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Spontaneous formation of vortices and gray solitons in a spinor polariton
fluid under coherent driving
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It is generally accepted that quantized vortices formed in coherent bosonic fluids are “excitations” and as such
do not arise in a one-mode condensate at zero temperature. To excite them, one needs either inhomogeneities
(impurities, rotation, etc.) or essentially finite fluctuations. Here, we predict a perfectly spontaneous formation
of vortices even at zero temperature, which takes place in a homogeneous cavity-polariton system under one-
mode optical excitation at normal incidence. In spite of the absence of equilibrium and U(1) invariance, this
system shows a counterpart of the Berezinskii-Kosterlitz-Thouless crossover between single vortices and coupled
vortex-antivortex states ranging from small dipoles to rectilinear filaments with long-range ordering.
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I. INTRODUCTION

Equilibrium Bose-Einstein condensates obey an au-
tonomous U(1)-invariant wave equation, however, the very
onset of macroscopic coherence is accompanied by symmetry
breaking so that all particles share the same spontaneously
chosen phase. When the symmetry is broken, the underlying
phase freedom reveals itself in quantized vortices, topological
excitations arising because of a weak pairwise repulsion of
particles. Vortices were observed in various systems includ-
ing quantum liquids [1,2], superconductors [3], cold atoms
[4,5], and microcavities [6–8]. Here, we consider cavity po-
laritons, mixed states of photons and excitons formed in a thin
layer of a semiconductor microcavity [9,10]. Their coherent
states originate in two ways, (i) via Bose-Einstein conden-
sation from a nonresonantly pumped excitonic reservoir to
the ground state [11] or, owing to the photonic component,
(ii) directly under resonant and coherent optical driving [12].
In contrast to equilibrium systems, a directly driven con-
densate displays forced oscillations and its phase is not free
but imposed by the pump wave. For this reason all known
ways to excite vortices resonantly involve artificial pattern-
ing of the incident pump beam and/or intracavity resonance
energy [13–23]. In this study, we have found a different
way of vortex formation that does not require any seeding
inhomogeneities.

We report quantized vortices that originate specifically un-
der the conditions of resonant excitation owing to spontaneous
breakdown of the spin-reversal symmetry (parity). Parity and
then a continuous spatial symmetry break down when op-
posite spin components of the field are linearly coupled, in
addition to the usual pairwise repulsion of parallel spins. As
a result, a perfectly uniform and spin-symmetric initial state
of the system is divided into large-scale domains that differ in
the way of symmetry breaking. Two equally possible steady

states have opposite phases, so they annihilate each other and
the boundary between different domains is highly unstable,
giving birth to vortices in a two-dimensional system and gray
solitons in a one-dimensional system. In certain respects these
excitations are similar to their equilibrium counterparts, for
instance, vortex-antivortex dipoles and filaments arise in anal-
ogy to atomic gases [24–26], which is surprising, however,
in view of the absence of thermal equilibrium in the driven
system. The rotational symmetry is broken even for individual
vortices; as a result, they interact on a large scale and form
internally ordered structures. The spatial distribution of polar-
ization around vortices is also uncommon and does not fit into
the conventional row of the half- [8,27], full-, and spin-vortex
states [20] or linear-polarization vortices [21,22].

Below, we describe the mean-field model (Sec. II), ana-
lyze its stationary solutions, and explain symmetry breakdown
(Sec. III) that leads to the gray-soliton or vortex states
(Sec. IV). Additional numerical examples, high-resolution
images, and video files representing system dynamics are
included in the Supplemental Material [28].

II. MEAN-FIELD MODEL

Let us consider a planar polariton system excited at normal
incidence by a coherent light wave. Polaritons have two spin
states corresponding to right- and left-handed circular polar-
izations of light. Opposite spin states do not interact pairwise
if the driven mode is far below the exciton level and the
temperature is close to zero [29–32]. However, they can be
linearly coupled owing to the lifted degeneracy of eigenstates
with orthogonal polarizations, e.g., because of a mechanical
stress [33–36]. This system is described by two mean-field
amplitudes ψ±(r, t ) obeying the “driven” Gross-Pitaevskii
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equations [10]

ih̄
∂ψ±
∂t

= (Ê − iγ + V ψ∗
±ψ±)ψ± + g

2
ψ∓ + f±e−iEpt/h̄.

(1)
Here, Ê = Ê (−ih̄∇ ) is the energy operator determined by the
lower-polariton dispersion law E (k) that is nearly parabolic
for small in-plane wave numbers k; γ is the decay rate, V > 0
is the polariton-polariton interaction constant, and g/2 is the
spin coupling rate. Amplitudes f± are proportional to the re-
spective polarization components of the external electric field.
If f± → 0 and ψ± → 0, the system is diagonalized by the
unitary transformation ψ± = (ψx ∓ iψy)/

√
2; the eigenstates

are orthogonally polarized and have energy levels Ex,y(k) =
E (k) ± g/2. The pump frequency Ep/h̄ is supposed to be close
to the resonance frequencies of the driven polariton state with
zero k.

III. SYMMETRY BREAKDOWN

Throughout this paper we consider the case of x-polarized
spin-symmetric excitation ( f+ = f− = f ), so that the equa-
tions for ψ+ and ψ− are exactly the same. They have
one-mode solutions of the form ψ±(t ) = ψ̄±e−iEpt/h̄. Ampli-
tudes ψ̄± obey time-independent equations

(D + iγ − V |ψ̄±|2)ψ̄± − g

2
ψ̄∓ = f , (2)

where D = Ep − E (k = 0) is the pump detuning from the
mean (unsplit) ground-state level. This system is multistable
[37]. Clearly, it has spin-symmetric solutions with ψ̄+ = ψ̄−
for each f , which we henceforth denote as the � states. They
are copolarized with the incident pump and feature intrinsic
bistability when D − g/2 >

√
3γ [38,39].

To demonstrate different solutions, let us equate the left-
hand sides of Eqs. (2), which yields

ψ̄−
ψ̄+

= D + g/2 + iγ − V |ψ̄+|2
D + g/2 + iγ − V |ψ̄−|2 . (3)

If V |ψ̄±|2 = D + g/2, then ψ̄∓ ∝ γ , so that the circular-
polarization degree (also referred to as the third Stokes param-
eter) S3 = (|ψ̄+|2 − |ψ̄−|2)/(|ψ̄+|2 + |ψ̄−|2) nearly reaches
±1 at small γ . This doublet of steady states will be denoted
as �±. Such states were experimentally observed in a micro-
cavity with g � γ [34–36].

Another way of parity breaking comes into play at greater
g/γ and is directly responsible for vortices and gray solitons.
Suppose V |ψ̄±|2 = D + g/2 ± δ, so that Eq. (3) turns into

ψ̄−
ψ̄+

= iγ − δ

iγ + δ
. (4)

Now one can express ψ̄− in terms of ψ+ and substitute it in
Eq. (2) for ψ̄+, which, after multiplication of both sides by the
complex conjugate, leads to the following equation for δ,

(
γ 2 + δ2 + γ 2g2

γ 2 + δ2

)(
D + g

2
+ δ

)
= V f 2. (5)

If |δ| is much smaller than g and D, one can drop δ in the
second parentheses of Eq. (5) which is thereby reduced to a

(a) (b)

FIG. 1. One-mode response functions [solutions of Eq. (2)] at
γ = 5 μeV and g = D = 1 meV, so that f 2

2 / f 2
1 = g/2γ = 100. So-

lutions shown by dotted lines are unstable even in the one-mode
limit with k = 0. (b) shows a magnified interval of (a) at small f
which will be mainly considered in this paper; arrows and ellipses
schematically indicate polarization states.

quadratic equation for γ 2 + δ2. The latter has positive roots
starting with pump intensity

f 2
1 = 2γ g

V

(
D + g

2

)
, (6)

where the root per se is γ 2 + δ2 = γ g. The smallness of |δ| is
justified when γ � g ∼ D, in which case the overall consid-
eration based on Eq. (4) is self-consistent. Near the threshold
point f = f1 we have δ/g → 0 and δ/γ → ∞ if γ /g → 0.
Then, in accordance with Eq. (4), ψ̄−/ψ̄+ → −1, so that the
condensate is polarized in the y direction (orthogonally to the
pump).

Being very small at the threshold, |δ| decreases still further
with increasing f for one of two pairs of solutions of Eq. (5).
At f � f1 and γ � g we have δ( f ) = ±γ

√
f 2
2 / f 2 − 1, where

f 2
2 = (g/2γ ) f 2

1 is the upper threshold at which |δ| even-
tually turns to zero. Below this point, the condensate has
constant total intensity I = |ψ̄+|2 + |ψ̄−|2 but varying po-
larization direction. The (x, y) polarization degree, S1 =
(|ψ̄x|2 − |ψ̄y|2)/I , shows a linear increase as a function of f 2

and ranges from about −1 at f = f1 to +1 at f = f2. The
solutions with mutually opposite δ differ in the sign of the
“diagonal” linear polarization S2 = (ψ̄∗

x ψ̄y + ψ̄∗
y ψ̄x )/I . Since

the length of the Stokes vector (S1, S2, S3) is unity and its
circular-polarization component S3 = δ/(D + g/2) is negligi-
ble, we have S2 ≈ ±

√
1 − S2

1 and, in particular, S2 ≈ ±1 at
f 2 = ( f 2

1 + f 2
2 )/2. Let us denote this doublet of solutions as

�±. They appear at f = f1 and degenerate into the singlet �

branch at f = f2 (Fig. 1).
For a cousin doublet of solutions, henceforth 	±, the value

of |δ| grows with f , so the field gradually acquires notice-
able S3. Since then ratio (4) does not satisfy Eq. (2) even
approximately. As seen in Fig. 1, the intensity of the 	 states
decreases with increasing f , which is indicative of instability.
Sooner or later the 	 doublet meets the � doublet and they
both terminate.

The � doublet is the only possible type of steady states
in a wide interval of f 2 when γ � g ∼ D. The instabilities
of the � and �± states were investigated earlier, and here
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we only briefly recall the main results. The spin-symmetric
� state is unstable because an indefinitely small imbalance
of |ψ+| and |ψ−| makes the greater component grow further
by simultaneously suppressing the minor one [34–36,40–42].
This occurs at g � γ and leads to one of the �± states. After
one of the spin components has been suppressed, a significant
increase in the pump intensity is required for driving it up
again, so that the length of the � branches in a diagram such
as Fig. 1 is quite great. Notice as well that the Josephson
oscillations [43] are not possible when both spin components
have the same “forced” frequency Ep/h̄ and thus their phase
difference does not vary with time. In turn, the pairwise in-
teraction conserves spin and, taken alone, it also cannot help
restore spin symmetry. However, the � branches lose stability
with respect to a higher-order interaction process,

g

V V ,

g

(7)

which simultaneously enables spins to be reversed and lifts
the frequency degeneracy. Namely, even when the condensate
at k = 0 and E = Ep has a perfectly circular polarization,
new energy levels with different polarizations get populated at
E ≈ Ep ± D in a finite interval of k around k = 0. This pro-
cess starts at g ≈ 4γ [40,44] and leaves no one-mode solutions
within a certain range of f 2, which results in turbulence [45],
periodic spin networks, and chimera states [46].

Given that g ∼ D > 0, a decrease in γ broadens the inter-
val of f 2 in which the � and �± states are forbidden. At
the same time, it lowers the critical point f 2

1 ∝ γ where the
�± states appear. They have the greatest intensity for each
f1 � f � f2 and are always stable.

The � → � transition is markedly different from the � →
� transition observed at g ∼ γ . First, the superposition of �+
and �− has extremely low intensity near f = f1. To make it
clear, notice that replacing ψ+ with ψ− and vice versa turns
�+ into �− and �+ into �− in view of symmetry. Thus,
the average state for each doublet [e. g., (�+ + �−)/2] is
spin symmetric and must have the x polarization direction in
accordance with the usual definition ψ± = (ψx ∓ iψy)/

√
2.

We have found, however, that both �± states are nearly y
polarized at f = f1. To add up to an x-polarized state, they
must have opposite phases and annihilate each other, which
also applies to the 	± pair. That is why a turnover point
between �+ and �− can behave as a gray soliton or vortex
core.

Second, notice that the outcome of the � → �± transition
is determined in its very beginning by the sign of |ψ+| − |ψ−|.
By contrast, the outcome of the �± → �± transition is uncer-
tain at its early stage because processes (7) make a continuum
of different k states populated concurrently [40,44]. Thus,
after the spin symmetry breaking, the system loses homogene-
ity simultaneously at each point and goes through a stage of

FIG. 2. Solution of Eq. (1) at γ = 1 μeV, g = D = 1 meV, and
f 2/ f 2

1 = 11 in the one-dimensional case; the initial state is homo-
geneous (zero). The boundary between the �± states behaves as a
gray soliton; it runs with a constant speed and gets reflected from the
2-meV high potential walls at x = ±200 μm.

strong spatiotemporal disorder. Different examples of spon-
taneous phenomena in driven polariton fluids (not involving
vortices or spin) can be found in Refs. [47,48].

IV. VORTICES AND GRAY SOLITONS

The following numerical experiments are performed with
typical parameters of a GaAs-based microcavity. The exciton-
photon detuning at k = 0 is zero, the full Rabi splitting is
10 meV, and the exciton mass is much greater than the photon
mass εE/c2, where ε = 12.5 and E = 1.5 eV. The interaction
constant V can be chosen arbitrarily, as it only determines a
critical point (6). A small white-noise term is added to the
right-hand side of Eq. (1) to simulate fluctuations. The pump
is smoothly switched on during 0.1 ns and then held constant.
The boundary conditions are set by means of a sharp increase
in the polariton energy or decay rate. The case of a purely
homogeneous system with periodic boundary conditions is
discussed in the Supplemental Material [28].

Figure 2 shows a 400-μm-long one-dimensional polariton
system with potential walls near the boundaries. After the
stage of disorder, it nearly approaches equilibrium but remains
two-component. A pair of the �± domains are separated by a
gray soliton, pointlike interface where total intensity I drops
down. When γ /g is small and f close to f1, such a soliton can
endlessly run and even reflect from the potential walls. Col-
liding solitons cancel each other, thus, only one can survive
in the long term, resulting in spatiotemporal self-pulsations
seen in Fig. 2. Increasing f renders solitons motionless. Since
the �± states do not annihilate each other completely when
f is high, the interface between the two domains can be a
plain superposition of �+ and �− which is spin symmetric
and static. However, at f = f1 such �-symmetric states would
have zero amplitude and become highly unstable; instead of
that, solitons acquire a nonzero amplitude along with a certain
degree of asymmetry and move in space.

The two-dimensional case is essentially more complex. Of
particular interest is the boundary between the �± domains,
its shape and polarization. To simplify our first example and
skip the turbulent stage, we have used rotationally symmetric
initial conditions biased to the �+ and �− states, respectively,
inside and outside a circle placed at the grid center. Accord-
ingly, the pump was not “switched on” smoothly but had a
fixed amplitude f at all t . Figure 3 shows the steady state
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FIG. 3. Intensity I and polarization degrees (normalized Stokes
parameters) S1,2,3 for a steady solution of Eq. (1) formed in about
1 ns at f 2/ f 2

1 ≈ 6.8. Parameters γ , g, and D correspond to Fig. 1.
The initial conditions were biased to the �+ and �− states at |r| �
20 μm and |r| > 20 μm, respectively, r = 0 being the grid center. To
ensure zero boundary conditions, γ is increased up to 4 meV at |r| =
125 μm. The insets show a magnified fragment with two vortices of
opposite topological charge.

to which such a system came in about 1 ns. The borderline
between the �+ and �− domains comprises 16 curved seg-
ments whose polarizations appear to be very close to the 	

states. Being not � symmetric, the 	±-state segments tend
to move in opposite directions from �∓ to �±, thus, each
turnover point between 	+ and 	− carries a vortex core and
has very low intensity. Neighboring vortices with opposite
rotation directions balance each other and help stabilize the
system.

The Stokes vector components shown in Fig. 3 allow one
to deduce the phase distribution around the core. It is seen
that S3 ∼ ±1 and S2 ∼ ±1, respectively, along the tangent
and the normal to the borderline. The signs of S2 and S3

match the �± domains and 	± segments. A purely circular
polarization S3 = ±1 implies that the (x, y) phase difference
�φ = arg(ψ∗

x ψy) is equal to π/2 or 3π/2, whereas S2 = ±1
implies �φ = 0 or π . Thus, �φ makes an angle of ±2π

around the core. At the same time, the orientation of the
S2,3 poles is certain and reflects the long-range symmetry
breaking.

When two vortices of opposite charge come within short
distances of each other, the borderline segment enclosed be-
tween them becomes straight. Calculations show that many
adjacent vortex-antivortex pairs may cancel their high-S3

poles along the “core” line with S1 = +1 and align the S2

poles on both sides of that line, resulting in straight �-
symmetric filaments. At larger f / f1, when such symmetric
states have a noticeably nonzero amplitude and can be stable,
this kind of a domain wall is highly preferred over the 	 states.
Static filaments, whose length reaches hundreds μm [28], are
analogous to fixed solitons formed in the one-dimensional
system.

(a) (b)

FIG. 4. Snapshots of unsteady solutions of Eq. (1). Parameters
γ , g, and D correspond to Fig. 1. The value of f 2/ f 2

1 is 6.8 for
(a) and 13 for (b). The initial conditions are homogeneous (zero) in
both cases. In (a), a very high potential wall is set at |r| = 75 μm.
In (b), γ is increased from 5 to 200 μeV at the same |r|, whereas
the boundary conditions are periodic. The obtained pattern steadily
rotates clockwise, making a complete turn in 2.6 ns. Supplemental
video files explicitly show the evolution of (a) and (b).

Figure 4 illustrates a crossover between single and cou-
pled vortex states, analogous to the transition discovered by
Berezinskii, Kosterlitz, and Thouless (BKT) [49,50]. Both
patterns [Figs. 4(a) and 4(b)] form spontaneously. In Fig. 4(a),
the system is edged by a ring-shaped potential wall similar to
Fig. 2. The borderline between the �± domains is of the 	

type and moves in space, however, it occasionally slows down
and displays vortex filaments. Since f is not great enough, the
filaments break up into the vortex-antivortex dipoles which
freely penetrate into the � domains but have finite lifetime.
The whole system evolves irregularly for an indefinite time
until it accidentally “finds” a balanced state analogous to
Fig. 3 [28].

Instead of setting a potential wall, in Fig. 4(b) we have
increased the decay rate γ from 5 to 200 μeV at the same
boundary. The pump no longer reaches threshold (6) in the
outer area, however, the �± and � states are still unsta-
ble. Consequently, all plane-wave states are forbidden and
the system has to be inhomogeneous on the scale a ∼ k−1

0 ,
where h̄2k2

0/2m = D + g/2 and m is the polariton mass near
k = 0. In the one-dimensional case, this would have resulted
in a stiffly ordered dipolar network [40,46], but the two-
dimensional system has more freedom and arranges itself
into a labyrinthine structure [45]. It exhibits S2 ∼ ±1 at the
intensity maxima and S1 = +1 at the minima and thus can be
thought of as a host of vortex filaments in which all vortices
are tightly coupled. The inner disk-shaped area contains a
single vortex at the center, two curved 	+ and 	− segments
with S1 ∼ −1, and two straight filaments with S1 ∼ +1 along
the core line. This Yin-and-Yang pattern rotates at a fixed
angular velocity and represents an instance of unsteady but
fully self-consistent polariton states. It was established after
∼9 ns of irregular evolution when a sole vortex accidentally
occurred at the center. More details on the formation of fil-
aments, dipoles, and vortex networks are discussed in the
Supplemental Material [28].
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In summary, we have found an interesting class of
collective bosonic states which arise spontaneously under
coherent driving. They are similar to quantized vortices in
equilibrium Bose-Einstein condensates and superconductors,
featuring a 2π phase shift around the core as well as formation
of vortex dipoles and filaments in the range of comparatively
great driving amplitudes. The character of such a BKT-type
crossover suggests the existence of an extremum principle
underlying the (de)coupling of vortices, however, it obviously
has nothing to do with conventional thermodynamics and
calls for further investigation. Solitons and vortices arise

when the spin coupling rate largely exceeds decay rate γ ;
nonetheless, γ is nonzero and therefore the field oscillates
at the “forced” frequency. As a result, there is no continuous
transition to the usual case of freely evolving condensates
with f = 0 and γ = 0.
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