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Role of intraband dynamics in the generation of circularly polarized high harmonics from solids
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Recent studies have demonstrated that the polarization states of high harmonics from solids can differ
from those of the driving pulses. To gain insights on the microscopic origin of this behavior, we perform
one-particle intraband-only calculations and reproduce some of the most striking observations. For instance,
our calculations yield circularly polarized harmonics from elliptically polarized pulses that sensitively depend
on the driving conditions. Furthermore, we perform experiments on ZnS and find characteristics partly similar
to those reported from silicon. Comparison to our intraband-only calculations shows reasonable qualitative
agreement for a below-band-gap harmonic. We show that intraband dynamics predict depolarization effects
that gain significance with higher field strengths and we observe such effects in the experimental data. For
harmonics above the band gap, interband dynamics become important and the high-harmonic response to
elliptical excitation looks systematically different. Our work proposes a method to distinguish between different
high-harmonic generation mechanisms and it could pave the way to compact solid-state high-harmonic sources
with controllable polarization states.
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I. INTRODUCTION

High-harmonic generation (HHG) is a highly nonlinear
optical process in which many photons of an ultrashort laser
pulse are upconverted to one photon of much higher energy. In
atomic gases, where it was first discovered [1,2], this process
is well described by a three-step model which takes into ac-
count ionization, subsequent acceleration of the free electron
in the laser field, and recombination of the electron with its
parent ion. In the last step, the acquired energy of the electron
is emitted as a highly energetic photon [3]. The harmonic yield
decreases strongly with elliptical driver polarization, which
was early understood as an indication of the validity of the
three-step model, because it precisely predicts the reduction
of probability for the free-electron wave packet to return to
its parent ion [4,5]. The harmonic yield vanishes with cir-
cularly polarized excitation and the generation of circularly
polarized harmonics with other methods has evolved to a
lively topic. Elaborate schemes for circularly polarized HHG
have been presented, for instance HHG with counter-rotating
circularly polarized bicolor pulses [6,7], with noncollinear
counter-rotating circularly polarized pulses [8], and the com-
bination of two orthogonal linearly polarized HHG beams
with an appropriate phase shift [9].

In crystals [10,11] the simple recollision-physics picture of
gas HHG does not hold. Here, electrons are never really free
and their energy dispersion is given by the band structure of
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the solid target, which consists of many bands with different
momentum-dependent curvatures and probabilities of transi-
tions between the bands. Moreover, the Coulomb potential
cannot be neglected, as the electrons travel in matter, and the
single active electron approximation needs to be replaced by
the assumption that electrons are independent particles, which
is not always a good approximation, for instance in so-called
strongly correlated materials [12].

The deviations of the band dispersion from the quadratic
free-electron dispersion cause the electrons to move in a non-
linear fashion, thereby emitting higher frequency components
than the fundamental driving field contains. This is a new
type of HHG mechanism that cannot be found in HHG from
gaseous atoms and is called the “intraband” mechanism. In
contrast, the “interband” mechanism describes the radiation
emitted upon transition from one band to another and is some-
what more similar to the emission of higher harmonics during
the recombination step in gaseous atoms [11,13].

The response of solid-state HHG to elliptically polarized
driving fields has been found to strongly differ from the
atomic case. For instance, it has been demonstrated experi-
mentally in MgO and graphene that the harmonic yield could
be enhanced when changing from linear to elliptical driving
polarization [14,15]. Subsequent works studied the polariza-
tion states of the emitted harmonics and found that circularly
polarized harmonics can be generated from circularly [16–18]
and elliptically [16,17] polarized single-color driving pulses.
In the first case, the harmonics’ polarization states can be
understood by a group-theoretical analysis leading to selec-
tion rules for each of the crystallographic groups, which was
derived already 50 years ago [19]. The polarization states of
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the emitted harmonics driven by elliptically polarized fields,
however, were shown to depend sensitively on the driving
ellipticity and crystal rotation [16,17]. Moreover, they were
intensity dependent and therefore directly dependent on the
precise carrier dynamics [16,17]. All this is well reproduced
with a time-dependent density functional theory description
which includes the full band and crystal structure and does
not require any a priori assumptions to match the experiments
[17]. On the other hand, these calculations are costly and it
is not always straightforward to extract an intuitive physical
picture from these complex simulations.

In this work, we therefore attempt to isolate a single
mechanism and study its consequences on the harmonics’ po-
larization states. Our aim is that this reduction to a simplified
physical model will allow us to qualitatively understand the
microscopic origin of some of the observed phenomena and
that this will help in interpreting the obtained experimental
results.

While both intra- and interband mechanisms are intrin-
sically coupled [20], it is understood that the interband
mechanism only contributes for photon energies above the
band gap and for a reasonably high joint density of states
[21]. Because circularly polarized harmonics from elliptically
polarized driving fields have also been demonstrated below
the band gap and with a low joint density of states [17], we
will focus our attention here on the intraband mechanism.
Intraband-only calculations have been successfully utilized to
reproduce the linear relationship of the cutoff energy to the
driving field [10,22,23], the sixfold rotational symmetry of
HHG spectra in the threefold-symmetric crystal GaSe [24],
and anisotropic HHG emission in ZnSe [25], as well as to
reconstruct the band structure [26,27] and the Berry curvature
[28] of SiO2. However, in solid-state HHG, simplified models
that consider only intraband dynamics have so far not been
used to study the effects of elliptical polarization. It is clear
that such a model ignores influences from dephasing [29],
wave packet spreading [16], HHG from multiple bands [30],
contribution from holes [25], along with effects of the subcy-
cle ionization dynamics [31].

We want to emphasize that the intraband mechanism was
also used to model high-harmonic emission with the highest
photon energies reported from solids to date (≈40 eV) [26].
Indeed, there are transparency regions in solids, for which
the joint density of states (JDOS) goes to zero and interband
recombination is not allowed as no pair of valence and con-
duction bands exists given such energy. In these regions, only
intraband harmonics can appear, and our results should also
apply there. So, even if we only discuss low-order harmonics
in this work (to compare with our experimental data), our
findings should be applicable to any intraband-only genera-
tion of higher-energy photons, potentially enabling circularly
polarized harmonics up into the extreme-ultraviolet (XUV)
spectral region.

The rest of the paper is organized as follows. Having re-
viewed the theoretical and experimental methods in the next
section, we present simulation results from a simple tight-
binding-type band structure in Sec. III. In Sec. IV we present
measurements on ZnS and compare these measurements to
our calculations. Finally, we summarize the work and draw
our conclusions in Sec. V.

II. METHODS

A. Theoretical model

Here we start by considering the dynamics of an electron
wave packet in a single band. The current density j at time t
can be described as

j(t ) = −
∫

BZ
evk(t )nk(t )dk. (1)

Here, BZ refers to the first Brillouin zone, e is the electron
charge, nk is the charge distribution in k space, and vk is
the k-dependent electron velocity. The latter consists of two
terms, one of which is coined the anomalous velocity that
contains the Berry curvature [32,33]. For the square lattice in
Sec. III, the Berry curvature is zero because of symmetries and
for ZnS in Sec. IV, we have confirmed that the influence of a
band-averaged Berry curvature on the studied odd harmonic
is negligible. To keep our discussion as simple as possible,
we will therefore neglect the anomalous velocity term in this
paper, which is in agreement with other recent works that
utilized this model to study odd orders in solid HHG [24–27].

Assuming a fully localized electron wave packet at k(t ),
i.e., nk(t ) = δ(k − k(t )), and inserting the definition of the
electron velocity (without the anomalous velocity term) vk =
1
h̄

dEk
dk , Eq. (1) simplifies to

j(t ) = − e

h̄

dEk

dk

∣∣∣∣
k=k(t )

. (2)

Ek is the conduction band dispersion. Under these assump-
tions, the emitted electric field EHH(t ) originating from an
intraband current is

EHH(t ) ∝ dj(t )

dt
= − e

h̄

d2Ek

dk2

dk
dt

∣∣∣∣
k=k(t )

= e2

(
1

m∗
k

)∣∣∣∣
k=k(t )

· EL(t ). (3)

EL(t ) denotes the driving laser field. Furthermore, m∗
k is the

effective mass tensor. Here we have used the acceleration
theorem k(t ) = − e

h̄

∫ t
−∞ EL(t ′)dt ′ and with it the assumption

that the electron is initially located at the � point.
Finally, the emitted high-harmonic spectrum can be

calculated as

IHH(ω) ∝ |FT[EHH(t )]|2. (4)

It can be seen from Eq. (3) that the nonlinear evolution of d2Ek
dk2

is the source for nonperturbative emission of higher-frequency
content. When happening in repetition over multiple laser
cycles, this emission consists of high harmonics of the driving
laser frequency [10,20].

In the following discussion we will consider the light com-
ponents with respect to the polarization ellipse, i.e., E‖ and
E⊥. Whenever we discuss harmonic order n or the correspond-
ing electric field En, we have band-pass-filtered the Fourier
transform of the total electric field in a window of n f ± 0.3 f ,
where f is the center frequency of the driving field and n is
the harmonic order. We checked that defining the harmonic
response by taking only the response at the center value of the
harmonic peak, or by averaging over an energy range, does
not affect our conclusions. By finding the axes of minimum
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(αmin) and maximum (αmax) harmonic yield In, we calculate
the harmonic ellipticity as

|εn| =
√

In(αmin)

In(αmax)
. (5)

This approach resembles the experimental method to rotate a
polarizer in order to determine |εn|. In our simulations, we use
the driving field

EL(t ) = Ẽ (t )√
1 + ε2

( cos(ωt )
ε sin(ωt )

)
, (6)

where Ẽ (t ) is a Gaussian envelope with a FWHM pulse du-
ration of 70 fs and a central wavelength of 2100 nm. The
field is rotated by an angle θ by multiplying EL with the ro-
tation matrix. Throughout this paper we keep the driving field
strength below the threshold above which Bloch oscillations
appear. This is compatible with experimental conditions for
this driving wavelength [17].

DFT calculations for bulk ZnS were performed with the
Octopus code [34–37], using a lattice parameter of 5.41 Å,
norm-conserving pseudopotentials, and a real-space grid
spacing of 0.25 bohrs. We used a sampling of 21×21×21 k
points to sample the Brillouin zone and we approximated the
exchange-correlation term using the functional proposed by
Tran and Blaha [38].

B. Experiment

In Sec. IV we also present experimental results on bulk
ZnS. Those are done with a Ti:sapphire-pumped OPA source
that produces CEP-stable, 70 fs pulses with a wavelength
of 2100 nm. We use a peak electric field strength of ap-
proximately 1 V/nm in matter. Both experimental setup and
procedure are the same as described extensively in Ref. [17]
and its supplement. Importantly, we measure the harmonics’
ellipticity by inserting a Rochon polarizer between sample and
spectrometer and record the spectra for different rotations of
the polarizer. The ellipticity is then calculated by fitting the
harmonic yield over polarizer rotation with a sin2 function and
calculating

|εn| =
√

Imin/Imax, (7)

with Imax and Imin being the minimum and maximum intensi-
ties of the harmonic over polarizer rotation.

C. Degree of polarization

The definition of |εn| in Eq. (7) is commonly used through-
out the literature. However, it represents only an upper limit
to the ellipticity since also fully unpolarized light would yield
|εn| = 1. The full polarization state of a light wave is better
described by the Stokes parameters. Let I (φpol, δ) denote the
transmitted intensity after a polarizer rotated by an angle φpol

to the x axis and an introduced phase shift δ between Ex and
Ey. Then the Stokes parameters are [39]

S0 = I (0, 0) + I (π/2, 0), (8)

S1 = I (0, 0) − I (π/2, 0), (9)

S2 = 2I (π/4, 0) − S0, (10)

S3 = S0 − 2I (π/4, π/2). (11)

S0, S1, and S2 can be measured with a polarizer only. In order
to measure S3, an additional device is required that introduces
a relative phase of δ = π/2. Experimentally this can be, e.g.,
a quarter-wave plate (QWP) or a Fresnel rhomb. Here, we will
use the latter. While the Stokes parameters have already been
characterized by us in the supplement of Ref. [17], in this
work we will exclusively discuss the degree of polarization
(DoP)

DoP =
√

S2
1 + S2

2 + S2
3

S0
, DoP ∈ [0, 1]. (12)

As stated above, in experiment, a Fresnel rhomb is inserted
for the measurement of S3. For the simulations we multiply
the electric field of a given harmonic with the Jones matrix of
a QWP and the Jones matrix of a polarizer with the angle φpol.
The hereby transmitted field is integrated over time which
equals the experimental detection method.

III. SQUARE LATTICE

First we will discuss a two-dimensional tight-binding band
structure

Ek = h̄2

4a2me

{
1 +

∑
m

cm[cos(mkxa) + cos(mkya)]

}
. (13)

We set all cm zero except for c1 = −0.95 and c3 = −0.05.
These coefficients have previously been used in the one-
dimensional case to theoretically model HHG from ZnO with
intraband dynamics alone [10]. We use a lattice constant of
a = 5.4 Å.

Equation (13) describes a square lattice. We call the axes
parallel to kx and ky �X and the ones rotated by 45◦ �K. The
peak electric field is 2 V/nm. Figure 1(a) shows the calculated
high-harmonic spectra with linear polarization along �X and
�K. With this band structure and our driving conditions, the
harmonic signal is maximized along �X, where harmonics
are generated up to the 11th order (HH11). Along �K, the
overall harmonic yield is lower and also the cutoff is reduced.
Figure 1(b) (bottom panel) depicts the perpendicular and par-
allel components of HH5 and HH9 versus crystal rotation
angle. The signal is fourfold symmetric, as expected from
a cubic structure. For polarization along the symmetry axes,
the emitted field is completely parallel to the driving field.
However, for sample rotations between 0◦ and 45◦, the emitted
harmonic fields contain a small perpendicular component.
This is a consequence of different band curvatures along the x
and y components of the driving field [Eq. (3)]. Because in this
case the respective relative phases ϕ [top panel of Fig. 1(b)]
are close to 0 for all sample rotations, the emitted fields stay
linearly polarized [center panel of Fig. 1(b)] but are rotated
with respect to the driving field. A behavior similar to this has
already been observed experimentally [17,40].

Figure 1(c) shows the temporal evolution of E‖ and E⊥
with a driver ellipticity ε = 0.15 and major axis along �K.
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FIG. 1. (a) Spectra along the major symmetry axes �X and �K
(ε = 0). (b) Top panel: Relative phase ϕ between E‖ and E⊥ of HH5
and HH9; center panel: respective harmonic ellipticities ε; bottom
panel: individual intensity components of HH5 and HH9 parallel and
perpendicularly polarized to the driving field for different sample
rotations (ε = 0). (c) Excerpt of the emitted electric field compo-
nents parallel and perpendicular to the driving major axis along �K
(ε = 0.15). (d) Same as (b) but with ε = 0.15.

Only an excerpt of the rising edge of the pulse is shown; the
highest field strength is reached at 0 fs. Although the perpen-
dicular component is much weaker due to the low ellipticity
of the driving field, it shows nonsinusoidal behavior starting
at around −70 fs which is earlier than the parallel component,
where clear nonsinusoidal components start to arise only at
around −50 fs. This illustrates how the high harmonics can
have totally different polarization states than the driving field.

The harmonics’ behavior for the same driving ellipticity
ε = 0.15 as a function of the crystal rotation angle is depicted
in Fig. 1(d). Now the relative phases between E‖ and E⊥
evolve in a more complicated way, reaching 90◦ along �K.
Hence, the ellipticities [center panel of Fig. 1(d)] peak for
this sample rotation. HH5 becomes circularly polarized while
HH9 exhibits only little ellipticity. For excitation away from a
major symmetry axis, the fields are again rotated with respect
to the driving laser. In summary, the harmonics’ polariza-
tion states differ among individual harmonics and sensitively
depend on the crystal rotation and the driving ellipticity.
Importantly, our results show that pure intraband dynamics
are sufficient to produce circularly polarized harmonics from
elliptically polarized driving pulses, as we have observed ex-
perimentally from Si [17].

Next, we extend the analysis of the harmonics’ polarization
states by varying the driving ellipticity further. Figures 2(a)
and 2(b) show the evolution of HH5’s polarization versus driv-
ing ellipticity along �X (a) and �K (b). As discussed above,
�X is the direction to most efficiently generate harmonics. To
drive the electrons away from that axis with an introduced
ellipticity means—at least for this simple band structure—to
generate harmonics less efficiently. The total harmonic yield
therefore decreases [bottom panel of Fig. 2(a)] with very little
rise of the perpendicular component. Hence, although the
relative phase (top panel) is 90◦ for most driver ellipticities,

FIG. 2. (a), (b): Ellipticity-dependent relative phases between E⊥
and E‖ (top panel), corresponding ellipticities (center panel), and
intensities of parallel and perpendicular components of HH5 along
�X (a) and �K (b) (bottom panel). Ellipticities of HH5 (c) and HH9
(d) in dependence on sample rotation and driver ellipticity. 0◦ and
90◦ refer to �X, 45◦ and 135◦ to �K.

the harmonic ellipticity is low. For circular excitation HH5
becomes also circular. In fact, all harmonics become circular
for circular excitation, and we even find that our simple model
predicts that subsequent harmonics have alternating helicities,
which is required by selection rules for cubic materials [19]
and was recently confirmed experimentally [17,18].

When the driving major axis is set along �K [Fig. 2(b)],
harmonics are generated least efficiently. As a consequence,
the perpendicular component increases strongly with small
ellipticity values [bottom panel of Fig. 2(b)]. At ε = 0.17,
E⊥ and E‖ have the same magnitude and—because |ϕ| is
90◦—HH5 becomes circularly polarized (center panel). Fur-
ther increase of the driving ellipticity causes E⊥ to dominate,
which rotates the harmonics’ major axis by 90◦. When the
perpendicular component peaks, conditions are reversed and
the parallel component rises again. Note that the relative phase
is flipped in this case, which reverses the helicity of the
harmonics’ polarization ellipse. The ellipticity of HH5 peaks
again at ε = 0.55 and E‖ dominates for even more elliptically
polarized drivers. At circularly polarized excitation, HH5 be-
comes circular once again. Qualitatively, we have observed
very similar behavior to this in Si (compare Figs. 4 and S10 in
Ref. [17]).

For polarization along this axis �K, the total yield of
HH5 stays constant for all driver ellipticities. We would like
to emphasize that—contrary to HHG from atomic gases—
the intraband mechanism does not necessarily predict the
harmonic yield to decrease with increasing ellipticity. The
harmonic yield is a sole consequence of the band curvatures
at different k values which can even be higher for elliptical
polarization. Similar harmonic yields for linear and circular
excitation have been reported in SiO2 [17] and GaSe [18]
with mid-infrared excitation. Interband transitions, however,
will be reduced with elliptically polarized fields because the
peak electric field is reduced by Eelli/Elin =

√
1/(1 + ε2).
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Therefore, fewer conduction-band electrons should contribute
to the HHG current. But even here the effect on the harmonic
yield is unclear, because fewer electrons could also cause
less dephasing to happen and thereby increase the harmonic
yield. All this should be dependent on the exact driving con-
ditions and the band structure and is not exactly understood at
this point.

Figures 2(c) and 2(d) depict the full polarization maps of
HH5 and HH9 versus driving ellipticity and sample rotation.
The previous discussion is summarized in these plots. The
conditions of high |εn| are seen as “islands” along �K. For
higher harmonics, these islands are more sensitive to the exact
driving conditions and more islands appear. Qualitatively, this
is what has been observed in Ref. [17]. For other sample
rotations, the harmonics stay largely linearly polarized due to
a small relative phase between E⊥ and E‖. However, they are
often rotated with respect to the driving field (not shown). As
required for a cubic system, all harmonics become circularly
polarized for ε = 1 independently of the sample rotation.

IV. ZINC SULFIDE

After having studied a simple model band structure, we can
address a real material and compare our simulation results
with measurements. We have chosen to investigate 50-μm-
thin, (100)-cut ZnS, because its lower conduction band is well
isolated from the others and therefore our one-band model
could constitute a reasonable approximation. Since harmon-
ics below the band gap should be produced predominantly
by intraband dynamics [21], we will focus our attention in
the following on HH5. For our peak electric field strength,
the harmonics are generated nonperturbatively, as we have
confirmed by studying harmonics’ yield versus driving field
strength [10]. In the simulations, unless otherwise noted, we
use the same peak electric field strength as in the experiment,
i.e., 1 V/nm. The band structure of ZnS has been constructed
as described in Sec. II A.

ZnS has a zinc-blende crystal structure and, hence, is not
inversion symmetric. In the experimental harmonic spectra,
the lack of inversion symmetry manifests itself in the gen-
eration of even-order harmonics. Because the single-band
model employed in this work cannot produce even harmonics
[24,28], we will investigate here only the odd harmonics.

Before investigating the harmonic ellipticities, let us first
consider the yield of HH5 and compare experimental to simu-
lated data in dependence on the driving ellipticity and sample
rotation [Figs. 3(a) and 3(b)]. Due to the zinc-blende crystal
structure, neither the experimental nor the calculated data
show a fourfold symmetry. Furthermore, it is apparent that
the yield behaves distinctly differently from the monotonic
behavior that is known from gas HHG. This is true for both
the experimental and the simulated results. The simulation
reproduces the two minima of the harmonic yield well and
also parts of the regions where the yield is maximized. How-
ever, around the region of ε ≈ 0.4 and 50◦ < θ < 100◦ some
differences can be seen.

Figures 3(c) and 3(d) show the measured and calculated
|ε5| for the same driving conditions as above. A somewhat
peculiar aspect of this crystal structure is that harmonics are
elliptically polarized with circular excitation. This is required

FIG. 3. Experimental (a) and theoretical (b) yields of HH5 in
dependence on the driving ellipticity and sample rotation from ZnS.
The corresponding experimental [(c), (e)] and theoretical [(d), (f)]
results of the ellipticity |εn| of HH5 and HH7 from ZnS. Data points
in which the signal-to-noise ratio is lower than 2.57 (99% confidence
interval) are marked in black.

by selection rules for the zinc-blende symmetry group [19]
and is confirmed in both our experimental data and calcula-
tions. For elliptical excitation, we once again find islands of
high |ε5|, both in the simulated as well as in the measured
data. Some features of the experimental data are qualitatively
well reproduced in the simulations. This is especially true for
the asymmetric elongated island around ε = 0.8 and 110◦ <

θ < 150◦. Also the two islands along θ ≈ 45◦ can be found
both in experiment and simulations. The experiments show
a circularly polarized HH5 for ε ≈ 0.6, θ ≈ 80◦ which is not
covered in the simulation. Also the shape of the islands around
θ = 45◦ are not perfectly reproduced. It can be expected that
electron-electron interactions and the influence of harmonic
emission due to electrons that are promoted to the conduction
band at different times have a great effect on these kinds of
maps [31]. Also hole dynamics can be expected to play a role
[25]. Discrepancies in such a side-by-side analysis are there-
fore not surprising when these effects are neglected. When
comparing the ellipticity maps to the maps of the harmonic
yields [Figs. 3(a) and 3(b)], it is interesting to note that most
of the peaks of |ε5| happen closely to the minima of the
harmonic yield. This is not true for the peak around ε ≈ 0.6
and θ ≈ 80◦, which does not appear in the simulation results.

For harmonics above the direct band gap, the assumption
that intraband dynamics alone underlie high-harmonic emis-
sion breaks down. We can observe this in ZnS by studying
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FIG. 4. (a) Measured and calculated degree of polarization (DoP)
for HH5 along θ = 45◦ with 1 V/nm. (b) Calculated electric field
of HH5 generated with ε = 0.54, θ = 45◦, and 1 V/nm. Calculated
DoP maps of HH5 for 1 V/nm (c) and 1.3 V/nm (d).

HH7, which lies above the band gap. Depicted in Fig. 3(d), the
measured |ε7| shows a more continuous structure compared
to the simulated |ε7| in Fig. 3(f) and any of the ellipticity
maps we have computed for intraband-only HHG. We have
reported a similar qualitatively different appearance of |ε7| in
experimental results from silicon [17]. There, intraband-only
harmonics [HH5 (below band gap), HH9 (low JDOS)] showed
island-type maps while HH7, produced by coupled intra- and
interband dynamics, showed a more continuous structure of
high-harmonic ellipticity. In ZnS, the same seems to be true.
Although only phenomenological at this point, this observa-
tion seems to indicate that one could discriminate between
different generation mechanisms by studying the harmonics’
polarization state with respect to driving pulse ellipticity.

Let us now turn our attention toward the degree of polar-
ization as it has been introduced in Sec. II C. Typically, in
polarization scans in solid HHG it seems implicitly assumed
that the harmonics are fully polarized [15,24,28,40]. However,
here we show that intraband dynamics alone already produce
depolarization effects that appear both in experimental as well
as in the simulated data for certain driving conditions in ZnS.
This is shown for θ = 45◦ in Fig. 4(a), where both the sim-
ulation as well as measured results show a clear decrease of
the DoP for some ε. Before discussing this behavior further,
let us visualize what a decrease of the DoP actually means.
In Fig. 4(b) we show the calculated electric field of HH5
for driving conditions that yield DoP = 0.7. Although the
polarization state of HH5 is well defined at any time, it is
changing over the course of the pulse quite dramatically. It
is captivating that we observe signatures of this also in the
experiment [Fig. 4(a)]. In this case, the experimental decrease
of the DoP seems to be even stronger than the simulated
one. At first glance, one would expect the opposite. This
is because in our model, the electron is in the conduction
band already before the beginning of the pulse. In reality, the

pulse promotes electrons to the conduction band only if the
field strength is high enough. This should effectively act as
a gating mechanism because only conduction-band electrons
can contribute to the HHG current. How long electrons stay in
the conduction band at the trailing edge of the pulse depends
on dephasing, of which the timescale is still debated. The
fact that we measure the DoP to decrease stronger than the
simulated case can link either to experimental uncertainties, as
this method to determine the DoP is known to lack precision
[41] (which can already be anticipated from the DoP’s slightly
higher than 1), or it can link to another mechanism of depolar-
ization that is not described by our model. One could think for
instance of the subcycle ionization dynamics which would put
electrons on different trajectories through the BZ, depending
on their time of ionization. But also the hole dynamics could
affect the DoP similarly to the electron dynamics.

The effect of depolarization enters naturally when the har-
monics’ polarization state is dependent on the field strength.
Since the amplitude changes over the course of a pulse, elec-
trons are driven to different regions in the BZ over the course
of the pulse. Then the excursion-dependent curvatures of the
band can produce totally different polarization states. One can
show that this is the case by increasing the peak electric field
strength. Figures 4(c) and 4(d) compare the simulated DoP
for the field strength used so far, 1 V/nm, and a higher field
strength of 1.3 V/nm. Depolarization is clearly more promi-
nent for the latter. In the case of the higher field strength, HH5
can even be slightly depolarized with linear driving polariza-
tion. We could not conduct the measurements at higher field
strengths due to laser-induced damage in that case. However,
this should be possible with shorter pulses or other materials.
Note that depolarization effects have been discussed recently
in gas HHG [42] and we show here that the influence of the
band structure can cause additional depolarization effects in
solid HHG.

V. CONCLUSION

We have demonstrated that simple intraband dynamics
alone produce salient features in the polarization of HHG
from solids that can also be found in experimental results.
Striking are the appearances of circularly polarized harmonics
with elliptically polarized excitation as well as deviations of
the harmonics’ major axis with respect to the driving major
axes. Experimentally, after having demonstrated this behav-
ior in cubic Si for the first time [17], we have shown here
that zinc-blende ZnS is another material from which one can
produce circularly polarized high harmonics with elliptically
polarized excitation. This suggests that this is a fundamental
response of solid HHG to elliptical excitation and that it can
be found in a much broader range of excitation conditions
and crystals. We have discussed effects of depolarization that
can result from intraband dynamics alone and have demon-
strated this both in experiments and simulation. According
to the intraband mechanism, depolarization effects are ex-
pected to become more significant for higher field strengths.
We have also demonstrated differences in the polarization-
state-resolved response of high harmonics above the band
gap, where the interband mechanism cannot be neglected.
Previously, the intraband-only model was used to successfully
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reproduce the XUV spectra up to record 40 eV photon energy
from quartz [26]. In consequence, we predict that the island-
like circularly polarized harmonics from elliptically polarized
driving pulses can also be found in this spectral region. This
could pave the way to relatively compact sources of circularly
polarized XUV radiation. Furthermore, the direct link of in-
traband dynamics to solid HHG could allow for k-resolved
tracking of the fastest oscillating currents that ultrafast laser
pulses can generate in solids to date.
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