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Ground-state phase diagram of dipolar-octupolar pyrochlores

Owen Benton
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, Dresden 01187, Germany

(Received 14 February 2020; revised 28 July 2020; accepted 3 August 2020; published 3 September 2020)

The “dipolar-octupolar” pyrochlore oxides R2M2O7 (R=Ce, Sm, Nd) represent an important opportunity in
the search for three-dimensional quantum spin liquid (QSL) ground states. Their low-energy physics is governed
by an alluringly simple ‘‘XY Z” Hamiltonian, enabling a theoretical description with only a small number of
free parameters. Meanwhile, recent experiments on Ce pyrochlores strongly suggest QSL physics. Motivated by
this, we present here a complete analysis of the ground-state phase diagram of dipolar-octupolar pyrochlores.
Combining cluster mean-field theory, variational arguments, and exact diagonalization we find multiple U (1)
QSL phases, which together occupy a large fraction of the parameter space. These results give a comprehensive
picture of the ground-state physics of an important class of QSL candidates and support the possibility of a U (1)
QSL ground state in Ce2Zr2O7 and Ce2Sn2O7.
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I. INTRODUCTION

The pursuit of quantum spin liquid (QSL) ground states has
not gone unrewarded. On the theory side, it has been realized
that an enormous diversity of QSL states are possible [1,2]
and several physically relevant models are now known to have
QSL ground states [3–11]. In experiments, many candidate
materials have been established, exhibiting spin-liquid-like
properties at low temperature [12–16].

What has yet to be achieved is the combination of a
material with an experimentally robust QSL state, with the-
oretical understanding of the microscopic interactions which
give rise to that state and what kind of spin liquid they
produce. Some materials studied as potential QSLs actually
order at low temperature [17–19], and others are complicated
by chemical or structural disorder [20–23]. Meanwhile, the
relevant theoretical models are often complicated, possessing
many free parameters [24–26].

“Dipolar-octupolar” (DO) pyrochlores R2M2O7 (R=Ce,
Sm, Nd; M=Zr, Hf, Ti, Sn, Pb) [27–44] constitute an op-
portunity in this context, with their low-energy physics being
described by a simple XY Z Hamiltonian [45,46]. Out of this
family, Ce2Sn2O7 [27,28] and Ce2Zr2O7 [29,30] have been
highlighted recently as showing evidence of QSL physics.
Notably, neutron scattering results for Ce2Zr2O7 bear encour-
aging similarity to predictions for a U (1) quantum spin liquid
[30,47].
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In DO pyrochlores, the magnetic rare-earth ions form a
corner-sharing tetrahedral structure [Fig. 1 (inset)]. There are
strong crystal electric fields (CEFs) acting on each magnetic
site, resulting in a Kramers doublet at the bottom of the CEF
spectrum, separated from higher states by a large gap �CEF ∼
100 K [30,37,40]. With the scale of exchange interactions
being ∼1 K [28,39], this motivates a description of the system
in terms of pseudospin-1/2 operators τ x

i , τ
y
i , τ z

i . The thing
which sets DO pyrochlores apart from other pyrochlore oxides
is the transformation properties of these operators under time-
reversal and lattice symmetries [45,46].

τ x
i and τ z

i both transform like the component of a magnetic
dipole oriented along the site’s C3 symmetry axis, while τ

y
i

transforms like a component of the magnetic octupole tensor.
Assuming nearest-neighbor interactions, symmetry con-

strains the Hamiltonian to take the form [45]

H =
∑
〈i j〉

[( ∑
α=x,y,z

Jατα
i τα

j

)
+ Jxz

(
τ x

i τ z
j + τ z

i τ
x
j

)]
. (1)

The final term in Eq. (1) can be removed by a suitably chosen
global transformation τα → τ̃ α̃ [45,48], reducing the problem
to an XY Z Hamiltonian

H =
∑
〈i j〉

∑
α=x̃,ỹ,z̃

J̃ατ̃ α
i τ̃ α

j . (2)

An understanding of dipolar-octupolar pyrochlores and
their potential to realize QSL ground states requires under-
standing of the ground-state phase diagram of Eq. (2).

Certain limits of the parameter space of Eq. (2) have
been well studied, namely, the perturbative limit where
one exchange parameter dominates the other two [4,47,49],
the XXZ limit where two of the three exchange parame-
ters are equal [5,50–54] and the region of parameter space
without a sign problem for quantum Monte Carlo (QMC)
[5,45,53–55]. However, there is no reason to expect materials
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FIG. 1. Ground-state phase diagram of the XY Z model [Eq. (2)] on the pyrochlore lattice (inset), describing dipolar-octupolar pyrochlores.
The three exchange parameters J̃α̃ are represented in terms of an overall scale J̄ and two angular variables φ, ψ [Eq. (3)]. The phase diagram
features “all in/all out” (AIAO) and octupolar ordered phases, and four distinct U (1) QSLs. These four QSLs are distinguished by whether the
emergent electric field of the low-energy gauge theory transforms like a magnetic dipole or octupole, and by the flux penetrating elementary
plaquettes in the ground state (0 or π ). The phase diagram is obtained by combining cluster mean-field theory (CMFT), a cluster variational
(CVAR) calculation, and exact diagonalization (ED) as described in the text. The two regions bounded by black dashed lines correspond to the
subset of parameters in Eq. (5), from which the entire phase diagram can be generated using unitary transformations.

of interest to fall into one of these limits, so a global phase
diagram is needed.

In this paper, we calculate the ground-state phase diagram
of Eq. (2), by combining cluster mean-field theory (CMFT),
a variational extension to CMFT (CVAR) [52] and exact
diagonalization (ED).

Where the results can be compared with available QMC
results [55], they agree well.

The final result for the phase diagram is shown in Fig. 1,
with the parameter space expressed in terms of an overall scale
J̄ which can be divided out and two angles φ,ψ :

J̃x̃ = J̄ cos(φ) sin(ψ ), J̃ỹ = J̄ sin(φ) sin(ψ ),

J̃z̃ = J̄ cos(ψ ). (3)

We find four U (1) spin liquid phases, occupying a large
combined portion of the parameter space, competing with an
antiferromagnetic “all in/all out” (AIAO) phase and octupolar
order.

The four U (1) QSLs all host gapless photons and gapped
fractionalized charges, and are thus realizations of emergent
electromagnetism [4,6,47,49].

They are labeled dipolar/octupolar-U (1)0/π with the
dipolar/octupolar label referring to whether the emergent
electric field transforms like a magnetic dipole or octupole
[56,57], and the 0/π subscript referring to the U (1) flux
penetrating elementary plaquettes in the ground state.

The remainder of this paper is devoted to explaining the
calculations leading to Fig. 1, before finishing with a brief
discussion of the outlook for experiments.

The paper is structured as follows. In Sec. II we describe
some simple dualities which allow the whole phase diagram
to be generated from calculations covering only a subregion
of parameter space. In Sec. III we calculate the ground-
state phase diagram using CMFT, augmented with the CVAR
approach. In Sec. IV we show ED calculations on a 16-site
cluster, and use these as an alternative route to calculate the
ground-state phase diagram. The construction of the complete
phase diagram (Fig. 1), from the combination of the calcula-
tions in the preceding sections, is then described in Sec. V.
Section VI gives a summary of the results and an outlook for
future work on dipolar-octupolar pyrochlores.

II. DUALITIES OF THE MODEL AND REDUCED
PARAMETER SPACE

In calculating the phase diagram it is useful to note that
Eq. (2) has some dualities in which the exchange parameters
can be permuted by a unitary transformation acting on H.
Specifically,

H(J̃z̃, J̃x̃, J̃ỹ) = U2π/3,111H(J̃x̃, J̃ỹ, J̃z̃ )U†
2π/3,111,

H(J̃ỹ, J̃x̃, J̃z̃ ) = Uπ/2,001H(J̃x̃, J̃ỹ, J̃z̃ )U†
π/2,001, (4)

where Uγ ,v represents a global rotation by an angle γ around
axis v of pseudospin space (which is not the same as a
rotation in the physical crystal space). Making use of these
dualities means that we do not actually need to study the full
parameter space of J̃x̃, J̃ỹ, J̃z̃, it is enough to consider a subset
of parameters

|J̃z̃| > |J̃x̃|, |J̃ỹ|, J̃x̃ > J̃ỹ, (5)
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from which we can then generate the rest of the phase diagram
by applying the transformations from Eq. (4) to our results.
The parameter space described by Eq. (5) is delineated by the
black dashed lines in Fig. 1.

Taking J̃z̃ to be the strongest exchange parameter as in
Eq. (5), if J̃z̃ < 0 it is clear that the ground state will simply or-
der ferromagnetically with respect to the z̃-axis of pseudospin
space. In terms of the physical magnetic moments this implies
AIAO order. The more challenging problem is to discover
what happens when J̃z̃ > 0.

To study this case we rewrite the Hamiltonian in terms of
spin ladder operators τ̃±

i :

H=
∑
〈i j〉

[
J̃z̃ τ̃

z̃
i τ̃

z̃
j − J̃±(τ̃+

i τ̃−
j + τ̃−

i τ̃+
j ) + J̃±±(τ̃+

i τ̃+
j + τ̃−

i τ̃−
j )

]
,

(6)

where J̃± = − 1
4 (J̃x̃ + J̃ỹ) and J̃±± = 1

4 (J̃x̃ − J̃ỹ). The subre-
gion of parameter space given by Eq. (5) then becomes

|2(J̃±± − J̃±)| < J̃z̃, |2(J̃±± + J̃±)| < J̃z̃, J̃±± > 0. (7)

III. PHASE DIAGRAM FROM CLUSTER
MEAN-FIELD THEORY

A. CMFT Calculation

To begin, we consider the phase diagram using a tetra-
hedral CMFT, as employed for the XXZ limit (J̃±± = 0) in
Ref. [52]. A summary of the calculation is given here, with a
detailed description found in Appendix A.

To construct the CMFT we use the fact that the pyrochlore
lattice can be divided into two sets of tetrahedra “A” and “B,”
with all neighbors of an “A” tetrahedron being “B” tetrahedra
and vice versa. We then seek to optimize a product wave
function over all “A” tetrahedra:

|ψCMFT〉 =
∏
t∈A

|φt 〉. (8)

The wave function |φt 〉 on each tetrahedron t is defined to be
the ground state of a single tetrahedron Hamiltonian

H′
t |φt 〉 = ε0,t |φt 〉. (9)

H′
t contains the original exchange terms acting on the bonds

of t as well as auxiliary fields hi on each site

H′
t =

∑
〈i j〉∈t

[
J̃z̃ τ̃

z̃
i τ̃

z̃
j −J̃±(τ̃+

i τ̃−
j +τ̃−

i τ̃+
j )+J̃±±(τ̃+

i τ̃+
j + τ̃−

i τ̃−
j )

]

−
∑
i∈t

∑
α=x̃,ỹ,z̃

hα
i τ̃ α

i . (10)

The auxiliary fields hi then serve as variational parameters
for optimizing |ψCMFT〉, and a CMFT wave function can be
indexed by a configuration of hi on the lattice.

There are two regimes for the optimal configuration of hi

in CMFT as shown in Fig. 2. For sufficiently large, positive,
values of J̃± or J̃±± the optimal solutions have hi ordered
ferromagnetically along the y-axis of pseudospin space. This
implies 〈τ̃ ỹ〉 �= 0, and therefore octupolar order since τ̃ ỹ trans-
forms like a magnetic octupole [45].

In the remainder of the phase diagram there is a large,
ice-like, degeneracy of disordered CMFT solutions, with

FIG. 2. CMFT and CVAR calculations of the ground-state phase
diagram of H [Eqs. (2) and (6)] within the region of parameter space
given by Eq. (7) with J̃z̃ > 0. CMFT calculations give two regimes
for the optimal configuration of the auxiliary fields hi: an ordered
region where the hi point uniformly along the y axis of pseudospin
space (red) and a disordered region with a large degeneracy of CMFT
solutions where hi = σihz̃i, with signs σi summing to zero on ev-
ery tetrahedron (green). The CVAR calculation, which incorporates
quantum tunneling between CMFT solutions, breaks the degenerate
region into two, based on the sign of the effective tunneling matrix
element geff. Positive (negative) values of geff lead ultimately to a
π -flux (0-flux) U (1) QSL ground state.

hi = σihz̃i where h is a fixed, uniform, magnitude and σi =
±1, subject to the constraint that σi sum to zero on every
tetrahedron.

B. Cluster variational calculation

To resolve the CMFT degeneracy in the disordered regime,
we follow the cluster variational (CVAR) method [52]. The
calculation is described briefly here with further details given
in Appendix B.

Labelling CMFT ground states according to their configu-
ration of signs {σ } we write down a generalized superposition
of CMFT solutions

|ϕ〉 =
∑
{σ }

a{σ }|ψCMFT({σ })〉, (11)

where a{σ } are unknown coefficients. We then seek to optimize
the new variational energy

Evar = 〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 . (12)

Equation (12) can be expanded in terms of the overlap be-
tween distinct CMFT wave functions, in a similar spirit to the
derivation of dimer models from an expansion in the overlap
between singlet coverings of a lattice [59]. This generates an
effective Hamiltonian in the space of CMFT solutions, where
the leading term is a six-site ring exchange which flips the
values of σi on hexagonal plaquettes where σ alternates in
sign around the plaquette, with matrix element geff.
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FIG. 3. ED calculations of the ground-state phase diagram of H [Eqs. (2) and (6)] within the region of parameter space given by Eq. (7)
with J̃z̃ > 0. (a) Second derivative of the ground-state energy in ED on a 16-site cubic cluster with respect to J̃± for various values of J̃±±/J̃z̃.
The peaks indicate a qualitative change in the ground state [58], associated with the transition to long-range order. (b) Color plot of the gap
to excitations with odd total τ̃ z̃ within 16-site ED. The white line indicates the position of peaks in the second derivative of the ground-state
energy, examples of which are plotted in (a). The gap collapses rapidly upon crossing the white line, supporting the conclusion that this line
corresponds to a transition to long-range order breaking π -rotation symmetry around the z̃-axis in the thermodynamic limit.

This Hamiltonian has already been studied using quantum
Monte Carlo [47,49]. It can have two different QSL ground
states depending on the sign of geff. Both are U (1) QSLs
with gapped, bosonic, charges and gapless photons. The two
ground states are distinguished by the U (1) flux threading
elementary plaquettes in the ground state. This background
flux vanishes for geff < 0 [U (1)0] but is equal to π on
every plaquette for geff > 0 [U (1)π ). The value of geff can
be extracted from the CMFT calculation for all values of
exchange parameters (see Appendix B), and by this means
the degenerate region within CMFT can be divided into two
ground-state QSL phases [U (1)0 and U (1)π ] depending on
the sign of geff. The boundary between regions with different
signs of geff is shown in Fig. 2. This constitutes our estimate
of the boundary between 0-flux and π -flux QSLs.

IV. EXACT DIAGONALIZATION

We now turn to ED calculations on a 16-site cubic cluster
with periodic boundaries, to obtain alternative estimates of the
phase boundaries.

A. Boundary of octupolar ordered phase

Figure 3(a) shows the second derivative of the ground-state
energy on this cluster with respect to J̃±, at various fixed
values of J̃±±/J̃z̃. This second derivative exhibits a peak as
J̃± is swept, indicating a qualitative change in the ground state
[58].

Figure 3(b), shows the position of these peaks as a function
of J̃±/J̃z̃ and J̃±±/J̃z̃, laid over a color plot of the gap to
excitations with odd total τ̃ z̃. The parity p = (−1)

∑
i τ̃

z̃
i is

conserved by H, with the ground state always having p = 1.
The line of peaks in the second derivative of the ground-
state energy coincides with a rapid decrease of the gap to
p = −1 excitations. This suggests the formation of a twofold
degenerate ground state in the thermodynamic limit, breaking
π rotation symmetry around the z̃ axis, consistent with the
octupolar order identified in CMFT. We thus interpret the

peaks in the second derivative of the ground-state energy as
indicative of a transition to octupolar order.

B. Boundary between QSLs

It is not easy to cleanly distinguish between the two QSL
phases, QSL0, and QSLπ using ED on a small cluster. How-
ever, some insight into how to identify the phase boundary
can be gained by considering how this transition occurs in the
perturbative limit and in the CVAR approach.

From the perspective of both perturbation theory and
CVAR, the transition from QSL0 to QSLπ occurs when the
leading tunneling matrix element geff between ice-like states
changes sign. At the point where geff vanishes, tunneling
is restricted to higher-order processes and will therefore be
suppressed, leading to a near restoration of the degeneracy of
ice-like states.

Returning to ED, this suggests that the transition from
QSL0 to QSLπ will be accompanied by a simultaneous col-
lapse of many excited states, in the sector with even total τ̃ z̃,
to near-zero energy. Such a collapse is indeed observed in the
ED data, as shown in Fig. 4(a). The position of this collective
minimum in the gaps within the even sector constitutes the
ED estimate of the phase boundary between the two QSLs.
The phase boundary thus obtained is compared to that from
CVAR in Fig. 4(b), with the two estimates agreeing closely.

C. Combining information from CMFT/CVAR and ED

Combining the information from CMFT/CVAR and ED
gives the phase diagram shown in Fig. 5.

For J̃± < 0 the CMFT and ED estimates of the octupolar
phase boundary agree closely. For J̃± > 0 the ED estimates
a larger region of octupolar order (and hence a smaller QSL
region) than does the CMFT approach.

For J̃± > 0 the model has no sign problem from the
perspective of QMC, and in this regime we can compare to
previous QMC studies. Several previous QMC studies of the
case J̃±± = 0 have observed the transition from QSL0 to the
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FIG. 4. Estimate of the phase boundary between the quantum spin liquids QSL0 and QSLπ , within ED. (a) Collapse of gaps to lowest
excited states in the sector with even total τ̃ z̃, within 16-site ED. The gaps are plotted as a function of J̃±/J̃z̃ for three different values of
J̃±±/J̃z̃. For a given value of J̃±±/J̃z̃ the gaps come close to zero around the same point, which we take as an indication of the suppression of
tunneling within the low-energy manifold of states. This corresponds with expectations from perturbation theory and CVAR calculations for
the transition between QSL0 and QSLπ , which happens when the leading tunneling term between ice-like states changes sign. (b) The position
of the collective minima in the gaps in the even sector as a function of exchange parameters, which serves as the ED estimate of the boundary
between QSLs (points). This is compared to the estimate of the same phase boundary from CVAR (solid line).

ordered phase as J̃± is increased [5,53–55]. A recent QMC
study by Huang et al. [55] studied the behavior of this phase
boundary as a function of J̃±±. Comparison to these results
can be used to adjudicate between ED and CVAR where they
disagree. The ED calculation gives closer agreement with
the QMC results from [55] than CMFT/CVAR does, and
therefore we will take the ED calculation as our estimate of
the boundary of the octupolar phase.

The estimates of the boundary between the two QSL
phases agree closely between CVAR and ED, as shown in
Fig. 4(b). There is, however, some difference between the two

FIG. 5. Ground-state phase diagram of H [Eqs. (2) and (6)],
in the parameter region (7) with J̃z̃ > 0., obtained from combining
CMFT, CVAR, and ED calculations. This region of parameter space
corresponds to the lower region bounded by dashed lines in Fig. 1.
The full phase diagram in Fig. 1 can be generated by applying the
dualities described in Sec. II to this region and to the upper region
bounded by dashed lines in Fig. 1 which has all-in-all-out order
throughout.

estimates at larger negative values of J̃±. For the purpose of
Fig. 5 we use the boundary from CVAR because it gives a
more direct prediction of the transition between the two states
in the thermodynamic limit, as opposed to the more indirect
inference from the behavior of gaps in ED.

V. CONSTRUCTION OF COMPLETE PHASE DIAGRAM

The phase diagram in Fig. 5 can then be extended to the
full parameter space using the duality relations [Eq. (4)].

In doing this, we must take into account how the duality
transformations act on the ground states. For example, the oc-
tupolar ordered phase with 〈τ̃ ỹ

i 〉 �= 0 becomes an AIAO phase
when acted on by a transformation which swaps the ỹ-axis
with the x̃-axis or z̃-axis. On the other hand, transformations
which swap only the x̃-axis and z̃-axis, do not change the
classification of the ground-state phase because τ̃ x̃

i and τ̃ z̃
i

transform equivalently under point-group and time-reversal
symmetries.

Similar considerations allow us to distinguish four different
kinds of U (1) QSL, generated from the two in the phase
diagram of Fig. 5. In the 0-flux and π -flux QSLs in Fig. 5
the emergent electric field of the QSL Ei ∼ τ̃ z̃

i [4,50] and
therefore transforms like a magnetic dipole. If we act a
transformation that swaps the z̃-axis and ỹ-axes, then Ei ∼ τ̃

ỹ
i

and transforms like an octupole. We should therefore not
only distinguish U (1) QSLs by the flux but by the dipolar or
octupolar character of the emergent electric field, giving four
distinct QSLs on the complete phase diagram [56,57].

Applying these arguments to the parameter space covered
in Fig. 5, and to the case of J̃z̃ < 0, allows us to generate
the full phase diagram, shown using spherical coordinates
[Eq. (3)] in Fig. 1.

VI. SUMMARY AND OUTLOOK

We thus established a phase diagram for the generic, sym-
metry allowed, nearest-neighbor exchange Hamiltonian de-
scribing dipolar-octupolar (DO) pyrochlores R2M2O7 (R=Ce,
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Sm, Nd). The picture we arrive at is an encouraging one for
the realization of QSL states. There are four distinct U (1)
QSLs on the phase diagram of the generic nearest neighbor
model, and between them they occupy ∼19% of the available
parameter space.

Amongst materials, Ce2Zr2O7 [29,30], Ce2Sn2O7 [27,28],
and Sm2Zr2O7 [35] stand out as lacking low-temperature
order. The Ce pyrochlores in particular seem promising with
recent neutron scattering results on Ce2Zr2O7 bearing simi-
larity to predictions for emergent photons [30]. Low-energy
correlations in Ce2Sn2O7 seem to be dominantly octupolar in
nature [28], which would be consistent with either of the two
octupolar spin liquids on the phase diagram (Fig. 1).

It will be important to establish estimates of the exchange
parameters of Ce2Zr2O7 and Ce2Sn2O7, combining informa-
tion from inelastic neutron scattering with fits to thermody-
namic data. Mean-field calculations in Ref. [28] give an initial
estimate for Ce2Sn2O7 of Jy = 0.48 K, Jz = 0.03 K, while
setting Jx and Jxz to zero, in the basis of Eq. (1). This would
place Ce2Sn2O7 in the Octupolar-U (1)π region of the phase
diagram. It would be useful to refine this estimate with all
parameters allowed to be finite, and using calculations beyond
mean-field theory.

If refined parametrizations place Ce2Zr2O7 and Ce2Sn2O7

within the QSL regimes of Fig. 1, then this will be a strong
indication that they are indeed U (1) QSLs, and the parame-
terized model will provide a platform for further theoretical
study. Understanding the effects of disorder of the crystal
structure is also likely to be crucial, particularly in regard to
the possible substitution of magnetic Ce3+ with nonmagnetic
Ce4+ [30].

For those DO pyrochlores that are known to possess mag-
netic order at low temperature, the spin liquid phases may
also manifest at finite temperature, as suggested recently in
Nd2Zr2O7 [60]. In such cases it may even be possible to
tune into the T = 0 QSL phase using chemical or physical
pressure, giving another avenue to realize these exotic states
of matter.

Note added. Recently, the author became aware of a recent
paper by Patri et al. [61], which also presents calculations of
the ground-state phase diagram of DO pyrochlores.
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APPENDIX A: CMFT SOLUTIONS
IN THE ICE-LIKE REGIME

The CMFT proceeds by optimizing variational wave func-
tions of the form

|ψCMFT({hi})〉 =
∏
t∈A

|φt ({hi∈t })〉, (A1)

FIG. 6. The pyrochlore lattice with “A” and “B” tetrahedra high-
lighted in red and blue, respectively.

where the product is over all “A” tetrahedra (Fig. 6), {hi} is
the configuration of auxiliary fields defined on each site and
the single tetrahedron wave functions |φt 〉 depend only on the
fields on sites belonging to tetrahedron t . The auxiliary fields
hi are variational parameters for optimizing the CMFT energy

ECMFT = 〈ψCMFT|H|ψCMFT〉. (A2)

The wave functions |φt ({hi∈t }) are taken to be eigenstates
of a single tetrahedron Hamiltonian H′

t

H′
t =

∑
〈i j〉∈t

∑
α=x̃,y,z

J̃α̃ τ̃ α̃
i τ̃ α̃

j −
∑
i∈t

∑
α=x̃,y,z

hα
i τ̃ α

i (A3)

H′
t |φt ({hi∈t })〉 = ε0,t |φt ({hi∈t })〉. (A4)

ECMFT is then

ECMFT =
∑
t∈A

ε0,t +
∑

i

∑
α=x̃,y,z

hα
i

〈
τ̃ α

i

〉

+
∑
〈i j〉B

∑
α=x̃,y,z

J̃α̃

〈
τ̃ α̃

i

〉〈
τ̃ α̃

j

〉
, (A5)

where the final term in Eq. (A5) sums over bonds belonging
to “B” tetrahedra and accounts for the interactions on those
tetrahedra.

There is a large region of the phase diagram (Fig. 2 of the
main text) in which the optimal solutions for hi take the form

hx̃
i = hỹ

i = 0, hz̃
z = σih,

σi = ±1. (A6)

Correspondingly, the expectation values of the spin compo-
nents are 〈

τ̃ x̃
i

〉 = 〈
τ̃

ỹ
i

〉 = 0,〈
τ̃ z̃

i

〉 = σis, (A7)

with h and s being uniform across the system, and fixed by the
energy optimization for a given parameter set.
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With this form for the auxiliary fields, the mean-field
energy [Eq. (A5)] becomes

ECMFT =
∑
t∈A

ε0,t + Nhs + J̃z̃s
2
∑
〈i j〉B

σiσ j . (A8)

Any arrangement of signs σi such that∑
i∈t

σi = 0 ∀ tetrahedra t (A9)

gives rise to the same value of ε0,t , as can be inferred from the
symmetries of the original Hamiltonian. The remaining terms
in Eq. (A8) are also the same for all configurations obeying
Eq. (A9). Thus we have a large degeneracy of mean-field
solutions in this regime.

Each arrangement of signs σi obeying Eq. (A9) defines a
CMFT wave function [via Eqs. (A1), (A4), and (A6)] which
we will denote with |ψCMFT({σ })〉. Explicitly, the form of
single tetrahedron wave functions |φt ({σi∈t )〉 (denoted simply
as |σ0σ1σ2σ3〉) relates to the configuration of signs on t in the
following way, written in the basis diagonalizing τ̃ z̃

i :

| + + − −〉 =
√

1 − μ2 − ν2 − ρ2| ↑↑↓↓〉
+ μ

2
(| ↑↓↑↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 + | ↓↑↓↑〉)

+ ν| ↓↓↑↑〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉)

| + − + −〉 =
√

1 − μ2 − ν2 − ρ2| ↑↓↑↓〉
+ μ

2
(| ↑↑↓↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 + | ↓↓↑↑〉)

+ ν| ↓↑↓↑〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉)

| + − − +〉 =
√

1 − μ2 − ν2 − ρ2| ↑↓↓↑〉
+ μ

2
(| ↑↑↓↓〉 + | ↑↓↑↓〉

+| ↓↑↓↑〉 + | ↓↓↑↑〉)

+ ν| ↓↑↑↓〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉)

| − − + +〉 =
√

1 − μ2 − ν2 − ρ2| ↓↓↑↑〉
+ μ

2
(| ↑↓↑↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 + | ↓↑↓↑〉)

+ ν| ↑↑↓↓〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉)

| − + − +〉 =
√

1 − μ2 − ν2 − ρ2| ↓↑↓↑〉
+ μ

2
(| ↑↑↓↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 + | ↓↓↑↑〉)

+ ν| ↑↓↑↓〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉)

| − + + −〉 =
√

1 − μ2 − ν2 − ρ2| ↓↑↑↓〉

+ μ

2
(| ↑↑↓↓〉 + | ↑↓↑↓〉

+ | ↓↑↓↑〉 + | ↓↓↑↑〉)

+ ν| ↑↓↓↑〉 + ρ√
2

(| ↑↑↑↑〉 + | ↓↓↓↓〉).

(A10)

The parameters μ, ν, and ρ can always be chosen to be real.
This choice, combined with the choice to define the first term
on the right-hand side of each line of Eq. (A10) to be positive,
removes any phase ambiguity in the CMFT wave functions.
μ, ν, and ρ vary as a function of the exchange parameters J̃α̃

and are plotted in Fig. 7.

APPENDIX B: DETAILS OF CVAR CALCULATION

The goal of the CVAR calculation is to resolve the degen-
eracy of the CMFT solutions by considering a new trial wave
function which is a superposition of the CMFT solutions

|ϕ〉 =
∑
{σ }

a{σ }|ψCMFT({σ })〉, (B1)

where a{σ } are, a priori unknown, complex, coefficients.
We then seek to optimize the variational energy

Evar = 〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 =

∑
{σ }{σ ′} a∗

{σ ′}a{σ }X{σ ′}{σ }∑
{σ }{σ ′} a∗

{σ ′}a{σ }O{σ ′}{σ }

≡ a† · X · a
a† · O · a

, (B2)

where X is a matrix containing the Hamiltonian matrix el-
ements between different CMFT wave functions and O con-
tains the overlaps (the CMFT wave functions are not generally
orthogonal to one another)

X{σ ′}{σ } = 〈ψCMFT({σ ′})|H|ψCMFT({σ ′})〉, (B3)

O{σ ′}{σ } = 〈ψCMFT({σ ′})|ψCMFT({σ ′})〉. (B4)

It is then useful to define a new matrix X′ with vanishing
diagonal elements

X′ = X − ECMFTO (B5)

such that

Evar = ECMFT + a† · X′ · a
a† · O · a

. (B6)

We then relate the vector of coefficients a, to a new
normalized vector b via

a = O−1/2 · b, (B7)

b† · b = 1. (B8)

The variational energy is then

Evar = ECMFT + b† · Heff · b, (B9)

where

Heff = O−1/2 · X′ · O−1/2. (B10)
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FIG. 7. Parameters μ, ν, and ρ which enter the single tetrahedron wave functions [Eq. (A10)], plotted as a function of the exchange
parameters in the region where the CMFT solutions have an ice-like degeneracy.

The optimal superposition of CMFT solitions is then given by
the ground state of Heff and Eq. (B7).

We then expand Heff in terms of two overlap parameters
o2 and o4, which can be defined from the wave functions in
Eqs. (A10):

o2 = 〈+ + − − | + − + −〉 = μ2

2

+ ρ2 + μ(ν +
√

1 − μ2 − ν2 − ρ2), (B11)

o4 = 〈+ + − − | + − + −〉 = μ2

+ ρ2 + 2ν
√

1 − μ2 − ν2 − ρ2. (B12)

These two quantities are treated as small parameters for the
purposes of the expansion and indeed they are small through
most of the relevant parameter space, as shown in Fig. 8.

FIG. 8. Magnitudes of the single tetrahedron overlap parameters
o2 and o4. These function as the small parameters for the expansion
of the CVAR energy.

To expand Eq. (B10) we note that all the diagonal elements
of O are unity, and the leading off diagonal elements ∼(o2)3

(coming from the process illustrated in Fig. 9) so we can write

O−1/2 = (1 + O′)−1/2 ≈ 1 − 1
2 O′. (B13)

The first two terms of the expansion of Heff are then

Heff ≈ X′ − 1
2 (O′ · X′ + X′ · O′). (B14)

The leading elements in X′ are ∼(o2)2 (again, from the
process in Fig. 9) and the leading elements in O′ · X′ are
∼(o2)5 and so we henceforth drop the second term.

We then need to evaluate the leading matrix elements in X′
which connect configurations of σi which differ on a single
hexagonal plaquette as shown in Fig. 9. The matrix element
to a flip a hexagon is geff. The sign of geff determines whether
the ground state should be a 0 or π flux QSL, with

geff < 0 ⇒ U(1)QSL0, (B15)

geff > 0 ⇒ U(1)QSLπ , (B16)

FIG. 9. Processes which flip a six-site loop of alternating sign
variables σi provide the leading matrix elements in X′, O′, and Heff

[Eq. (B10)] [52].
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FIG. 10. Contributions to geff. The matrix element between two
configurations which differ by flipping the central hexagon has
three distinct nonvanishing contributions: from the “A” tetrahedra
highlighted in red, from the “B;’ bonds in blue which connect
to the interior of the hexagon and from the “B;’ bonds in green
which connect to the exterior of the “A” tetrahedra belonging to the
hexagon. The contribution from bonds drawn with narrow black lines
vanishes.

as may be inferred from prior quantum Monte Carlo studies
of the six-site ring exchange Hamiltonian [49] and from a
unitary transformation which relates the sign-problem free
case (geff < 0) to the frustrated case (geff > 0) [4].

Quite generally the matrix element of X′ between two
CMFT wave functions can be written as

X ′
{σ ′}{σ } =

∑
t∈A

(〈ψCMFT({σ ′})|Ht |ψCMFT({σ })〉 − εAO{σ ′}{σ })

+
∑

〈i j〉∈B

J̃z̃(〈ψCMFT({σ ′})|τ̃ z̃
i τ̃

z̃
j |ψCMFT({σ })〉

−s2σiσ jO{σ ′}{σ }), (B17)

where the first sum is over “A” tetrahedra and the second is
over bonds belonging to “B” tetrahedra. Ht is the original
exchange Hamiltonian on tetrahedron t [distinct from H′

t in
Eq. (A3)] and

εA = 〈+ + − − |Ht | + + − −〉

= J̃z̃

(
−1

2
+ 2ρ2

)

+ 2
√

2J̃±±ρ(2μ + ν +
√

1 − μ2 − ν2 − ρ2)

− 2J̃±μ[μ + 2(ν +
√

1 − μ2 − ν2 − ρ2)]. (B18)

The contribution of any “A” tetrahedron which does not
change configurations between {σ ′} and {σ } to Eq. (B17) van-
ishes. Similarly, the contribution of any “B” bond connecting
two unchanged “A” tetrahedra vanishes.

There are three kinds of nonvanishing contribution to the
matrix element to flip a hexagon. Firstly, the three “A” tetra-
hedra belonging to the flipped hexagon (highlighted in red in
Fig. 10) contribute

gA = (o2)2(η2 − o2εA), (B19)

FIG. 11. Tunnelling matrix element geff, calculated using
Eq. (B24), and the numerically determined CMFT wave functions,
plotted over the region of parameter space where the CMFT solutions
are highly degenerate. The sign of geff, shown in the second panel,
determines whether a 0-flux or π -flux U (1) QSL phase is predicted.

where

η2 = 〈+ + − − |Ht | + − + −〉
= −1

4
J̃z̃

[
μ2 − 6ρ2 + 2μ

(
ν +

√
1 − μ2 − ν2 − ρ2

)]
+2

√
2J̃±±ρ(2μ + ν +

√
1 − μ2 − ν2 − ρ2)

−J̃±[1 − ρ2 + 2(μ + ν)(μ +
√

1 − μ2 − ν2 − ρ2)].

(B20)

Second, there are contributions from “B” bonds connecting
to the interior of the flipped hexagon (highlighted in blue in
Fig. 10)

gB1,i j = −J̃z̃s
2σiσ j (o2)3. (B21)

Finally, there are contributions from “B” bonds connecting
to the exterior of the “A” tetrahedra on the flipped hexagon
(highlighted in green in Fig. 10)

gB2,i j = J̃z̃s(ζ − s)σiσ j (o2)3, (B22)

where

ζ = 〈+ + − − |τ̃ z̃
0 | + − + −〉

o2

= μ(−ν +
√

1 − μ2 − ν2 − ρ2)

μ2 + 2ρ2 + 2μ(ν +
√

1 − μ2 − ν2 − ρ2)
. (B23)

Summing these contributions and accounting for the fact
that σi must alternate around the hexagon and must obey
Eq. (A9) everywhere, we arrive at the matrix element

geff = 3(o2)2(η2 − εAo2 + J̃z̃s
2o2 − 2J̃z̃s(ζ − s)o2).

(B24)

From Eq. (B24) and the numerically determined CMFT
wave functions we can calculate geff and thus predict the
ground state in the degenerate region of CMFT from the sign
of geff. The behavior of geff and sign(geff ) over the relevant
region of parameter space is shown in Fig. 11.
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