMI structures. Specifically, different from I
and II skyrmions, DMI skyrmions demand extra parameters
and factors to be stabilized in a magnetic compound, such
as the coupling D and the presence of an external magnetic
field along the direction perpendicular to the magnetic plane.
Instead of using the field, we stabilize this kind of structure
by a small easy-axis anisotropy kz/J = 0.11 (with J = 1). In
addition, we use D/J = 0.26 for the Dzyaloshinskii-Moriya
coupling constant. These factors convert DMI-skyrmion con-
figurations in rigid structures, much more inflexible than the
other skyrmions investigated here. Indeed, DMI structures are
heavier than the other skyrmions and their size does not suffer
significant variation during their motions as will be discussed
below. This hardness is not expected for I and II skyrmions,
since they are described only by a Heisenberg Hamiltonian.
As a consequence, their sizes may suffer some fluctuations
during their motion, mainly when the spin current is initially
applied. Further, at first sight, because the II skyrmion has two
merons with opposite winding numbers, one may expect that
the meron tends to suffer the Magnus force impelling it to,
let’s say, the upper border, while its counterpart antimeron
tends to go to the opposite side, i.e., the lower border [see,
for instance, Fig. 1(c)]. Nevertheless, the type-II skyrmion
as a whole has a topological number Q = 1 and, therefore,
it tends to suffer the Magnus force, similar to what happens
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FIG. 2. Trajectories described by the skyrmions (all with R = 4a
during their motions in a racetrack with width Ly = 80a and length
Lx = 300a. Black, red, and blue lines depict the trajectories of the
h bimeron, v bimeron, and I skyrmion, respectively. Orange line
depicts the trajectory of DMI skyrmion. In a hypothetical race among
these objects, the h bimeron would be the winner.

to I skyrmions (all that depends on q = ηP/2; both merons
of the bimeron have positive charge q = 1/2, moving in the
same direction). In other words, the total Magnus force on
the structure as a whole is not zero. Therefore, the bimeron
mass center moves along the racetrack, suffering the skyrmion
Hall effect. The results obtained here confirm this statement.
In Fig. 2, we present the respective trajectories followed by
the four types of structures during their motions. First, we
notice that the deviation from a straight trajectory of a DMI
skyrmion (orange line) is greater than all the other ones. That
is, if the DMI-skyrmion center starts its motion at the same
point of the other structures, it reaches the y border at a smaller
position along the x axis (In this paper, we do not discuss
the fact that DMI may introduce an extra spin twist in the
edge). Additionally, it can be observed that h bimerons suffer a
smaller deviation due to the skyrmion Hall effect. Indeed, con-
sidering the three skyrmions in materials without DMI, it can
be observed that, until the position x = 250 a, the h bimeron
occupies a lower position in the y axis when compared to the
v bimeron and I skyrmion. Additionally, the trajectories of II
skyrmions are longer than that of the usual type-I skyrmions.
On the other hand, since II skyrmions contain two centers,
their movements must not occur, keeping a rigid structure, as
shown in Ref. [14]. Indeed, the skyrmion may rotate slightly
around its mass center and the two merons could have small
vibrations during this process. This makes the II skyrmions
displace faster along the y direction when they are near the
border of the stripe and they are annihilated almost at the same
time as the I skyrmion is at the track border (see Fig. 3 and the
movies available as Supplemental Material [27]).

To understand the above described results, we will make
use of an analytical model, assuming that skyrmions are rigid
structures. This assumption is suitable for DMI skyrmions and
applies only in a first approximation for the Belavin-Polyakov
configurations also treated here. Indeed, for an infinite system,
if only exchange interaction is considered, the energy of the

FIG. 3. Snapshots for four subsequent times of the investigated
skyrmions in their appropriated tracks during a hypothetical race.
Here, it is shown only racetracks made of ferromagnetic materials
without DMI; a, b, and c present the evolution of the dynamics of I
skyrmion, v bimeron, and h bimeron, respectively.

II skyrmions is independent of the distance R between the
meron and the antimeron centers. The same is valid for type-I
skyrmions. In this context, the dynamical description of the
merons motion can be given by an analytical model neglecting
dynamical deformations of the II skyrmions in such a way that
the LLG equation can be reduced to the Thiele equation [28],
written as

Mv̇(t ) + gẑ × (v(t ) − vs) + D(αv(t ) − βvs) = F , (7)

where the first contribution consists of an analogous to New-
ton’s second law, with M being the effective mass of the
collective mode of magnetization, with the mass matrix given
by

Mi j = 1

αγ 2

∫
d2x(∂ i�n · ∂ j �n) . (8)

The second term in the Thiele equation describes the Mag-
nus force exerted by the magnetic texture in the collective
mode of the magnetization, which displaces with velocity
v j under the action of the spin current, whose spin velocity
parallel to the spin current is vs. Here, g ẑ is the gyrovector,
formally defined as g = 4π Q, where Q is defined in Eq. (1).
The third contribution in Eq. (7) consists of a dissipative
force, with D being the dissipative dyadic, given by Di j =
αγ 2Mi j . If we consider the parametrization described by
Eqs. (2) and (3), with ζ = ξ = 1, the effective mass of I and
II skyrmions are the same, given by M11

s = M22
s ≡ Ms =

8π b (αγ 2
√

R2 + 4 b2 )−1 and M12
s = M21

s = 0, where 2b =
Ly is the width of the track and we have considered that Ly �
R. Under these assumptions, the spatial coordinates of all
skyrmion structures are obtained from the solution of Eq. (7),
evaluated as

x(t ) = g2 vs

g2 + α2D2
s

t , y(t ) = gDs vs

g2 + α2D2
s

α t . (9)

After eliminating the parameter t (time), we get the tra-
jectory equation y(x) = (Dsα/g)x. Note that the function y(x)
has a linear dependence on x variable with inclination � =
Dsα/g ∝ Ms. The trajectory equation y(x) can be directly
compared with the simulation results of Fig. 2. Indeed, this
figure shows that the trajectory of all skyrmions obeys an ap-
proximated linear dependence yi(x) = kix (here, i = 1, 2, 3, 4
refers to the different types of skyrmions). However, the linear
behavior of the simulation results prevails only up to a certain
critical value of the x coordinate (let’s say, xi,c). This is a
critical position for the skyrmion in a racetrack, marking the
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point where the interaction skyrmion border becomes strong
enough to deform the skyrmion configuration, invalidating the
application of our analytical results [extra forces should be
considered in Eq. (7)]. Point (y(xi,c), xi,c ) denotes the position
in which the skyrmion i finds its ultimate moments. After
(y(xi,c), xi,c), the simulations show that the coordinate y(t ) in-
creases rapidly with t while x(t ) becomes essentially constant
(x(t ) ∼ xi,c) (see again Fig. 2).

The analytical trajectory equation obtained above ex-
plains the accentuated difference between the trajectories of
skyrmions in materials with and without DMI, as seen in
Fig. 2. Since the presence of the DMI diminishes the skyrmion
radius, the effective mass of the DMI skyrmion is greater
than that of the other structures considered here. The initial
impact of the spin current on I and II skyrmions increases
their sizes appreciably as observed in the simulations, and
snapshots of Fig. 3 can give a clear idea about this behavior.
Therefore, remembering that � ∝ Ms, then the deviation of
the DMI-skyrmion trajectory is larger than that of all other
skyrmions residing in materials without DMI. Consequently,
DMI skyrmion reaches a lower position along the x axis, hav-
ing a smaller critical x position, confirming simulation results.
On the other hand, our analytical calculations imply that all
other skyrmions analyzed here, residing in materials with-
out DMI, have equal masses and, consequently, they should
follow similar trajectories. A comparison with simulations of
Fig. 2 shows that it is true only in certain parts of the skyrmion
routes (around halfway, x ∼ 150a). After that, the h skyrmion,
v skyrmion, and I-skyrmion mass-center trajectories disjoint
and each skyrmion follows different ways. As a result, their
annihilations occur in slightly different x positions.

Trying to explain the small differences that occur in the
trajectories of type-I skyrmion and the bimerons (even the
initial position of the bimeron affects its route, causing differ-
ences in the trajectories of v and h bimerons), we will assume
that there are small deformations in the skyrmion profile
when they are displacing under the action of a current density
[29]. Such a deformation can be represented by ζ − ξ ≈ δ

(see Fig. 4). In this case, by substituting the magnetization
profiles given in the set of Eqs. (2) and (3), the mass matrix
elements defined in Eq. (8) are given by M12

d = M21
d = 0 and

M11
d = M22

d ≡ Md . Assuming that |δ| � 1, we can expand
the mass elements of the II skyrmions, neglecting terms on the
order of δ2. Under these assumptions, we obtain that the mass
elements of the v-bimeron configuration are

Md = Ms + 4πδ b

R2

[
2
√
A

(
1

A − 2b2 + 8Ab4

)

− 1√
B

− 1√
C

]
, (10)

where A = (R2 + 4b2)−1, B = (R − 2b)−2, and C = (R +
2b)−2. The previous equation reveals that if the v bimeron is
flatten along the x-axis direction (ζ > ξ ), its mass increases,
while if the v meron is flattened along the y axis direction (ζ <

ξ ), its mass decreases. The mass elements for the h bimeron
can be also obtained. However, the equations describing them
are cumbersome and will be omitted here. In Fig. 5, we show
the behavior of Md of the h bimeron as a function of δ. It can
be observed that the mass elements of the h bimeron behave

FIG. 4. mz component of the magnetization of the magnetization
of the considered configurations. a, b, and c show respectively the
skyrmion, v meron, and h meron for different values of δ.

contrary to the v-bimeron case. That is, for δ < 0 the mass
increases when compared to the Ms and for δ > 0, the mass
decreases. Additionally, the effect of the deformation on the
mass is more prominent for h bimerons.

From the above discussion, we are now in a position
to explain the results obtained from micromagnetic simula-
tions. Indeed, from the mass-center trajectory equation y(x) =
(Dsα/g)x ∝ Msx [or Eq. (9)], one can observe that the posi-
tion of the skyrmion depends on its mass in such a way that the
larger the mass, the more quickly the skyrmion approaches the
lateral border of the racetrack. In principle, the annihilation
of the structure at the racetrack lateral border would occur at
a smaller x position. In this context, because the v-bimeron
mass practically does not change when it deforms, its trajec-
tory should be almost the same as that of the type-I skyrmion.
On the other hand, the h bimeron diminishes its mass when it

FIG. 5. Behavior of Dd as a function of δ. Black line (squares)
represents the mass element of the v bimeron. Blue line (circles)
depicts the mass of a h bimeron. The inset evidences that there
is a variation in the v meron mass. In the above figures, we have
considered R = 4 nm and b = 40 nm.

104409-5



A. S. ARAÚJO et al. PHYSICAL REVIEW B 102, 104409 (2020)

is flattened along the y-axis direction. Nevertheless, because
the changes in the skyrmion mass are more pronounced for
h bimerons, the trajectory of this structure must have a more
pronounced difference as compared with the type I-skyrmion
pathway. Such results agree with the simulations. However,
when all structures are near the stripe border (x ∼ xi,c), the
deformation along x-axis direction increases the h-bimeron
mass and is rapidly destroyed in the stripe border. Because
we have considered a model for very small δ, the trajecto-
ries analytically obtained are almost superposed, and then a
fully realistic model should consider larger deformations. In
addition, at x ∼ xi,c, the skyrmion-border interaction is also
important for the skyrmion deformation, changing more dras-
tically the skyrmion trajectories as shown by the simulations.

IV. DISCUSSION AND CONCLUSION

In summary, we have investigated how different skyrmion
configurations travel along isotropic ferromagnetic racetracks.
Since these skyrmions reside, in general, on different circum-
stances or materials (for instance, in-plane or out-of-plane

boundary conditions dictate their structures), we have consid-
ered a race competition among them in which each skyrmion
moves in its own appropriated lane. Since all the objects
analyzed here experience the Hall skyrmion effect, they
inevitably will die after running some distance along the race-
track (striking the lateral border). We show that the trajectories
of these skyrmions depend on their mass, in such a way that
small modifications in the mass may result in an additional
last breath, making determined skyrmion to live a bit more
in the track. Our results show that a bimeron positioned in
the v-bimeron mode is the best long-distance runner since
it could go through a little more spatial extension before its
annihilation at the lateral border of its racetrack. In spite of the
skyrmion-border interaction not being included, the presented
theory gives a useful tool to understand the behavior of these
different magnetic textures.
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