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Space-time dependent thermal conductivity in nonlocal thermal transport
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Nonlocal thermal transport is generally described by the Peierls-Boltzmann transport equation (PBE). How-
ever, solving the PBE for a general space-time dependent problem remains a challenging task due to the high
dimensionality of the integro-differential equation. In this work, we present a direct solution to the space-time
dependent PBE with a linearized collision matrix using an eigendecomposition method. We show that there exists
a generalized Fourier-type relation that links heat flux to the local temperature, and this constitutive relation
defines a thermal conductivity that depends on both time and space. Combining this approach with ab initio
calculations of phonon properties, we demonstrate that the space-time dependent thermal conductivity gives rise
to an oscillatory response in temperature in a transient grating geometry in high thermal conductivity materials.
The present solution method allows us to extend the reach of our computational capability for heat conduction
to space-time dependent nondiffusive transport regimes. This capability will not only enable a more accurate
interpretation of thermal measurements that observe nonlocal thermal transport, but also enhance our physical
understanding of nonlocal thermal transport in high thermal conductivity materials that are promising candidates
for nanoscale thermal management applications.
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I. INTRODUCTION

Nonlocal thermal transport, which occurs when a temper-
ature gradient exists over a length scale comparable to or
smaller than the mean free paths (MFPs) of the heat carriers, is
a subject of considerable interest for basic science and thermal
management technologies. Recent experiments have demon-
strated ultrahigh thermal conductivity in boron arsenide [1–3]
and isotope-enriched cubic boron nitride [4], two viable
candidates for novel thermal management applications includ-
ing substrates for high-power electronics. Nonlocal thermal
transport can be easily observed in these ultrahigh thermal
conductivity dielectric crystals due to a large fraction of long
MFP phonons, which are the dominant heat carriers in these
materials. An accurate mathematical description of nonlocal
thermal transport is critical to developing further insights into
associated effects toward utilization in practical applications.

Nonlocal phonon transport in crystals is generally de-
scribed by the Peierls-Boltzmann equation (PBE) [5],

∂ fμ
∂t

+ vμ · ∇ fμ = −∂ fμ
∂t

∣∣∣∣
scattering

, (1)

which describes the dynamics of the out-of-equilibrium occu-
pation function fμ at position x and time t , for all possible
phonon states μ [μ ≡ (q, s), where q is the phonon wave
vector and s is the phonon polarization]. In this equation, vμ

is the phonon group velocity. Solving the PBE for a general
space-time dependent problem remains a challenging task due
to the high dimensionality of the integro-differential equation.
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Thus, most prior works have determined solutions of the
PBE under various assumptions. One widely used assump-
tion is the single-mode relaxation-time approximation (RTA),
where each phonon mode relaxes towards thermal equilibrium
at a characteristic relaxation rate independent of the other
phonons. The RTA has been used to investigate nonlocal
transport in an infinite domain [6–9], a finite one-dimensional
slab [10,11], and experimental configurations such as transient
grating [9,12] and thermoreflectance [13–16] measurements.
An efficient Monte Carlo scheme was used to solve the PBE
under the RTA for complicated geometries involving multiple
boundaries [17–19]. However, the RTA introduces difficul-
ties in defining pseudolocal temperature, as noted by Peraud
[17,18]. No satisfactory explanation has thus far been given
regarding the need for an additional “temperature definition.”
Moreover, first-principles calculations have demonstrated that
the RTA fails to adequately describe thermal transport in
materials with weak intrinsic thermal resistance [20,21]. In
short, the RTA assumption is not appropriate for materials
with ultrahigh thermal conductivity, such as diamond or cubic
boron nitride, which also have phonons with long MFPs and
presumably important nonlocal transport effects.

Some efforts have attempted to solve the PBE with a lin-
earized collision operator. Guyer and Krumhansl [22] first
performed a linear response analysis of the PBE, deriving
a space-time dependent thermal conductivity by assuming
the normal scattering rates were much larger than umklapp
scattering rates. They applied their solution to develop a
phenomenological coupling between phonons and elastic di-
latational fields caused by lattice anharmonicity. Hardy and
co-workers reported a rigorous quantum mechanical formu-
lation of the theory of lattice thermal conductivity using a
perturbation method that included both anharmonic forces
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and lattice imperfections [23–25]. This quantum treatment
of lattice dynamics was then verified both theoretically and
experimentally, demonstrating the presence of Poiseuille flow
and second sound in a phonon gas at low temperatures when
umklapp processes can be neglected [26–30]. The variational
principle has also been used to solve the PBE with umklapp
scattering incorporated [31,32]. Levinson developed a nonlo-
cal diffusion theory of thermal conductivity from a solution
of the PBE with three-phonon scattering in the low-frequency
limit [33].

More recently, lattice thermal conductivity has been com-
puted from first principles by imposing a constant temperature
gradient and using an iterative method [34–38] or a variational
approach [39] to solve the PBE. Typical first-principles PBE
calculations consider only a linear spatial temperature profile
without time variation. Chaput presented a direct solution to
the time-dependent PBE imposed with a linear temperature
profile by computing the eigenvalues and eigenvectors of a
symmetrized matrix of reduced dimensions [40]. Dynamical
thermal conductivity with a terahertz temporal frequency was
calculated for the first time.

Li and Lee [41] studied the role of hydrodynamic viscosity
on phonon transport in suspended graphene using the Monte
Carlo solution of the PBE with an ab initio full three-phonon
scattering matrix first introduced by Landon and Hadjicon-
stantinou [42]. The peculiar thermal conductivity dependence
on sample width was explained with a phonon viscous damp-
ing effect in the hydrodynamic regime.

Cepellotti and Marzari [43] introduced the concept of a “re-
laxon,” an eigenstate of the symmetrized scattering operator
of the PBE, first used by Guyer et al. [22] and Hardy [28]
in their studies of second sound [27,28]. They applied this
treatment to solve steady-state problems in two-dimensional
systems with a constant temperature gradient [44]. They also
showed that the derived relaxons had well-defined parity, with
odd relaxons governing thermal conductivity [43] and even
relaxons contributing to thermal viscosity [45]. These quanti-
ties together give a macroscopic description of heat transport
in the hydrodynamic regime [45].

However, these previous efforts either require expan-
sive numerical simulations or contain various assumptions
that may conceal important insights of nondiffusive thermal
transport behaviors. In this work, we use a similar eigende-
composition method first proposed by Guyer [22] and Hardy
[23–25] to solve the PBE with a generalized linearized col-
lision matrix. The only assumption in this method is the
linearization of the collision matrix. We will demonstrate that
a generalized Fourier’s law, similar to that derived in Ref. [46],
also exists in this linear regime. We apply this theoretical
construct to examine spatial and temporal thermal transport
in diamond, Si, Ge, and cubic BN from first principles.

II. GOVERNING EQUATIONS

Starting with Eq. (1), the collision operator can be
linearized around the global equilibrium Bose-Einstein distri-
bution, f 0

μ (T0) = {exp[h̄ωμ/(kBT0)] − 1}−1, where ωμ is the
phonon frequency, kB is the Boltzmann constant, and T0 is the
equilibrium temperature. The linearized PBE can be written

into the following form [40,47]:

∂� fμ
∂t

+ vμ · ∇(� fμ) = −1

ν

∑
μ′

�μμ′� fμ′
sinh

( h̄ωμ′
2kBT0

)
sinh

( h̄ωμ

2kBT0

) , (2)

where � fμ = fμ − f 0
μ (T0), ν is a normalized volume, and

�μ,μ′ is the linear phonon-scattering operator. The right-
hand side of Eq. (2) describes scattering as a linear
operator represented by the action of the matrix �μμ′ on
� fμ′sinh[h̄ωμ′/(2kBT0)]. This linearization of the scattering
operator has been used in most studies of thermal trans-
port and holds for small deviations from thermal equilibrium
[34–36,40,43,48]. The scattering matrix appearing in Eq. (2)
is in its most general form and describes all possible mecha-
nisms by which a phonon excitation can be transferred from
a state μ to a state μ′ regardless of interaction mechanism.
The matrix operator representing three-phonon interactions is
given in the Appendix.

The matrix � has four key features: (1) it is real and
symmetric, i.e., �μμ′ = �μ′μ; (2) it is an even function
of μ, i.e., �−μ−μ′ = �μμ′ ; (3) it is positive semidef-
inite, i.e., |�μμ′ | � 0; (4) it is summational invariant,
i.e.,

∑
μ h̄ωμsinh−1[h̄ωμ/(2kBT0)]�μμ′ = 0. Therefore, when

multiplying Eq. (2) with h̄ωμ and then integrating over μ

in the Brillouin zone, the equation of energy conservation is
recovered as

∂�E

∂t
+ ∇ · J = 0, (3)

where �E = ν−1 ∑
μ h̄ωμ� fμ is the deviational energy and

J = ν−1 ∑
μ h̄ωμvμ� fμ is the heat flux in and out of the

control volume.
The goal of the following mathematical treatment is to find

the appropriate transform matrix to rotate the highly coupled
linear system represented by Eq. (2) into a set of decoupled
linear equations. To do this, we use a spectral decomposition
method, first used by Guyer and Krumhansl [22]. First, we
perform a change of variables by defining

nμ = � fμsinh

(
h̄ωμ

2kBT0

)
. (4)

Then Eq. (2) becomes

∂nμ

∂t
+ vμ · ∇nμ = −1

ν

∑
μ′

�μμ′nμ. (5)

Due to the above-mentioned properties of the matrix �,
we can deduce that there exists a complete set of eigenvectors
such that

1

ν

∑
μ′

�μμ′θα
μ′ = 1

τα

θα
μ, (6)

where τ−1
α is the eigenvalue (the lifetime of relaxons in-

troduced by Cepellotti and Marzari [43]) and α (α =
0, 1, 2, 3, . . . , N , where N is the dimension of the collision
matrix) is the eigenvalue index of matrix �. The orthonormal
condition and the scalar product are then defined as

1

ν

∑
μ

θα
μθα′

μ = 〈α|α′〉 = δαα′ (7)
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and

〈 f |g〉 = 1

ν

∑
μ

fμgμ = 〈g| f 〉. (8)

Since � is real and symmetric, all of its eigenvectors must be
real. Since � is an even function of μ, its eigenvectors can be
chosen to be either even or odd, i.e., θα

μ = ±θα
−μ. Because of

its positive semidefiniteness, one can show that its eigenvalues
are non-negative, i.e., τα � 0 ∀α, and only one eigenvalue is
necessarily zero, which is labeled as α = 0. The associated
normalized eigenvector is

θ (0)
μ = 1√

4kBT 2
0 C0

h̄ωμ

sinh
( h̄ωμ

2kBT0

) , (9)

where C0 is the volumetric heat capacity given by

C0 = 1

ν

∑
μ

h̄ωμ

∂ f 0
μ

∂T

∣∣∣∣
T0

. (10)

Then, nμ is expanded as

nμ =
∑

α

gαθα
μ, (11)

where gα = 〈n|θα〉.
It follows from Eq. (5) and from the orthogonality and

completeness of the eigenvectors that the coefficients gα are
determined by the coupled set of equations,

∂gα

∂t
+

∑
β

〈α|v|β〉 · ∇gβ = − gα

τα
, (12)

where the matrix elements of the group velocity are

〈α|v|β〉 = 1

ν

∑
μ

θα
μvμθβ

μ . (13)

Since vμ = −v−μ, matrix elements connecting two eigenvec-
tors with the same parity must be zero.

One can write the total heat flux and total deviational
energy in the spectral representation as

J = 1

ν

∑
μ

h̄ωμvμ� fμ =
√

4kBT 2
0 C0

∑
β>0,odd

〈0|v|β〉gβ (14)

and

�E = 1

ν

∑
μ

h̄ωμ� fμ =
√

4kBT 2
0 C0g(0). (15)

Therefore, the zeroth-component equation, written as

∂g(0)

∂t
+

∑
β>0,odd

〈0|v|β〉 · ∇gβ = 0, (16)

is a requirement of energy conservation, equivalent to Eq. (3).
Furthermore, �E can be written in terms of the local equi-
librium f 0

μ (x, t ) defined by a local temperature T (x, t ) such
that

�E = 1

ν

∑
μ

h̄ωμ

[
fμ(x, t ) − f 0

μ (T (x, t ))
]

+C0[T (x, t ) − T0]. (17)

The second term can be rewritten as C0�T 〈0|0〉, where �T =
T (x, t ) − T0. Therefore, this is the zeroth-component term and
the first term in Eq. (17) expands over the rest of the eigenvec-
tors. Since θ (0)

μ is orthogonal to the rest of the eigenvectors, the
first term then should be zero such that

∑
μ h̄ωμ[ fμ(x, t ) −

f 0
μ (T (x, t ))] = 0. This determines the formal definition of

temperature in this linear regime,

�E = C0�T =
√

4kBT 2
0 C0g(0). (18)

The significance of Eq. (18) is that local equilibrium always
exists as long as the linearization of the collision operator
is valid. Therefore, the macroscopic quantity, i.e., tempera-
ture, is always well defined in this regime. As Ziman noted
[48], to use the definition given by Eq. (18), one needs to
ensure that the subsidiary condition, ν−1 ∑

μ h̄ωμ[ fμ(x, t ) −
f 0
μ (T (x, t ))] = 0, is satisfied. In the case of the linearized col-

lision operator, this subsidiary condition is always guaranteed
since θ (0)

μ is orthogonal to fμ(x, t ) − f 0
μ (T (x, t )). However,

under the RTA, where the collision operator becomes

∂ fμ
∂t

∣∣∣∣
scattering

= fμ − f 0
μ(x, t )

τRTA
μ

, (19)

θ (0)
μ is no longer an eigenvector of the collision matrix and

the subsidiary condition is not necessarily satisfied. The local
temperature under the RTA is then defined by satisfying the re-
quirement of energy conservation given by Eq. (3). Previously,
such an approach was regarded to define a pseudotemperature
[17,18], but here we argue that it is the true definition of
temperature under the RTA rather than Eq. (18).

Now, Eq. (12) can be written into the following system of
equations:

∂gβ

∂t
+ gβ

τβ
+

∑
α>0

〈α|v|β〉 · ∇gα

= −
√

C0

4kBT 2
0

〈β|v|0〉 · ∇(�T ), (20a)

√
C0

4kBT 2
0

∂�T

∂t
+

∑
β>0

〈0|v|β〉 · ∇gβ = 0. (20b)

III. SOLUTION

In general, solving the above system requires numerical
discretization in time and space and matrix inversion. How-
ever, under some specific boundary conditions, one is able
to obtain analytical solutions. In the following text, we will
derive an analytical solution in a semi-infinite or infinite do-
main, where the system is subject to a mode-dependent small
disturbance Q̇μ(x, t ). This small disturbance is equivalent to
the volumetric heat generation rate in a diffusion problem,
where Q̇ = 1

ν

∑
μ h̄ωμQ̇μ(x, t ). In a similar way, Q̇μ(x, t ) can

be expanded as

Q̇μ(x, t ) =
∑

α

qαθα
μ, (21)
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where qα = 〈Q̇μ|θα〉. Adding qα to the right-hand side of
Eq. (20) and Fourier transforming it in time and space,
we get

iηg̃β + g̃β

τβ
+ i

∑
α>0

〈α|ξ · v|β〉g̃α

= −
√

C0

4kBT 2
0

〈β|v|0〉 · (iξ�T̃ ) + q̃β, (β > 0), (22a)

√
C0

4kBT 2
0

iη�T + iξ ·
∑
β>0

〈0|v|β〉g̃β = q̃(0), (22b)

where g̃β , �T̃ , and q̃β are the Fourier-transformed functions. η
and ξ = (ξx, ξy, ξz ) are the corresponding temporal and spatial
variables in Fourier space. Equation (22a) is still a highly
coupled system of linear equations. To further decouple it, we
first perform a change of variables by defining

g̃β = hβ
√

τβ. (23)

Then, Eq. (22b) becomes

i
∑

α

�αβhα + hβ = −
√

τβ

√
C0

4kBT 2
0

〈β|v|0〉 · (iξ�T̃ )

+
√

τβ q̃β, (24)

where �αβ = √
τα (δαβη + 〈α|ξ · v|β〉)

√
τβ and δαβ is a Kro-

necker delta function. Since � is a real and symmetric matrix,
there exists a complete set of eigenvectors such that∑

α

�αβ�α
i = λi�

β
i , (25)

where λi is the corresponding eigenvalue. The orthonormal
condition is given by ∑

α

�α
i �α

j = δi j, (26)

and hβ can be expanded as

hβ =
∑

i

di�
β
i , (27)

where di = ∑
β hβ�

β
i are unknown coefficients to solve for.

Plugging Eq. (27) into Eq. (24) and using the orthonormal
condition defined by Eq. (26), we get

di(iλi + 1) = −
√

C0

4kBT 2
0

∑
α

�α
i
√

τα〈α|v|0〉 · (iξ�T̃ )

+
∑

α

�α
i
√

τα q̃α. (28)

Rearranging the above equation, we obtain a closed expres-
sion for di and plug it into Eqs. (27) and (23). A closed
expression for g̃β is then given by

g̃β = −
√

C0

4kBT 2
0

√
τβ

∑
α

Sαβ√
τα〈α|v|0〉 · (iξ�T̃ )

+√
τβ

∑
α

Sαβ√
τα q̃α, (29)

where the suppression function Sαβ (ξ, η) is given by

Sαβ (ξ, η) =
∑

i

�α
i �

β
i

1 + iλi(ξ, η)
. (30)

Before plugging g̃β into Eq. (22b), we first take a closer look
at the expression for the heat flux given by

J(ξ, η)=−K (ξ, η)iξ�T̃ (ξ, η) +
∑
α,β

MαβSαβ (ξ, η)q̃α (ξ, η).

(31)
In the above expression, K (ξ, η) is the thermal conductivity
tensor given by

Ki j (ξ, η) = C0

∑
α,β

Sαβ (ξ, η)
√

τα〈α|vi|0〉〈0|v j |β〉√τβ,

(32)
and matrix M is given by

Mαβ =
√

4kBT 2
0 C0

√
τα〈0|v|β〉√τβ. (33)

Equation (31) represents a generalized Fourier’s law, valid
from ballistic to diffusive regimes. In Ref. [46], we derived
a similar expression under the RTA. Here, we have extended
the concept of the generalized Fourier’s law beyond the RTA.
There are two parts in Eq. (31). The first part represents a
convolution between the temperature gradient and space-time
dependent thermal conductivity in real space. The second
part is solely determined by the inhomogeneous contribution
originating from the boundary conditions and source terms.
Similar to the first term, the contribution from the external
heat generation to the heat flux is also nonlocal. Using the ex-
pression given by Eq. (31) and performing an inverse Fourier
transform in time and space, the energy-conservation equation
(20b) in real space is then written as

C0
∂�T

∂t
− ∇ ·

∫∫
K (x − x′, t − t ′)∇T (x′, t ′)dx′dt ′

= q(0)(x, t ) − ∇ · B(x, t ), (34)

where B(x, t ) is the inverse Fourier transform of∑
α,β MαβSαβ (ξ, η)q̃α (ξ, η). Here, B(x, t ) represents the

high-order contribution from the external heat generation
to the heat transport when the spectral profile of the heat
generation is not linearly proportional to the mode-specific
volumetric specific heat. Equation (34) gives the generalized
macroscopic governing equation of thermal transport in the
absence of boundaries.

IV. DYNAMICAL THERMAL CONDUCTIVITY

We first apply this solution in the presence of a con-
stant temperature gradient ∇T . The advective term in Eq. (5)
becomes vμ · ∇nμ = vμ∂n0

μ/∂T · ∇T , and Eq. (20a) is
simplified to

∂gβ

∂t
+ gβ

τβ
= −

√
C0

4kBT 2
0

〈β|v|0〉 · ∇(�T ) for β > 0. (35)

After Fourier transform in time, we derived an analytical so-
lution of the deviational distribution function and a dynamical

104310-4



SPACE-TIME DEPENDENT THERMAL CONDUCTIVITY IN … PHYSICAL REVIEW B 102, 104310 (2020)

thermal conductivity as

gβ = −
√

C0

4kBT 2
0

τβ

1 + iητβ
〈β|v|0〉 · ∇(�T ) (36)

and

Ki j (η) = C0

∑
α,β

〈α|vi|0〉〈0|v j |β〉 τβ

1 + iητβ

. (37)

Chaput derived a similar spectral representation for the dy-
namical thermal conductivity by solving the time-dependent
PBE in the irreducible Brillouin zone [40]. Here, we
demonstrate that our approach is able to reproduce these
dynamical thermal conductivities in different materials from
first-principles methods.

Four material systems with low (germanium), medium
(silicon), and high (cubic boron nitride and diamond) ther-
mal conductivities are studied in this work. We use density
functional theory (DFT) calculations to determine the phonon
dispersions (frequencies and velocities) and anharmonic
three-phonon interactions. However, the formalism presented
in this work is applicable to any description of the properties
and interactions of the heat carriers, e.g., use of empirical
potentials, or inclusion of higher-order scatterings or other
scattering mechanisms. Specific details of the DFT calcula-
tions can be found in Refs. [49,50]. We used lower integration
grids in the first Brillouin zone (60 representative points in
the irreducible wedge vs 408 in Refs. [49,50]) to determine
the phonon scatterings in the example calculations presented
here as they are sufficiently converged for our purposes.

The predicted real (κr) and imaginary (κi) parts of the
thermal conductivity as a function of temporal frequency are
as shown in Fig. 1. At low frequency, the imaginary part of
the thermal conductivity is negligible and the real part remains
constant for each material. The onset of decreased κr occurs
when κi becomes comparable to κr , which peaks around 0.1 to
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FIG. 1. The real (κr : solid lines) and imaginary (κi: dashed lines)
parts of the dynamical lattice thermal conductivity of diamond, cu-
bic boron nitride (cBN), silicon (Si), and germanium (Ge) at room
temperature.

1 GHz for different materials. The appearance of an imaginary
part at high frequency indicates that there is a time lag to
establish thermal currents when considering rapid time varia-
tion [40]. Both κr and κi then asymptotically decrease to zero
as temporal frequency increases. From Eq. (37), the temporal
effects on thermal conductivity are only observable when the
temporal frequency η becomes comparable to the eigenvalues
of the collision matrix, 1/τβ , which is typically of the order of
gigahertz for most solids.

V. SPACE-TIME DEPENDENT THERMAL CONDUCTIVITY
IN A TRANSIENT GRATING EXPERIMENT

The size effect on thermal conductivity, on the other hand,
is much easier to achieve and observe in an experiment than
a pure temporal effect. We now apply our solution method to
the geometry of a one-dimensional transient grating (TG) ex-
periment to understand the effects of geometric length scales
on thermal transport. In this experiment, the heat-generation
rate has a temporal profile of δ(t ) and a spatial profile of eiρx

in an infinite domain, where ρ ≡ 2π/L and L is the grating
period. Both the phonon distribution function and temperature
field exhibit the same spatial dependence. To simplify the
calculation, we assume Q̇μ is linearly proportional to θ (0)

μ such
that q̃α = 0 for ∀α > 0. In this assumption, the mode-specific
volumetric heat generation, h̄ωμQ̇μ/sinh(h̄ωμ/2kBT ), be-
comes linearly proportional to the mode-specific volumetric
specific heat, which is commonly used in PBE studies
[7,51]. The temperature response given by Eq. (34) then
becomes

�T̃ (η, ρ) = q(0)

iηC0 + Kxx(η, ρ)ρ2
, (38)

where Kxx(η, ρ) is the effective thermal conductivity in a
one-dimensional (1D) TG experiment. The effective thermal
conductivity under the RTA for a TG experiment can be found
in Ref. [46].

When the timescale of a TG experiment is of the order of a
few-hundred nanoseconds, we can assume that

√
ταη

√
τβ �√

τα〈α|ρvx|β〉
√

τβ and �αβ ≈ ρ
√

τα〈α|vx|β〉
√

τβ in
Eq. (24) since τα (α 
= 0) is typically less than one nanosecond
for phonons. While this assumption is valid, the effective
thermal conductivity has no temporal dependence, which
is consistent with the observation in the dynamical thermal
conductivity at low temporal frequency shown in Fig. 1, and
is only a function of grating period L.

Figure 2 gives the effective thermal conductivity as a func-
tion of grating period between the full and RTA solutions
at room temperature for germanium, silicon, cubic boron
nitride (c-BN), and diamond. For diamond and c-BN, the
difference in bulk thermal conductivities between the full
and RTA solutions is as much as 50%, which is consis-
tent with the earlier literature [50]. As the grating period
decreases, the difference in effective thermal conductivity
between the full and RTA solutions increases. Interestingly,
even for Ge and Si where the bulk values given by the
RTA and full solutions are within 10% difference, the RTA
approach fails to give a good estimation of the effective ther-
mal conductivity at smaller grating periods when long MFP
phonons are strongly suppressed. This suggests that the actual
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FIG. 2. Comparison of the effective thermal conductivity as a function of grating period for full (solid lines) and RTA (dashed lines)
solutions at room temperature for (a) Ge, (b) Si, (c) c-BN, and (d) diamond. Insets: the ratio between the full and RTA solutions vs grating
period.

collision processes are strongly coupled among multiple
phonons in nonlocal thermal transport and cannot be accu-
rately captured by a single characteristic time. The smallest

grating period used in Fig. 2 is 0.1 μm, where the onset of
temporal dependence is observed in c-BN and diamond at
room temperature.
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FIG. 3. Temperature response of c-BN in the time domain at (a) 150 and (b) 100 K with a grating period of 10 μm predicted by Eq. (38)
(solid lines) and a RTA solution given in Ref. [46] (dashed lines). Inset: effective thermal conductivity (left axis) and the magnitude of its
corresponding temperature response (right axis) as a function of temporal frequency η. (c) Time-domain temperature response of c-BN at
100 K with grating periods of 10 (solid line), 5 (dashed lines), and 1 (dotted dashed lines) μm. Inset: the magnitude of their corresponding
temperature responses as a function of temporal frequency η.
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FIG. 4. Temperature response in the time domain of (a) diamond at 100 K and (b) silicon at 50 K with various grating periods. Insets in
(a) and (b): the magnitude of their corresponding temperature responses as a function of temporal frequency η.

When the timescale of a TG experiment is of the order
of a few nanoseconds,

√
ταη

√
τβ ∼ √

τα〈α|ρvx|β〉
√

τβ . The
effective thermal conductivity has both temporal and spatial
dependence and must be evaluated using Eq. (32). The effect
of temporal dependence becomes stronger as temperature de-
creases. To demonstrate this effect, we calculated the effective
thermal conductivity dependence on η and its corresponding
TG temperature responses for c-BN at 100 and 150 K with a
grating period of 10 μm. Note that for this grating period, the
effective thermal conductivity of c-BN is higher at 150 K.

At 150 K, the effective thermal conductivity has a non-
monotonic dependence on η, which peaks around 2 and
4 GHz, as shown in the inset of Fig. 3(a). Despite the non-
monotonic behavior of the effective thermal conductivity,
the temperature response in the frequency domain given by
Eq. (38) remains a monotonically decreasing function as tem-
poral frequency increases. Therefore, a monotonic decay in
the real-space temperature response is observed. At lower
temperature [Fig. 3(b) inset], the peaks in effective thermal
conductivity become more prominent and the temperature
frequency response becomes nonmonotonic. In real space (as
shown in Fig. 3), the temperature decays in an oscillatory
manner which is absent in the RTA solution or other for-
malisms based on the RTA [15,16]. Note that the timescales
we consider here are well beyond one nanosecond, and thus
the PBE is still valid as it breaks down when the timescales
become comparable to the collision time. When the grating
period decreases, the oscillation becomes faster, as shown
in Fig. 3(c), and peaks as temperature frequency responses
become more prominent, as shown in the inset of Fig. 3(c).

To further demonstrate that the oscillations due to the
nonlocal effect are readily observable in other materials, we
calculated the TG temperature responses for diamond at 100 K
and silicon at 50 K in both time and frequency domains
with various grating periods, as shown in Fig. 4. When the
timescale of the temperature response is comparable to the
relaxation times of the phonons, thermal conductivity is no
longer a constant but depends on both time and space, which
itself is due to the nonlocality of the local distribution, � fμ.

A similar oscillatory decay has been observed in graphite
above 100 K in transient grating experiments [52], where
the oscillation was attributed to the observation of second
sound. Here the phase velocities of the observed oscillations
in all three materials are much smaller than their theoretical
predicted second sound values. The nontrivial relation of non-
local lattice thermal conductivity and hydrodynamic phonon
transport is beyond the scope of this work.

VI. SUMMARY

To summarize, by exploiting the symmetry properties
of the linearized collision operator, we have derived a di-
rect solution to the space-time dependent Peierls-Boltzmann
transport equation which allows computation of heat flux
and temperature fields in nondiffusive regimes without us-
ing the relaxation-time approximation. The nonlocal thermal
transport in a transient grating geometry is studied in the
context of a linearized collision matrix. This also allows for
a quantitative estimate of the failure of the RTA approach in
describing nonlocal thermal transport. The RTA approach not
only fails to predict the bulk thermal conductivity of materi-
als with weak thermal resistance, but also fails to accurately
characterize heat transport of materials dominated by umk-
lapp scattering when nonlocal effects are strong. Moreover,
the thermal conductivity dependence on space and time can
change the overall temperature response in nonlocal thermal
transport regimes, which could lead to a similar macroscopic
response as hydrodynamic transport. The solution method
presented here provides the necessary tool to distinguish the
two phenomena. This work provides an accurate mathematical
description of spatial and temporal nonlocal thermal transport
that will enable a critical understanding of materials design
for improved thermal management applications.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [53].
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APPENDIX: LINEARIZED SCATTERING MATRIX

For three-phonon scattering, following the expression
given by Ziman [48], the collision operator of the Peierls-
Boltzmann equation is written as

∂ fμ
∂t

∣∣∣∣
s

=
∑
μ′μ′′

|Fμ+μ′↔μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)[( fμ + 1)( fμ′ + 1) fμ′′ − fμ fμ′ ( fμ′′ + 1)]

+ 1

2

∑
μ′μ′′

|Fμ↔μ′+μ′′ |2δ(−ω + ω′ + ω′′)�(−q + q′ + q′′)[( fμ + 1) fμ′ fμ′′ − fμ( fμ′ + 1)( fμ′′ + 1)], (A1)

where Fμ+μ′↔μ′′ and Fμ↔μ′+μ′′ are the strength of the interaction of the three phonons involved in the scattering [54] and the
Kronecker δ � is zero unless its argument is zero or a reciprocal lattice vector, in which case it takes the value 1. fμ is the
out-of-equilibrium occupation function for all possible phonon states μ [μ ≡ (q, s), where q is the phonon wave vector and s is
the phonon polarization].

Here we define fμ ≡ f 0
μ + � fμ, where f 0

μ = {exp[h̄ωμ/(kBT0)] − 1}−1 is the global equilibrium Bose-Einstein distribution.
ωμ is the phonon frequency, kB is the Boltzmann constant, and T0 is the equilibrium temperature. Using this definition in Eq. (A1)
and only keeping first-order terms in � fμ, Eq. (A1) becomes

∂ fμ
∂t

∣∣∣∣
s

=
∑
μ′μ′′

|Fμ+μ′↔μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)

[
−

(
f 0
μ′ + 1

)
f 0
μ′′

f 0
μ

� fμ −
(

f 0
μ + 1

)
f 0
μ′′

f 0
μ′

� fμ′ + f 0
μ f 0

μ′

f 0
μ′′

� fμ′′

]

+ 1

2

∑
μ′μ′′

|Fμ↔μ′+μ′′ |2δ(−ω + ω′ + ω′′)�(−q + q′ + q′′)
[
− f 0

μ′ f 0
μ′′

f 0
μ

� fμ + f 0
μ ( f 0

μ′′ + 1)

f 0
μ′

� fμ′ + f 0
μ( f 0

μ′ + 1)

f 0
μ′′

� fμ′′

]
.

(A2)

It is possible to rearrange this linearized scattering operator into a symmetric matrix, �, by defining a new variable nμ =
� fμsinh(h̄ωμ/2kBT0) and using the fact that for each collision process (μ + μ′ → μ′′), we can find its corresponding decay
process (μ′′ → μ + μ′). Therefore, the collision operator can be written as

∂ fμ
∂t

∣∣∣∣
s

= 1

sinh h̄ωμ

2kBT0

� n, (A3)

where

�μμ =
∑
μ′μ′′

|Fμ,μ′,μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)
sinh h̄ωμ

2kBT0

2sinh
h̄ωμ′
2kBT0

sinh
h̄ωμ′′
2kBT0

, (A4)

�μ′μ′ =
∑
μμ′′

|Fμ,μ′,μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)
sinh

h̄ωμ′
2kBT0

2sinh h̄ωμ

2kBT0
sinh

h̄ωμ′′
2kBT0

, (A5)

�μ′′μ′′ =
∑
μμ′

|Fμ,μ′,μ′′ |2δ(−ω′′ + ω + ω′)�(−q − q′ + q′′)
sinh

h̄ωμ′′
2kBT0

2sinh h̄ωμ

2kBT0
sinh

h̄ωμ′
2kBT0

, (A6)

�μμ′ = �μ′μ =
∑
μ′′

|Fμ,μ′,μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)
1

2sinh
h̄ωμ′′
2kBT0

, (A7)

�μμ′′ = �μ′′μ =
∑
μ′

|Fμ,μ′,μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)
1

2sinh
h̄ωμ′
2kBT0

, (A8)

�μ′μ′′ = �μ′′μ′ =
∑

μ

|Fμ,μ′,μ′′ |2δ(−ω − ω′ + ω′′)�(−q − q′ + q′′)
1

2sinh h̄ωμ

2kBT0

. (A9)
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