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Unlike a real magnetic field, which separates the energy levels of a particle with opposite spin polarization,
a complex field can lead to a special kind of spectral degeneracy, known as exceptional point (EP), at which
two spin eigenmodes coalesce. It allows an EP impurity to be an invisible scattering center for a fermion
with the resonant spin polarization, but an amplifying emitter for opposite polarization. We show that a pair
of conjugate EP modes supports resonant mutual stimulation, acting as a resonant amplifier based on the
underlying mechanism of a positive-feedback loop. Together with other Hermitian eigenmodes, a fermion with
EP polarization exhibits some exclusive dynamics, referred to as EP dynamics. We construct several typical
superlattices, which are built up by embedding EP-impurity arrays into a Hermitian two-dimensional square
lattice. Numerical simulations are performed to demonstrate resonant amplification and invisibility of Bragg

scattering.
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I. INTRODUCTION

Spin, as an intrinsic degree of freedom of a particle, is
the origin of magnetism and is a fundamental property of
particles, which is employed in spintronics [1] for informa-
tion processing. Carrying information in both the spin and
charge of a particle potentially offers devices with a greater
diversity of functionality. In a real magnetic field two energy
levels of a half-spin is separated, associating with the spin
can either be aligned along the field, or against the field.
Then a particle with arbitrary spin polarization is unavoidably
scattered by a magnetic impurity defined as Zeeman term
B - s, where s is a spin operator at local magnetic field B.
However, in stark contrast, an imaginary component of B
field can shrink the energy gap between two opposite spin
states. Remarkably, the gap can be tuned to vanish, resulting
in the coalescence of two spin states. It relates to an exclusive
concept in a non-Hermitian system, exceptional point (EP),
which has no counterpart in a Hermitian system. We refer to
such an impurity as EP impurity. The EP in a non-Hermitian
system occurs when eigenstates coalesce [2—4], and usually
associates with the non-Hermitian phase transition [5,6]. In a
parity-time (PP7) symmetric non-Hermitian coupled system,
the P77 symmetry of eigenstates spontaneously breaks at the
EP [7-17], which determines the exact P7T -symmetric phase
and the broken P7 -symmetric phase in this system.

The EP has many applications [15,18-26], not limited
to nonreciprocal energy transfer [20], unidirectional lasing
[27,28], and optical sensing [29,30]. Moreover, the EP is
a bifurcation point of the energy levels. Near the EP, the
eigenfrequency response to the perturbation exhibits a square-
root dependence [29] and a cubic-root [30] dependence,
respectively. In this regard, the EPs are useful for sensing
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in comparison with the diabolic points; this feature has been
verified in optics, cavity optomechanics, cavity spintronics,
and circuit quantum electrodynamics [31-40]. The sensing
susceptibility is greatly enhanced near the EPs [41]. In ad-
dition to this, the dynamics of the systems with parameters
far away from, near, and at the EP, exhibit extremely different
behaviors [42—48]. When system B - s is far from or near EP
but with finite energy gap, the dynamics is a periodic oscilla-
tion with associated Dirac probability oscillating in the period
of time inversely proportional to the gap. When the system
is at EP, the Dirac probability may be constant or increase
quadratically with time, i.e., the EP dynamics of the spin
strongly depends on the initial state. This raises interesting
questions regarding the non-Hermitian spintronics based on
particular EP-related dynamics of electrons. Importantly, a
complex magnetic field is no longer a component of a toy
model, but has been investigated in a practice perspective [49].

In this paper we investigate the effect of EP impurity on
a particle wave propagating in the Hermitian lattice in which
various EP-impurity arrays are embedded. The EP dynamics
allows an EP impurity to be an invisible scattering center for
a particle with the resonant spin polarization, but an ampli-
fying emitter for opposite polarization. We show that a pair
of conjugate EP modes supports resonant mutual stimulation,
acting as a resonant amplifier based on the underlying mech-
anism of a positive-feedback loop. The important points are
that (i) one of the two conjugate EP modes is the auxiliary
mode to another, i.e., mutual auxiliary states, and (ii) two
conjugate EP modes are orthogonal in the context of Dirac
inner product. Together with other Hermitian eigenmodes
that can be represented as two conjugate EP modes, a parti-
cle with EP polarization exhibits some exclusive dynamics,
referred to as EP dynamics. We construct several typical su-
perlattices, which are built up by embedding an EP-impurity
array in a Hermitian two-dimensional (2D) square lattice.
Numerical simulations are performed to demonstrate resonant
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amplification and invisibility of Bragg scattering [43—46],
which, in low-dimensional spinless systems, has been ob-
served in the PT -symmetric Bragg scatterers experimentally
[44], and is also proposed to realize in a tight-binding lattice
with an imaginary magnetic flux [45,46].

This paper is organized as follows. In Sec. II we introduce
a non-Hermitian spin-1/2 fermionic model and discuss the
coalescing spin modes. In Sec. III we analyze the mechanism
of a positive-feedback loop through a exactly solvable 1D
model. In Sec. IV we demonstrate the dynamics of resonant
amplification and invisibility of Bragg scattering in 2D square
lattices. Finally, we summarize our results in Sec. V.

II. HAMILTONIAN AND COALESCING SPIN MODES

We begin this section by introducing a noninteracting
spin-1/2 fermionic model with complex impurities as a non-
Hermitian term of the Hamiltonian. We will show that it
supports intriguing dynamic behavior since it is a concrete
example of a class of a non-Hermitian Hamiltonian presented
in the Appendix. The Hamiltonian on an arbitrary lattice can
be written as

H=Y">"«jyclcro+He +ZB, si, (1)

j<l o=t

where operator c , creates a fermion of spin o at site j, and

= (s}, si, s%) i 1s the spin-1/2 operator, which is defined by
4 = ;c;r ¢j, satisfying the Lie algebra commutation rela-

J
Z ie“Pr s, )

tion
y=x,5,z

and 7% (0 = x,y, 2) are the Pauli matrices, ¢’ is defined as
Y j

c = (c 4 , ) and €*P7 is the Levi-Civita symbol. Here K1
is the hoppmg strength between two sites j and /, determining
the geometry of the lattice; and B; is the on-site complex
magnetic field, inducing non-Hermitian impurity. In this work
we only consider three types of sites with

0,

Bj:|Bj|{ (1,0,0), 3)
(1,0, —i),

respectively.

The crucial point is that there are two types of EPs
for terms B;-s; with nonzero |B;|. We note that two
types of EP 1mpur1t1es possess two different coalesc-
ing spin modes ﬁ(c j:lcw)|Vac), i.e., under the basis

(C;T |Vac), C;,i |Vac)), we have

(7 ) () = @

Interestingly, such two EP modes are mutually auxiliary
modes to each other, respectively, i.e.,

%'Bf '(j;i ¢lz> (L) = iiwﬂ(;,-)- )

In addition, two EP modes are orthogonal in the context of
Dirac inner product as two eigenmodes for term B; - s; with
zero |B;|.
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FIG. 1. Schematic illustration of physical implementation for the
Hamiltonian in Eq. (1) by a resonator array. The red and green dots
represent pairs of resonators with P7 imaginary potentials +iB.
The auxiliary resonators (blue dots) induce the effective couplings
B between primary resonators.

Theoretically, a non-Hermitian Hamiltonian is the reduced
description for a selected subsystem of a Hermitian system,
where the complementary subspace is taken into account
by means of an effective interaction described by a non-
Hermitian complex potential [50-52]. A negative imaginary
potential is an effective term in the Schrodinger equation
describing the leakage of a particle. In the case of that, the
leakage can be controlled by applying local real magnetic
field on the channel to the environment, the imaginary po-
tential depends on its spin degree of freedom. Then one can
realize three kinds of spin-dependent negative imaginary po-
tentials: (i) —i3yn;4 —iyn;j, (i) —i2yn” —i2yn;, and
(iii) —iynj4 — i3yn;,. Here nj, = ¢ ;o and y is a real
number. By subtracting a global term —i2y(n; 4 + n; ), the
terms containing imaginary magnetic field —i2y % % and i2yss ;
in the Hamiltonian can be obtained. Experimentally, the pos-
sible physical implementation of the non-Hermitian model in
this work can be coupled cavity arrays [53-56]. As schemat-
ically illustrated in Fig. 1, the spin degree of freedom is
represented by the index of the chains, while the imagi-
nary magnetic field is realized by a pair of P7T imaginary
potentials.

The general feature of such a system obeys the conclusion
presented in the Appendix, as an example wherein term B; - s;
forms a cluster with dimension Nejyseer = 2. Accordingly, there
are two types of dynamics in a system with only one type of
EP impurity: (i) When only the EP mode is involved in an
initial state, the Dirac probability is conservative. (ii) When
only the auxiliary mode is involved in an initial state, the Dirac
probability is not conservative. In this paper we are interested
in the case of two types of EP impurities embedded in the
lattice, forming a special structure we dub it EP superlattice.
Importantly, the relation of mutually auxiliary modes should
result in mutual stimulation. We will demonstrate this point
analytically and numerically in the following sections.

III. RESONANT MUTUAL STIMULATION

In this section we investigate the probability amplification
by resonant mutual stimulation based on a simple analysis for
a system with two different EP sites embedded. An EP site can
create probability with the auxiliary EP mode of another EP
site but remains the probability of an initial state. As time goes
on, it will result in a mutual stimulation. The total probability
should be amplified definitely when the system is finite due to
the reflection from the boundary.
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FIG. 2. Schematic illustrations for (a) Hamiltonian in Eq. (6),
where the EP sites with complex fields B and B_ are represented by
the blue and yellow dots, respectively. (b) Equivalent Hamiltonians
for H, and (c) H_ in Eq. (8). Here the red arrow indicates that the
systems support unidirectional transition between two types of spin

polarizations, and H, act as a positive-feedback loop.

We demonstrate the concept quantitatively by an exactly
solvable model, which is an Hermitian chain with two embed-
ded EP sites at the ends. There are two types of systems with
the Hamiltonians:

Hy = Hepgin + By - 81 + B - sy,

N—-1
Hchain = Z Z C;,ocﬂ'lﬁ +H.C., (6)
j=lo=1{

where the complex fields B+ = |B|(1, 0, £i). The two types
of systems H, and H_ are schematically illustrated in
Fig. 2(a). Applying the transformation

A ;
dj,k I\/;(Cj,T—F)»le,l), (7)
with A = &£, we have the equivalent Hamiltonians
Hs = Hepain + |Bld] _dy _ + |Bld}, -dy .
N-1
Hepain = Z Z (d;:)\dﬂ—l,)h + d_;-‘rl.kdjf)h)’ ®)
j=1 A=+,—

where operators d; , and d;, satisfy the anticommutation re-
lations

{djard) )} = 8; 80
{djsrdjp} =1d],,d},} =0. )

The transformation in Eq. (7) is unitary, which is different
from the similarity transformation in Eq. (A3) that block

diagonalizes the original Hamiltonian (see Appendix A I).
Here the biorthogonal conjugation operator d; ; defined in the
Appendix reduces to dH , due to the fact that two EP modes
are orthogonal in the context of Dirac inner product. We note
that terms |B|df’+d1,, and |B|d]f,_’]FdeE represent unidirec-
tional transitions between different spin polarizations. Such
a transformation still holds for a general lattice with arbitrary
geometry. Going back to the present example, we find that
Hamiltonian H, and H_ are equivalent to two types of feed-
back loops (rings with two unidirectional dimmers), which are
schematically illustrated in Figs. 2(b) and 2(c), respectively.
In particular, Hamiltonian H; forms a positive-feedback loop
that supports dynamics of mutual stimulation.

To understand the positive-feedback dynamics in such a
system, we will explore the features of the asymmetric dimer,
which can be applied to the original system in Eq. (8). We
focus on a scattering problem for an asymmetry dimer which
is embedded in an infinite chain. For simplicity, we consider
the Hamiltonian in single-particle invariant subspace, which
reads

oo
Heaner = »_ () + 11+ |=j){=j — 1)) + H.c.
j=1

+ulD(=1] + v[=D)(1]. (10)

Here position state |Aj) = d;f’x|Vac) with | Vac) being vac-
uum state of operators c;4 and c; ;. Parameters (u, v) are
asymmetric hopping amplitudes, exhibiting the feature of
asymmetric transmission in a simple way. The Bethe ansatz
scattering solution assumes the form

W) = Y _LAWDID) + fil(=DI=i)], an

j=1
where the wave function f;(j) reads

eikj + rkefikj’
tkelkj’

J< L

il (12)

Je(j) = {
Here r; and #;, are the reflection and transmission amplitudes
of the incident wave with momentum k, which can be used
to characterize the property of the dimer. It is the solution for
an incident wave from the left of the system. Similarly, the
solution for an incident wave from the right can be obtained
by exchanging v and p. By solving the Schrédinger equation
Hscatterwfk) = Ekhkk)v we obtain

1—pv 2ip sin k

o= —F " (13)

ry = .
'uv€2zk -1

- uvedik — 1’
The result can be applied to the model in Eq. (8) by tak-
ing (u,v) = (|B|,0) or (0, |B|), representing the dynamics
for two types of initial state with spin polarizations A = =+,
respectively. (i) For (i, v) = (|B|, 0), we have |r;| = 1 and
|te] = 2|Bsink|, (ii) while |ry| = 1 and |t;| = 0O, for (u, v) =
(0, |B]). It indicates that we always have |ry| =1 in both
cases.

Next, we further uncover and verify the above mechanism
by considering the process of a spin-polarized Gaussian wave
packet being scattered by the right ends of chains H, and
H_, numerically. The initial excitation is taken as | (0)) =

(o))" Z]jyzl e’“z(j’jc)z/zeikcjd;Jr|Vac), where j¢ is the
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FIG. 3. Spin-orbit effect in the scattering process. The left panels of (a) and (b) are the schematic illustrations of the scattering processes
in systems H, and H_, respectively. The yellow (blue) arrow represents local complex field B_ (B..). Correspondingly, numerical result of the
overlap F} (k, t) defined in Eq. (14) is presented in the right panels of (a) Ff (k,t) and (b) F*(k, t). It indicates that after being scattered by the
complex fields, the spin polarization of initial excitation is conservative in both systems; and for system H, the outgoing wave packet contains
the other spin polarization (which is zero for system H_). The parameters of initial excitation are « = 0.2, j* = 30, and k° = —m /2; and are
|B| =1 and N = 60 for both systems. Here the scale of the Hamiltonian is J = 2.

center of wave packet, k¢ is the central momentum, and «
characterizes the width. The site state d;{ 4|Vac) is an auxil-
iary mode of term B_ - s; and the EP mode of term B, - s;.
The evolved state can be represented in the form Y. (¢)) =
e~"H=119,(0)), which can be computed by exact diagonaliza-
tion numerically. To monitor the evolved state, we introduce
the overlap between evolved state and polarized state |k, A) =
(1/+/N) Z’}’:l etk d} ,IVac) in momentum space

Fl(k, 1) = [k, Ay ())],

where k = 2rm/N (m is an integer in interval (—N/2, N/2]),
and A = +. Overlap F}(k, t) characterizes the component of
evolved state [y+(¢)). That is, F; (k, t) and F (k, t) count the
same and different spin polarizations as the initial excitation,
respectively, as a function of momentum & and time ¢. In other
words, nonzero F (k, t) reflects the emergence of spin-orbit
effect. In the right panel of Fig. 3 we plot F}(k, 1) obtained
from exact diagonalization numerically. It indicates that the
evolved state in system H, has evident spin-orbit effect [see
Fig. 3(a)] and the evolved state in system H_ has no spin-orbit
effect [see Fig. 3(b)].

This provides a clear physical picture for understanding
the feedback dynamics of H.. (i) For system H.,, any initial
wave packet (except the plane wave with k = 0 and ) can
trigger the Dirac probability explosion since the EP modes at
the ends of chain are mutual auxiliary modes. The underlying
mechanism is mutual stimulation. In addition, the evolved
state has evident spin-orbit effect. The momentum and spin

(14)

polarization of a particle are strongly correlated. (ii) For sys-
tem H_, the result depends on the initial state: (a) For initial
wave packet with EP mode, the probability is conservative,
since there is no mode switch. In contrast, the evolved state
has no spin-orbit effect. (b) For an initial wave packet with
auxiliary EP mode, the probability with auxiliary EP mode
is conservative, while the probability with EP mode increases
since there is always a particle with auxiliary EP mode that
can provide the source to the probability with EP mode.
And over time, probability with EP mode is dominant. We
would like to point out that this amplification is fragile since
it depends on the conservation of probability with auxiliary
EP mode. When a 2D lattice is considered, the probability
with EP mode spreads and cannot supply the switch to the
probability with EP mode.

IV. AMPLIFIED BRAGG SCATTERING

Now we extend our investigation to the 2D systems which
support dynamics of Bragg scattering. Here we consider a
specific form of Hamiltonian Eq. (1), wherein the EP-impurity
array as a superlattice is embedded in a Hermitian N, x N,
square lattice with uniform nearest-neighbor hopping «. We
will focus on four configurations of the superlattices com-
posed of two parallel EP-impurity arrays, in which dynamics
of invisible Bragg scattering, amplified Bragg scattering, and
resonant mutual stimulation can be realized.

As a comparison and warm up, let us first consider the
dynamics of Bragg scattering in a Hermitian system with two
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FIG. 4. Bragg scattering in Hermitian 2D system [(al)—(a5)]. Invisible Bragg scattering [(b1)—(b5)], and amplified Bragg scattering [(c1)—
(c5)] in non-Hermitian 2D systems. The left panels are snapshots of intensity /;;(¢) defined in Eq. (16) for the three systems, and the gray,
blue, and yellow circles represent real field B and complex fields B, and B_, respectively. To better illustrate the Bragg scattering, we take
different maximum value of the color bars at different times. The right panels are the total Dirac probabilities P(¢) as functions of time.
The parameters of the system are ¥k = 1, |[B| =5, and N, = N, = 60, and for the initial excitation are o = 0.15, (j¢, [°) = (15, 10), and
(k7 k) = (=7 /4, —+/37/4). The lattice constant of the Hermitian square lattice is 1, and the distance between impurities is taken as d = 4.
Here the scale of the Hamiltonian is taken as J = 2. One can see that cases (a) and (c) have the same scattering pattern, except for the

amplification in the latter.

parallel arrays formed by real magnetic field B = (|B|, 0, 0)
[marked by gray circles in Figs. 4(al)—4(a4)]. The initial exci-
tation is an incident wave packet with a fixed spin polarization

1 IVX M 2 s c\2 )2 L c
IW(0)) = —— o=@ U= P HU=1)?]/2 ik j+s D)

x(c;M — ic;’l’i)Wac), (15)
where Q@ =3 e~ ClU=+(=19 s the Dirac normaliza-
tion factor, j and [ are site indexes of the lattice in x
and y directions, (j¢,[°) is the center of wave packet, and
(ky, ky) is the central momentum. According to Bragg’s law
[57], the incident wave packet with certain direction 6 =
arcsin [nm /(|k®|d)] (angle between incident direction and y
axis) will induce constructive interference in the direction
of specular reflection. Here n is a positive integer, |K®| =
v (k;)2 + (kf,)z, and d is the distance between two arrays. We
setn =1,d =4, and |k°| = 7 /2, and perform the numerical
simulation of the time evolution |W(z)) = e~*#'|W(0)) by ex-

act diagonalization. The dynamics can be observed through
the density distribution in real space defined as

L) = > |(Vaclej s [W(@) P, (16)
o=t

as well as the total Dirac probability

N Ny
PO = > 1) (17)

j=1 I=1

The numerical results of /;;(z) and P(¢) are presented in
Figs. 4(al)—4(ad). As expected, a “Bragg peak™ arises in the
direction of specular reflection when time ¢ = 40, and of
course the total Dirac probability is conservative.

Then we turn to the non-Hermitian systems. There are four
configurations of the superlattices composed of two parallel
EP-impurity arrays: (i) both arrays composed of field B ; (ii)
both arrays composed of field B_; (iii) one array composed
of field B, and the other composed of field B_; and (iv)
staggered fields B form two arrays. Here the complex field is
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FIG. 5. Resonant mutual stimulation in a non-Hermitian 2D systems in case (iii) [(al)—(a5)] and case (iv) [(b1)—(b5)]. The left panels
are snapshots of intensity /;,;(¢) defined in Eq. (16) for the two systems; and blue and yellow circles represent complex fields B and B_,
respectively. The right panels are the total Dirac probabilities P(t) as functions of time with logarithmic y axis. Parameters for both systems
and the initial excitation are taken the same as that in Fig. 4, except for the configurations of EP-impurity fields. It indicates that the probability

in (b) is one order higher than that in (a).

B, = |B|(1, 0, £i). The site state with fixed spin polarization
5 (¢}4 — i€}, ) Vac) in the initial excitation |W(0)) is the
auxiliary mode of term B_ -s;; and EP mode of term B, -
s; . Taking the same system parameters (except the impurity
fields) and initial excitation as the above Hermitian case, the
numerical simulations of the time evolutions are performed.
Figures 4(b1)—4(bd) indicate that the superlattice in case (i) is
invisible for the evolved state, and the total Dirac probability
is conservative. Figures 4(c1)—4(cd) indicate that the evolved
state in the system of case (ii) has the same scattering pattern
as case (i), except the amplification: the total Dirac probability
as a function of time is a steplike function. These numerical
results verify our prediction and are in accord with the scatter-
ing solution of the 1D system Hc,yer in the previous section.
In view of the mechanism of the positive-feedback loop,
if the system contains two kinds of EP impurities at the
same time, it is expected to observe the dynamics of resonant
mutual stimulation. Cases (iii) and (iv) are for this consid-
eration, and the results are plotted in Figs. 5(al)-5(a5) and
Figs. 5(b1)-5(b5), respectively. In both cases, the dynamics
of resonant mutual stimulation is evident, and the total Dirac
probability as a function of time is exponential after the wave
packet being scattered by the EP-impurity arrays. Clearly the
Dirac probability increases more rapidly for the latter case,
due to the sufficient mixing of two kinds of EP impurities.

V. SUMMARY

In summary, we have developed a theory for a class of
the non-Hermitian Hamiltonian which supports a special dy-
namics due to the coexistence of coalescing and zero modes.
The most fascinating and important feature of such sys-
tems is the resonant mutual stimulation. As an example, we

have investigated the dynamics of a non-Hermitian spin-1,/2
fermionic tight-binding model. It is shown that a pair of
conjugate EP modes can act as a resonant amplifier since
its equivalent Hamiltonian is a positive-feedback loop. The
resonant tunneling between coalescing and zero modes allows
the construction of a superlattice, in which the non-Hermitian
EP-impurity array is embedded in a Hermitian lattice as a sub-
strate. We demonstrate the EP spintronics based on numerical
simulations, including resonant amplification and invisibility
of Bragg scattering. Our findings offer a platform for non-
Hermitian spin devices.
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APPENDIX

In this Appendix we consider a class of the non-Hermitian
Hamiltonian which supports a special dynamics. The model
Hamiltonian in Eq. (1) is one of the examples in this class.
In general, the Hamiltonian we are concerned with reads as
follows:

N
H=> Hy+) Hj
=1

J<l Jj
Neluster
i
Hjl = KjI E aj_aal,a + H.c.,
a=1
Nclus[er
Hj=B; ) Jupa} a5, (AD
o,f=1
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which consists of N isomorphic clusters H;, with each cluster
having a dimension Ngjyser. The label j denotes the jth sub-
graph of N clusters, and a';’a (ajq) is the boson or fermion
creation (annihilation) operator at the «th site in the jth clus-
ter. The cluster H; is defined by the distribution of the hopping
integrals {B;J,g} where the parameter B; is real, while the
matrix J, g is not Hermitian. All H; have the same eigenstates
and spectral structures due to the fact that the geometry of
each cluster is isomorphic. Meanwhile, terms ) it Hj is

self-adjoint, i.e., Hj; = H Tl, which describes the Hermitian
connection between clusters. And such kind of couplings are
the type of similarity mapping, which is crucial for features in
the dynamics of the Hamiltonian H.

1. Pseudo-Hermitian modes

First, we consider the case of H; being pseudo-Hermitian,
i.e.,, H; is non-Hermitian but can be diagonalized in the
context of biorthonormal inner product. Following the well
established pseudo-Hermitian quantum mechanics [2,58-60],
we always have

Netuster
H;=B; Y &d;sd;s. (A2)
a=1
with the operators d; ; and d; ; being defined as
Neluster Neluster
djs = Z hard g, djs = Z 8enljas (A3)
a=1 a=1
where
Netuster
Sorlar = Saur- (A4)

r=1

Here the existence of biorthogonal complete set of {gqy;., fq5.}
rules out the exceptional point, which will be discussed in the
next section. Note that {g,;}, {1}, and {&,} are independent
of the index j. Then the operators d;; and d;, are canonical
conjugate pairs, satisfying

[djs, dysle =878,

[djs,dys)e =[djs, djle =0,
where [...,...]+ denotes the commutator and anticommuta-
tor, depending on whether the excitation of the model is boson
or fermion.

And accordingly, the original Hamiltonian can be rewritten
as the form

(A5)

Neluster

H = Z H”,
r=1

(A6)

where the sub-Hamiltonian is

N
I‘I)L = &) ZBjézj,)Ldj’)\ + Z(Kjljj,)»dl,k + K;‘,czl,xdj,,\).
j=1 j<l
(A7)
The relations
[H*, H"1=0 (A8)

indicate the existence of the invariant subspace indexed by
A. When a given eigenvalue ¢, is real, the dynamics in the
corresponding invariant subspace obeys the conservation of
Dirac probability [61].

2. Coalescing and zero modes

We then consider the system which consists of two types
of clusters with zero eigenvalue: (i) being in EP and (ii)
with B; = 0, respectively. We denote the coalescing mode of
cluster j at EP as (Jj,c, djc),ie.,

Ivclusl::r_2
Hj:Bj Z akﬁj,kdj,k—i—Oijycd,-,C.
A=1,1#£C

(A9)

Here there are a total of Nser — 1 modes, with an auxiliary
mode (d i,A» dj a) being ruled out. For a cluster with B; = 0, it
has Njyseer-fold degenerate modes with zero eigenvalue. One
of them can be (d;c, djc) or its auxiliary mode (d; a, d; a).
The total Hamiltonian H hence possesses the common EP
as H;. When multi-non-Hermitian clusters are involved, H

supports high-order EP.
Now we consider the Hamiltonian in an invariant subspace
spanned by a coalescing mode, which has the form
HE = (cdjcdic + kjdicdic).  (A10)

j<l

It acts as a Hermitian Hamiltonian and exhibits Dirac prob-
ability preserving dynamics. On the other hand, for the

auxiliary mode, the intercluster dynamics can still obey the
Hamiltonian

HA = Z(Kjl‘zj,Adl,A + K}k;dl,Adj,Al

j<l

(Al1)

However, the dynamics of an inner non-Hermitian cluster
obeys the non-Hermitian quantum mechanics, violating the
conservation of Dirac probability. In summary, if the initial
state only involves the coalescing mode, it will evolve into a
Hermitian manner, while it blows up the probability for an
auxiliary mode. In the main text the example with Ngjyster = 2
demonstrates this point in detail.
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