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Kibble-Zurek mechanism from different angles: The transverse XY model and subleading scalings
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The Kibble-Zurek mechanism describes the saturation of critical scaling upon dynamically approaching a
phase transition. This is a consequence of the breaking of adiabaticity due to the scale set by the slow drive.
By driving the gap parameter, this can be used to determine the leading critical exponents. But this is just
the ‘tip of the iceberg:’ Driving more general couplings allows one to activate the entire universal spectrum of
critical exponents. Here we establish this phenomenon and its observable phenomenology for the quantum phase
transitions in an analytically solvable minimal model and the experimentally relevant transverse XY model. The
excitation density is shown to host the sequence of exponents including the subleading ones in the asymptotic
scaling behavior by a proper design of the geometry of the driving protocol in the phase diagram. The case
of a parallel drive relative to the phase boundary can still lead to the breaking of adiabaticity, and exposes the
subleading exponents in the clearest way. Complementarily to disclosing universal information, we extract the
restrictions due to the nonuniversal content of the models onto the extent of the subleading scalings regimes.
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I. INTRODUCTION

The Kibble-Zurek Mechanism (KZM) [1–3] is a beautiful
instance of the interplay of universality at an equilibrium crit-
ical point and a slow (nonequilibrium) drive of the coupling
parameters. The mechanism roots in the breaking of adia-
baticity and the creation of measurable excitations, applying
to finite temperature as well as quantum phase transitions (see,
e.g., Refs. [4,5]).

The physical setup is as simple as paradigmatic: Consider
the slow drive of a coupling, say g0 relative to the critical point
g∗

0: g0(t ) − g∗
0 = v0,ntn (v0,n: generalized ‘velocity’ for a drive

of order n), starting far away from the phase transition. The
concept of the KZM can then be understood from different
viewpoints.

The first perspective puts the observable phenomenology
center stage: Starting from the disordered side and approach-
ing the phase transition, the state of the system is not globally
symmetry broken but hosts spatial fluctuations of the order
parameter on a scale given by the correlation length ξ . There-
fore, domains of an average size of ξ reside in one of the
symmetry-broken states.

Once adiabaticity is broken, the state is essentially frozen,
and the correlation length saturates to ξ ∗. The ‘frozen’ domain
structures are separated or punctured by (topological) defects
[3,6]. The density of these defects, nE , is again related to the
length scale nE ∼ ξ ∗−(d−p) with d the dimension and p the
dimensionality of the defects [7]. Furthermore, both quantities
scale algebraically with the velocity of the drive.
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To complement this observation and the emerging power-
law dependence on the drive velocity, consider a second,
scaling perspective: A system is initially prepared in its
ground state far away from the critical region in the disordered
phase. Early on, for a slow drive, the time evolution will be
adiabatic, as the characteristic time scale τ (t ) ∼ 1/�(t ) (�
the energy gap, for a quantum phase transition) as a function
of the time t is small compared to the rate of change in the cou-
pling: |(g0(t ) − g∗

0)/ġ0| ∝ t . Nevertheless, close to the critical
region near the transition, the correlation length ξ as well as
the characteristic time scale start to diverge, with a degree
of divergence governed by the critical exponents (z, ν, . . . )
determined by the universality class [8]:

ξ ∼ |g0 − g∗
0|−ν,

τ ∼ ξ z.
(1)

Once τ (t ) becomes of the order of the change of the coupling,
at the time t∗ defined by τ (t∗) ∼ t∗, adiabaticity gets bro-
ken. The system is essentially ‘frozen’ (impulse regime, see
Sec. IV B 3) with a finite length scale, which cannot diverge
anymore. It gives a direct estimate of the saturated length scale
ξ ∗ with a power-law scaling in the velocity [9–12]

ξ ∗ = ξ0 ∼ v
− 1

nz+1/ν

0,n , (2)

supporting the observed scaling.1

1A third perspective is given by the sonic horizon: To refine the
‘freeze-out’ scenario also the spreading of the defects/quasiparticles
after breaking adiabaticity should be taken into account. The system
is not completely frozen afterwards as there is still a finite veloc-
ity scale set by v ≈ ξ ∗/t∗ [13,14], which in the quantum case is
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FIG. 1. Summary (generalized KZM): a generalized drive of order n of a dimensionless equilibrium relevant coupling ĝ0 and an irrelevant
coupling ĝ j in the phase diagram (a) allows one to extract both scaling dimensions from the finite length scale ξ ∗ [orange curve in the log-log
plot in (b)] due to adiabaticity breaking. The two different scalings regimes in (b) can be explained most directly for a drive of order n = 1
by looking at the dimensionless velocity v̂k and the k-resolved excitation density pk = exp(−π v̂−1

k ), measuring adiabaticity breaking (see also
Sec. V). Once v̂k � 1 adiabaticity is broken [see again Eqs. (8) and (9)]. If v̂ � v̂∗(φ) we observe the subleading scaling [e.g., full circle in
(b)], otherwise the KZM scaling.

Both the observable based as well as the scaling perspec-
tive have been investigated and verified in a broad spectrum
of experiments in systems like superfluid 3He [16,17], liquid
crystals [18,19], finite temperature as well as quantum phase
transitions in ultracold gases [20–33], trapped ions [34–36],
ferroelectrics (multiferroic crystals) [37–39], superconducting
systems/Josephson tunnel junctions [40–43], colloidal parti-
cles (in two dimensions) [44], hydrodynamic systems [45],
qubits [46–49], Dicke models [50,51], and a Rydberg simula-
tor [52].

All these perspectives give valuable insights into the KZM.
In a recent work, the scaling perspective was picked up
and formalized into an adiabatic renormalization group (RG)
framework. As in the scaling approach, the key ingredient is
to formulate the breaking of adiabaticity in an RG language.
In this approach, the KZM was identified as the ‘tip of the ice-
berg’ [53]: A generalized KZM scenario can be established. It
allows one not only to access the leading critical exponents as
known previously, but in fact the whole spectrum of universal
critical exponents underlying a second order phase transition.
In particular, also equilibrium irrelevant couplings/operators
can lead to an observable length scale, or differently put:
Irrelevant couplings at equilibrium can be made relevant by
a proper drive, leading to diverging length scales in the slow
drive limit. For any critical exponent dim[g j], such a length
scale takes a form fully analogous to Eq. (2),

ξ j ∼ v
− 1

nz+dim[g j ]

j,n , (3)

where v j,n is the ‘velocity’ used to drive the coupling g j . Here
dim[g j] > 0 corresponds to an equilibrium relevant coupling

nothing but the (maximal) speed of the excited quasiparticles. It
leads to a continued finite growth of the correlated regions [13,14].
Nevertheless even taking this important aspect into account will still
lead to the same scaling of the correlation length with the velocity
of the drive Eq. (2) (but with a modified prefactor). Apart from
that, see also, e.g., Ref. [15] for a numerical analysis of the entire
time-resolved process.

(in particular dim[g0] = 1/ν) and dim[g j] < 0 to an irrelevant
one. The direct consequence for driving multiple couplings,
say g0 and g j [see Fig. 1(a)], is that there are two competing
scales, ξ0 and ξ j . The observable scale is the smaller one,
setting the largest possible scale of correlations:

ξ ∗ ∼ Min[ξ0, ξ j]. (4)

In this work, we make use of and combine both per-
spectives: From the RG perspective we identify the critical
exponent spectrum for explicit models and how a proper drive
can be constructed to access this hierarchy. Completing the
concept of the generalized KZM, we then consider quanti-
tative measures of adiabaticity breaking, here the excitation
density nE . The context of this work is briefly summarized in
Table I.

This allows us to connect the more formal RG predictions
like Eq. (3) with observables, which can be well approximated
or even calculated exactly. This includes in particular nonuni-
versal scales, like the crossover velocities separating different
scaling regimes from Eq. (4), which are not accessible from
the RG analysis. Furthermore, deep in the paramagnetic or
ferromagnetic phases of spin models, the density is directly
related to the density of defects, like spin flips or domain walls
[54], which underlie the KZM as outlined above. In particular,
the excitation density and the scale ξ ∗ are directly related
according to (in one dimension) [4]

ξ ∗ ∼ n−1
E . (5)

TABLE I. (Generalized) KZM framework from the observable
and scaling perspective for driven leading and subleading couplings
with scalings according to Eqs. (2), (3).

KZM Leading coupling Subleading couplings

Observable
√

This work
Scaling

√
[53]
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A valuable platform to test both the traditional and—as
demonstrated here—new aspects of the KZM is the Ising
quantum phase transition between a ferromagnetic and para-
magnetic phase in the transverse Ising/XY model, which was
already extensively studied, see, e.g., Refs. [9,11–13,54–68].
The transverse Ising model (or the corresponding universality
class), for instance, was realized experimentally in highly
controllable quantum systems or simulators (e.g., the Rydberg
simulator [52] or trapped ions [48,49]), where the quantum
version of the KZM was verified.

A. Key results

1. Mechanism and observability

We analyze the generalized KZM for the transverse XY
model, as well as an exactly solvable minimal model with
z = 3. In both cases, different drives as shown in Fig. 1(a)
are considered, interpolating between a transversal drive into
the relevant g0 direction and a parallel drive in the irrelevant
g j direction. Such drives are parameterized by an angle φ and
a velocity modulus v̂ (at the level of dimensionless velocities
v̂ j,n). The main reason for choosing such a drive is to reveal
the two different scaling regimes of ξ ∗, as shown in Fig. 1(b).

As anticipated above, the KZM is based on adiabaticity
breaking close to a critical point. Even an initially slow drive
becomes fast compared to the other scales involved, and in
particular, to the gap. We make use of this idea by introducing
a rescaled, dimensionless ‘velocity’ v̂k , which depends on the
momentum k of a specific mode under consideration. This be-
comes possible as the different k sectors in the time evolution
decouple for both models. More precisely, for each velocity
v j,n, the rescaled velocity takes the form

v̂
( j)
k ∼ v j,nk−(nz+dim[g j ]), (6)

which already has similarities to Eq. (3). This rescaled ve-
locity has two advantages: Its scaling with k already encodes
the information of the critical exponents in Eqs. (3) and (2).
Furthermore, it has a rather direct relation to the excitation
density. To establish the connection to the excitation density
nE , we first remark that also nE can be decomposed into the
k-resolved densities pk (N : number of lattice sites)

nE = 1

N

∑
k

pk . (7)

To give a simplified picture, the qualitative relation between
pk and the velocity v̂

( j)
k is

v̂
( j)
k � 1 ⇔ pk ∼ O(1),

v̂
( j)
k 	 1 ⇔ pk 	 1,

(8)

which gives meaning to the statement that a fast drive breaks
adiabaticity (see Sec. V for more details). In turn, we can
identify a momentum scale k∗

j separating the two regimes:

v̂
( j)
k∗

j
≈ 1, k∗

j ∼ v

1
nz+dim[g j ]

j,n . (9)

This onset of adiabaticity breaking also appears at the level of
the excitation density: Combining Eqs. (7), (8), and (9), we

roughly get

nE = 1

N

∑
k

pk ∼ k∗
j ∼ (ξ ∗

j )−1, (10)

(see Sec. V for a more detailed discussion). In the case of
driving g0 and g j this leads to two length scales ξ0 and ξ j

and therefore the competition in Eq. (4). To make use of this
competition, we consider the dimensionless velocities v̂0,n and
v̂ j,n and parametrize the drive by an angle φ and velocity v̂.
Now consider Fig. 1(b): shown are ξ ∗ interpolating between
the smaller of ξ0 (dashed) and ξ j (dotted) for some fixed
φ. The two regimes are separated by v̂∗(φ). By tuning v̂,
we can observe either the subleading scaling for v̂ � v̂∗(φ)
(e.g., filled circle) or the KZM scaling otherwise (e.g., empty
circle).

2. Microscopic vs effective couplings

When we consider drives in, e.g., an Ising model, we
control the microscopic couplings like the transversal field
or the ferromagnetic coupling, dragging the system through
the phase diagram. Nevertheless, from the RG point of view,
the scaling of ξ ∗ due to the (generalized) KZM results from
the effective (renormalized) couplings of the long-wavelength
theory in the critical region. It is possible that the relation of
these couplings is nontrivial, so that, e.g., a microscopic cou-
pling is rather connected to a series of relevant and irrelevant
effective couplings. In such a case, even though we approach
the phase boundary orthogonally in terms of our microscopic
‘knobs,’ we are actually driving multiple effective couplings;
an example is given in Fig. 4. Since also driven irrelevant
couplings can lead to a scaling according to Eq. (3), this has
the potential to obtain a ‘misleading’ scaling regime, similar
to Fig. 1(b) for larger velocities, and places a need for caution
in the interpretation of experiments on the KZM. In an RG
approach to generic interacting models, the relation between
microscopic and effective couplings is complicated and not
particularly transparent. Here we demonstrate this effect very
explicitly: It not only surfaces in renormalization group trans-
formations but also in the diagonalizing transformation of
the microscopic spin model to a set of fermionic momentum
modes, see Sec. II B. This gives the opportunity to study this
general phenomenon in an explicit example.

3. Parallel drive

As we demonstrate in Sec. VI C, there is one case evading
the ambiguity between microscopic and effective couplings:
a drive performed in parallel to the phase boundary. This
implies that only subleading couplings are driven. This spe-
cial case therefore offers the unique possibility to study and
identify adiabaticity breaking and scaling due to subleading
couplings only. In this case, there is just one drive scale
according to Eq. (3), which is now competing with the finite
ground state correlation length ξ . This scenario is very differ-
ent from the KZM discussed so far, as we stay at a constant
distance to the critical line (see also Refs. [60–62,68]). The
competition of the scales also allows us to restore adiabatic-
ity, once ξ 	 ξ j (similarly to [63]). This scenario is fully in
line with—and can be viewed as a special instance of—the
generalized KZM; our present approach provides the direct
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link between the scaling/RG based and the observable based
perspectives.

4. Nonuniversal scales

Besides the universal scaling exponents from Eqs. (3) and
(2), we extract the nonuniversal scales (crossover velocities
and required angles) for both models, see orange dot in
Fig. 1(b). To qualitatively understand the effect of nonuniver-
sal contributions, e.g., from larger momentum modes, we use
the minimal model with z = 3 with an explicit cutoff �, which
captures the not further specified nonuniversal contributions.
In particular, we are interested in how extended the new scal-
ing regime in Fig. 1(b) (full circle) is, depending on �. By
varying the cutoff, the range of velocities, which allow one to
observe the different scalings (Sec. VII), can be enlarged.

5. Plan of the paper

The three main ingredients to understand and complement
the (generalized) RG perspective onto the KZM are the equi-
librium critical exponent spectrum of a model, the interplay
of a drive with this spectrum, and physical observables to
extract the scaling. In Secs. II, III, and IV these first two in-
gredients are worked out for the transverse XY model in detail
to make the analysis self-contained. In Sec. V the scaling of
the excitation density is worked out for an exactly solvable
minimal model and in Sec. VI for the transverse XY model.
In Sec. VI C we discuss the case of a purely parallel drive and
in Sec. VII the role of the cutoff on the observability of the
(subleading) scaling.

II. TRANSVERSE XY MODEL

The scalings in the KZM, Eqs. (2) and (3), are based on
the equilibrium critical exponents. Therefore, our first step
is to identify these exponents and in particular the exponent
spectrum, including irrelevant exponents for the specific
model at hand, the transverse XY model. Furthermore, we
need to identify how the time evolution of the system can be
described.

We are mainly interested in the quantum Ising model, but
to be able to tune the first subleading coupling independently
we need at least two independent couplings, which are indeed
present in the transverse XY model. The Hamiltonian for
this transverse XY model for N sites and periodic boundary
conditions σ

x,y
1 = σ

x,y
N+1 reads

H = −g
∑

l

σ z
l − Jx

∑
l

σ x
l σ x

l+1 − Jy

∑
l

σ
y
l σ

y
l+1. (11)

It is described by the microscopic couplings {g, Jx, Jy} (where
Jy = 0 for the transverse Ising model) and the lattice spac-
ing a. Here we consider Jx, Jy > 0 implying a ferromagnetic
coupling of spins. The equilibrium transverse XY model
has two phases: the paramagnetic phase dominated by the
transverse field g

∑
l σ z

l with ground state |↑ ↑ . . . 〉 and the
ferromagnetic phase dominated by the XY terms

∑
l σ

x,y
l σ

x,y
l+1.

To extract the critical point and critical exponents, the model
is mapped to noninteracting fermions by a Jordan-Wigner
transformation, which takes for an even number of fermions

the form (indicated by the +) [8,54,69–73]2 (see Appendix A
for more details):

H+ = −
∑

l

[
Jc†

l cl+1 + γ c†
l c†

l+1 − gc†
l cl + g

2
+ H.c.

]
,

J := Jx + Jy, γ := Jx − Jy. (12)

This Hamiltonian becomes particularly simple in Fourier
space, where we use the convention used in Ref. [54]

cl = e−i π
4√

N

∑
k

ckeik(la),

k j = 2π

Na

[
−N

2
+

(
j − 1

2

)]
, j ∈ {1, . . . , N},

which results in

H+ = 1

2

∑
k

(
c†

k c−k
)

hk

(
ck

c†
−k

)
+ const.,

hk =
(

2(g − J cos(ka)) 2γ sin(ka)

2γ sin(ka) −2(g − J cos(ka))

)
. (13)

To extract the energy spectrum of this nondiagonal Hamil-
tonian, a canonical Bogoliubov transformation can be used,
which here amounts to diagonalizing the Hamiltonian:

eigenstate equation: hk|±〉k = ±εk|±〉k,

diagonalizing unitary: U †
k =

(
(+)k, (−)k

)
,

UkhkU
†
k = εkσz. (14)

It is used to define new quasiparticle operators χk according
to (

ck

c†
−k

)
= U †

k

(
χk

χ
†
−k

)
. (15)

Here the transformation coefficients can be chosen real and
are typically denoted as

|+〉k = (uk, vk )T , |−〉k = (v−k, u−k )T ,

uk = u−k, vk = −v−k,

ck = ukχk + v−kχ
†
−k, (16)

where |±〉k are normalized to one. Using these operators, the
Hamiltonian takes the form

H+ =
∑

k

εk

(
χ

†
k χk − 1

2

)
,

εk = 2
√

(g − J cos(ka))2 + (γ sin(ka))2, (17)

where ±εk are the eigenenergies of hk . The energy gap
�(g) = min[εk] closes at gc = J for |k| = 0 and for g = −J
for |ka| = π . From the gap, the relevant critical exponents z, ν

2We use the conventions of Ref. [54].
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FIG. 2. (Simplified) phase diagram for the dimensionless spin
couplings J/γ and g/γ . The phase boundaries describe second order
phase transitions. The dashed line indicates the region of incommen-
surability, described by (J/γ )2 − 1 = J|g|/γ 2 (typically written as
1 − (γ /J )2 = |g/J|, [74]). The red dot and square indicate the part
of the critical region, which we will focus on.

can be extracted according to

energy gap: � ∼ |g − gc|zν,
correlation length: ξ−1 ∼ |g − gc|ν,

� ∼ ξ−z,

(18)

using finite-size scaling. The largest finite correlation length is
ξ ∼ N and therefore the values z = 1 and ν = 1 can be read
off. At the level of the microscopic parameters the phase dia-
gram is displayed in Fig. 2. The phase diagram is often plotted
for variable pairs (γ /J, g/J ) (e.g., Refs. [62,66]). Here it will
turn out to be more useful to use g/γ and J/γ instead. The
reason is that we want to control and drive the terms ∼c†

kck

and ∼k2c†
kck independently (see Sec. II B), and therefore we

keep γ fixed.

A. Dynamical Bogoliubov transformation—solving
the dynamical system

In the following, we will consider the nonequilibrium situ-
ation, where the coefficients of the transverse Ising model are
time dependent. We are interested in how strongly the system
gets excited during the time evolution. Therefore, we consider
the density of excited quasiparticles at time t [54]

nE (t ) = 1

N

∑
k

〈(t )|χ†
k,tχk,t |(t )〉 = 1

N

∑
k

pk . (19)

The drives are, e.g., of the form g → g(t ) = vntn + g∗ (‘order-
n drive’), where vn denotes a generalized ‘velocity.’ The
explicitly time-dependent evolution under H+(t ) can be
solved by making the Ansatz of a time-dependent Bogoliubov
transformation [4,54], where we follow closely the discussion
in Refs. [54,59]. The starting point is the equilibrium case,
where the ground state can be written using the Bogoliubov
coefficients

|〉 =
∏
k>0

(uk − vkc†
kc†

−k )|0〉 = |GS〉, (20)

which is the vacuum state of the Bogoliubov operators (|0〉 is
the c-fermion vacuum). The time-dependent state can as well

be written in this form [54,59]

|(t )〉 =
∏
k>0

(Uk (t ) − Vk (t )c†
kc†

−k )|0〉. (21)

The time evolution of the coefficients in Eq. (21), starting
from the ground state at ti, is given by a Schrödinger equation
[54] [see again Eq. (14)]

|A(t )〉k :=
(

Uk (t )
Vk (t )

)
, |A(ti )〉k = | + (ti )〉k

ih̄∂t |A(t )〉k = hk (t )|A(t )〉k (22)

(in the following we set h̄ = 1). Therefore, solving the dynam-
ics of the many-body state is reduced to finding the solutions
|A(t )〉k to these N two-state systems hk (t ) in Eq. (13), similar
to Landau-Zener problems [75–78]. Nevertheless, the state in
Eq. (21) will not necessarily be a ground state anymore. To
make this transparent, we can rewrite this state as

|(t )〉 =
∏
k>0

(ak (t ) − bk (t )χ†
k,tχ

†
−k,t )|GSt 〉, (23)

with ak and bk to be defined shortly. We call this the adi-
abatic representation, as it is referring to the instantaneous
ground state at time t : |GSt 〉. The coefficients of the adiabatic
case can directly be inferred by rewriting Eq. (22) and using
Eq. (14)

(Uk (t ),Vk (t )) =: ak (t )(uk,t , vk,t ) + bk (t )(v−k,t , u−k,t ),

|A(t )〉k = ak (t )| + (t )〉k + bk (t )| − (t )〉k . (24)

Finally, the density of excited quasiparticles (excitation den-
sity) can directly be deduced from Eq. (23)

nE (t ) = 1

N

∑
k

〈(t )|χ†
k,tχk,t |(t )〉

= 1

N

∑
k

pk = 1

N

∑
k

|bk (t )|2. (25)

B. Critical exponent spectrum & field theory

As we have seen, the fermionic representation of the spin
model allows us to extract the critical exponents z and ν

directly. They are the input for the standard KZM once the
energy gap � is driven in time with dim[�] = 1/ν. Neverthe-
less, as discussed in Sec. I, we also want to consider drives
of subleading/irrelevant couplings. To extract these couplings
and their scaling dimensions we analyze the transverse XY
model from the (equilibrium) RG perspective.

Close to the critical point only the long-wavelength modes
k → 0 play an important role, justifying an expansion in pow-
ers of k of the trigonometric functions in hk . The validity of
such an expansion is restricted to momenta k < �, where � is
a UV cutoff. We are interested in the theory close to the phase
transition at g ≈ gc and want to extract the scaling dimensions
of the couplings close to this transition. Our starting point
is the thermodynamic limit N → ∞ of Eq. (13) with the re-
striction of the momenta according to the UV cutoff � = 1/a
(see also Table II for the relation of the new operators to the
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TABLE II. Overview of the operators and couplings in the
fermionic theory for the microscopic Eq. (26), rescaled Eq. (27),
and dimensionless version Eq. (28). The corresponding couplings
and dimensions (a: lattice spacing) are given, where [k] denotes the
dimension of momentum. Here we used � = 1/a as the scale to
define the dimensionless couplings, especially we have k̂ = ka. For
later use also the velocities for an order-n drive are added.

Microscopic Rescaled Dimensionful Dimensionless

t t ′ = 2γ at [t ′] = [k]−1 t̂ = 2γ t
φk = ck

√
Na φ′

k = φk [φ′
k] = [k]−1/2 φ̂k = ck

√
N

D1 = 2γ a

� = 2(g − J ) �′ = g−J
γ a [�′] = [k] �̂ = 2(g−J )

2γ

v⊥ = 2(vg − vJ ) v̂⊥ = 2(vg−vJ )
(2γ )n+1

D2 = Ja2 D′
2 = J

2γ
a [D′

2] = [k]−1 D̂2 = J
2γ

v‖ = vJ a2 v̂‖ = vJ
(2γ )n+1

Dj=... D′
j = D j

2γ a [D′
j] = [k]−( j−1) D̂ j = D′

j�
j−1

old ones):

H+ ≈
�∫

−�

dk

2π

[
�φ

†
k φk + 1

2
D1k[φ†

k φ
†
−k + φ−kφk]

+ D2k2φ
†
k φk + . . .

]
,

� = 2(g − J ), D1 = 2γ a, D2 = Ja2, . . . . (26)

The essence of the RG approach is the idea that the cou-
pling constants actually depend on the length scales under
consideration [79]. This is formalized by the RG (e.g.,
momentum-shell RG), which gives a constructive way to cal-
culate this length-scale dependence of the couplings. Due to
the simplicity of the Gaussian model, a dimensional analysis
is enough to extract the scaling dimensions of the couplings,
which determine the length-scale dependence in the RG. We
still have the freedom to scale out one of the couplings
in Eq. (26). By doing so, the corresponding operator stays
unchanged under RG transformations. The choice of the cou-
pling we scale out determines what kind of phase transition
and universality class we are describing. The reason is that
by scaling out one coupling the corresponding operator is
always present in the theory, even though all other (rescaled)
couplings might vanish. To make this explicit: At the critical
point � = 0 in Eq. (26) the leading term is the D1 term (in
Sec. VI C 1 we discuss another choice and how it affects the
spectrum). Scaling out D1 by rescaling the time will give us
the proper theory for the Ising transition:

H ′+ ≈
∫ �

−�

dk

2π

[
�′φ†

k φk + 1

2
k[φ†

k φ
†
−k + φ−kφk]

+ D′
2k2φ

†
k φk + . . .

]
, (27)

where the couplings are defined in Table II.
All physical dimensions of the couplings g′

j can be ex-
pressed as [k]dim[g j ], defining the scaling dimension as given
in Table II. In particular, we have z = −dim[t] = 1 and

dim[�] = 1 = 1/ν, as we already have seen. In Sec. V, we
discuss a fermionic model with D1 = D2 = 0 and therefore
1/ν = z = 3. To see the significance of these scaling di-
mensions, we consider dimensionless couplings that can be
defined by multiplying the couplings with the proper power
of the UV cutoff, Table II. The Hamiltonian, using these
dimensionless couplings, takes the form

Ĥ+ ≈
∫ 1

−1

d (ka)

2π

[
�̂φ̂

†
k φ̂k + 1

2
(ka)[φ̂†

k φ̂
†
−k + φ̂−kφ̂k]

+ D̂2(ka)2φ̂
†
k φ̂k + . . .

]
. (28)

We can now ask how these dimensionless couplings change
under an (infinitesimal) change of the cutoff: �′ → �′ − d�′
(see, e.g., Refs. [79,80]). Formally, we can determine this
cutoff dependence for Gaussian models using

�′ ∂g j

∂�′
!= 0, �′ ∂ ĝ j

∂�′

∣∣∣∣
g j

= −dim[g j]ĝ j =: β̂ j (ĝ j ), (29)

where the couplings at large spatial distances are given by
solving the equation towards �′ → 0. A positive scaling di-
mension implies a growth of the couplings with respect to the
fixed point on larger length scales (relevant coupling) and a
negative scaling dimension a shrinking (irrelevant coupling).
Two examples of scale-dependent couplings as solutions to
the flow equations in Eq. (29) are given by (where the initial
scale is set by �′ = �)

relevant/growing: �̂(�′) = �̂

(
�

�′

)+1

,

irrelevant/shrinking: D̂2(�′) = D̂2

(
�

�′

)−1

. (30)

This set of flow equations β̂ j has a simple fixed point C∗,
here describing the scale-invariant fixed point of the second
order phase transition:

C =

⎛
⎜⎜⎜⎝

�̂

D̂2

D̂3
...

⎞
⎟⎟⎟⎠, C∗ =

⎛
⎜⎜⎜⎝

�̂∗

D̂∗
2

D̂∗
3

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
...

⎞
⎟⎟⎠. (31)

At such a fixed point, we can make a stability analysis of

the RG flow described by ̂β and find the stable/irrelevant
and unstable/relevant directions. To this end, we can formally

calculate the Jacobian of the ̂β-vector field, which here is
just a diagonal matrix. The eigenvalues are by definition the
(negative) scaling dimensions, and the eigenvectors the sta-
bility directions, see Table III (second and last column). We
emphasize that the stability directions are the essential step
to construct the phase diagram in terms of the (effective)
couplings of the universal theory close to criticality. If we
want to make the scaling with respect to the coupling Dj

observable we need to drive in the proper (eigen)direction in
Table III (last column).
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TABLE III. Equilibrium critical exponent spectrum (second col-
umn) and shifted versions for different drives of order n for the
quantum Ising universality class in d = 1, which will be considered.
The colored exponents are relevant and in principle are associated
with different observable length scales. The color code indicates
that higher velocities (brighter) or lower velocities (darker) relative
to each other are needed to make the corresponding (length) scale
observable.

Shifted critical exponent spectrum (transverse XY)

equilibrium driven direction
gj dim[gj] dim[v] = nz + dim[gj]

n = 1 n = 2 n = 4
�̂ +1 +2 +3 +5 (1, 0, 0, 0, . . . )

D̂2 −1 0 +1 +3 (0, 1, 0, 0, . . . )

D̂3 −2 −1 0 +2 (0, 0, 1, 0, . . . )
D̂4 −3 −2 −1 +1 (0, 0, 0, 1, . . . )
...

...
...

...
...

...

1. Phase diagram in fermionic representation

For a free theory this is simple, as all couplings are inde-
pendent.3 A reduced part of the coupling space is shown in
Fig. 3. In the following we will refer to the �̂ direction as the
‘transversal’ direction, as it controls the distance to the critical
point. All other directions are labeled ‘longitudinal.’

2. Relation to spin models

In a final step we compare the phase diagrams in terms
of the microscopic spin couplings and the effective fermionic
ones in Fig. 4. When translating fermionic couplings back
to spin couplings, we can first of all make the identification
(in the corresponding subspace for k → 0, which allows us to

3In a more general setup the directions can be inferred as described
from the stability matrix of the full set of the RG β̂ functions at the
critical point, see Ref. [53].

FIG. 3. (a) Geometry of the RG flow at the fixed point in the
fermionic coupling space (here we ignore the other couplings for
illustrational purposes). The direction of the arrows indicate whether
they are irrelevant (flowing into the fixed point) or relevant (flowing
out). (b) Longitudinal (v̂‖) and transversal (v̂⊥) drive.

neglect higher powers in k):

(
g/γ
J/γ

)
≈

(
�̂ + 2D̂2

2D̂2

)
. (32)

One consequence of this mapping between spin couplings and
fermion couplings is that it is not angle preserving. This is
the central point that makes it important to distinguish the
microscopic and effective phase diagram, a further discussion
is postponed to Sec. III A. In general, the phase diagram
of the transverse XY model has more features than just the
Ising transitions, as there can also be gap closings at, e.g.,
|ka| = π and multicritical points, which we will not inves-
tigate. Furthermore, there is a region of incommensurability
(see Fig. 2), where the minimal gap of the dispersion is neither
located at ka = 0 nor |ka| = π [62]. One potential issue of
the transverse XY model is apparent: The (naive) fixed point
(see Fig. 3) of the fermionic theory coalesces with the π -gap
closing at g = J = 0, which would modify the simple picture
given above as not only the k modes close to 0 are important.
Therefore, we will consider the region of finite J and D̂2 as
indicated by the red dot in Fig. 4.

III. CONSTRUCTING A DRIVE

Having extracted the fixed point C∗, scaling dimensions,
and stability directions at the fermionic level we can di-
rectly apply the RG results from Ref. [53]. They allow us
to construct a drive of, e.g., the relevant and one irrelevant
coupling, such that for intermediate velocities adiabaticity
will be broken due to the subleading drive and at very low
velocities due to the leading one, see Fig. 1 again. Therefore,
we will construct a drive like the one shown in Fig. 3(b), which
consists of a drive along the proper directions in the effective
(fermionic) phase diagram. According to Ref. [53], driving
any coupling with t̂ n close to the fixed point C∗: ĝ j → ĝ j (t̂ ) =
v̂ j t̂ n + ĝ∗

j will give rise to a finite length scale, which scales

with the velocity ξ j ∼ v̂
−1/(nz+dim[g j ])
j and becomes observable

once dim[v] = nz + dim[gj] > 0. Therefore, to make a cer-
tain subleading scaling observable, we need to pick a large
enough n. An overview for different drivings and the possibly
extractable scalings is given in Table III for z = ν = 1 (see
also Ref. [68] for the nonlinear cases).

As we want to consider driving multiple couplings, which
could have in principle different dimensions, a first prepara-
tion step is to construct proper dimensionless couplings. To
make the connection between the field theory in the critical
region and the spin model, we consider driving the dimen-
sionless combinations

ĥk (t̂ ) =[
�̂0 + v̂⊥t̂ n︸ ︷︷ ︸
=(g(t )−J (t ))/γ

+ 2(D̂0
2 + v̂‖t̂ n)︸ ︷︷ ︸
=J (t )/γ

(1 − cos(ka))
]
σz

+ sin(ka)σx. (33)

Therefore, by driving the physical couplings J (t ) and g(t ) we
can approximately drive the proper dimensionless couplings
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FIG. 4. (Simplified) phase diagrams for the dimensionless spin (a) and fermion couplings (b). The geometry has to be inferred from the
fermionic phase diagram, for k → 0 the two couplings in (a) and (b) can directly be related, see Eq. (32). A purely transversal (1) and a general
(2) even drive are shown, which reach a critical point at t = 0. The angles are φ1,2 (φ1 = 0) in the fermionic language and φ′

1,2 in the spin
language, respectively. In particular, φ1 = 0 corresponds to φ′

1 �= 0. Here �̂ is the relevant coupling and D̂2 the first irrelevant coupling. The
bold dashed line indicates the border to incommensurability [74].

of the critical theory for k → 0:4

�̂(t̂ ) ≈ �̂0 + v̂⊥t̂ n, v̂⊥ = 2(vg − vJ )

(2γ )n+1
,

D̂2(t̂ ) ≈ D̂0
2 + v̂‖t̂ n, v̂‖ = vJ

(2γ )n+1
. (34)

The corresponding directions in the (fermionic) dimen-
sionless coupling space are orthogonal5 [see Fig. 3(b)], and
therefore we can write the drive in the reduced coupling space
as

̂v = v̂⊥e�̂ + v̂‖eD̂2
= v̂

(
cos(φ)
sin(φ)

)
, (35)

where π/2 − φ describes the angle enclosed with the sublead-
ing direction (D̂2 direction), see also Fig. 3(b). The definition
is chosen such that it fits to the notation in Ref. [53]. Such a
drive will lead to the two scales, as already discussed:

ξ⊥ ∼ v̂
− 1

nz+1
⊥ , ξ‖ ∼ v̂

− 1
nz−1

‖ . (36)

The smaller of these scales will be observable. We see that
a drive of order �2 is needed to make the subleading scale
relevant, see again Table III. For very low velocities, ξ⊥ will be
smaller and thereby observable, by increasing the velocity up
to some crossover scale v̂∗(φ) the scale ξ‖ will become smaller
and thereby observable. This is presented schematically in
Fig. 5 for the related scaling of the excitation density nE as
a function of φ. In practice, there will also be a velocity v̂cut,
which separates the universal scaling regime from a nonuni-
versal regime at high velocities.

4To be precise, by tuning g(t ) and J (t ) in the given way, we are
actually tuning all k2m terms. Nevertheless, for a quadratic drive
(the case of interest) the driven higher-order k terms do not lead to
observable scaling according to Table III.

5It is important to note that orthogonality in the fermionic coupling
space does not imply orthogonality in spin-coupling space and vice
versa, see Sec. III A and Fig. 4.

A. Phase diagrams and orthogonality issue

As already mentioned, the mapping between the spin-
coupling space and fermionic coupling space is not angle
preserving (for k → 0). This becomes an important issue once
we want to define the notion of a transversal and parallel drive.
In the fermionic case we know the geometry of the coupling
space, which was inferred from the RG analysis. A naive
use of the notions ‘transversal’ and ‘longitudinal’ in the spin-
coupling space can be misleading. To make this transparent,
consider the purely transversal drive φ1 = 0 in the fermionic
leading coupling �̂. In spin-coupling space the drive takes
rather the form of path (1) with φ′

1 �= 0 in Fig. 4, such that
naively we would think of this drive as not being purely
transversal in the spin-coupling space. The resolution is that
what defines transversal and longitudinal needs to be inferred
from the RG analysis (here the exactly solvable fermionic
version) and cannot in general be done at the level of the
microscopic coupling phase diagram. Therefore, we com-
pare the spin-coupling phase diagram of the XY model with
the fermionic version in Fig. 4. To quantify the deviations in

FIG. 5. Schematic crossover velocity v̂∗(φ) (solid orange line),
which separates the KZM scaling at lower velocities and the sub-
leading scaling above the orange solid line, see Fig. 6 for an explicit
example for some fixed φ. The dashed black line (v̂cut) represents the
crossover to the nonuniversal regime at larger velocities and depends
strongly on �. An explicit example is given in Fig. 7(c).
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the angles, we define the transformation matrix M

M
(

g/γ

J/γ

)
≈

(
�̂

D̂2

)
, M =

(
1 −1
0 1

2

)
, (37)

which gives us the corresponding fermionic couplings (again
valid for k → 0 in the vicinity of the critical point). M
describes a nonorthogonal transformation between spin and
fermion couplings: M−1 �= MT . The correct fermionic angle
π/2 − φ relative to the subleading direction/phase boundary
and the (misleading) spin-coupling angle π/2 − φ′ enclosed
with the respective phase boundaries are defined as

sin(φ) =
〈
̂v, eD̂2

〉
|̂v|∣∣eD̂2

∣∣ , sin(φ′) =
〈
M−1 ̂v,M−1eD̂2

〉
|M−1 ̂v|∣∣M−1eD̂2

∣∣ , (38)

where e j is the unit vector in coupling direction j. In principle,
φ and φ′ are not the same. Although being transversal depends
on the choice of the coordinate system, ‘longitudinal’ is an
invariant property independently of the choice of M [by con-
struction of Eq. (38)]. Therefore, a purely longitudinal drive is
longitudinal in all coordinate systems in close vicinity to the
critical point. We analyze such a drive in Sec. VI C.

IV. PHYSICAL OBSERVABLES—EXACT &
APPROXIMATE APPROACH

In the previous sections, we discussed the universal prop-
erties of the transverse XY model, as well as the construction
of a proper drive to make the subleading scaling observable,
which correspond to the first two steps of the general agenda
in Sec. I A. The last and final step is to relate the breaking of
adiabaticity to observables. A direct measure of adiabaticity
breaking is given by the density of excited quasiparticles in
Eq. (25). Nevertheless, the physical model is the spin model,
and therefore we have to identify the meaning of the exci-
tation density in the spin representation. Following the logic
of Ref. [54], we identify the excitation density as the density
of spin flips, once we are deep in the paramagnetic phase.
Formally, we need to translate Eq. (25) into the spin language
and identify the fermionic quasiparticle operators χk with the
corresponding spin operators at the end of the drive [54].

For a drive ending (deep) in the paramagnetic phase, we
get for g − J � γ or J (g − J ) � γ 2: χk ≈ ck . Therefore, the
excitation density nE takes the form6

nE = 1

N

〈∑
k

χ
†
k χk

〉
≈ 1

N

〈∑
k

c†
kck

〉

= 1

N

〈∑
l

c†
l cl

〉
= 1

N

〈∑
l

1

2

(
1 − σ z

l

)〉
, (39)

6The spin Hamiltonian becomes a transverse XX chain for a gener-
alized drive and |t | → ∞:

Ĥend ∝ −
(

v̂⊥
2

+ v̂‖

) ∑
l

σ z
l − v̂‖

2

∑
l

(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

)
.

This Hamiltonian is particularly simple, as it is diagonal in mo-
mentum space without any further (Bogoliubov) transformation and
therefore χk = ck . The ground state is |↑ ↑ . . .〉.

such that it results from single spin flips in accord with the
paramagnetic phase [54]. Therefore, the deviation from per-
fect magnetization in z direction, 1 − 〈σz〉, at the end of the
drive can be used as a direct observable. For N → ∞ the
excitation density reads

nE = 1

N

∑
k

pk, lim
N→∞

nE =
∫ π

−π

pk
d (ka)

2π
. (40)

We can furthermore separate the universal and nonuniversal
parts of the Hamiltonian, based on the UV cutoff � (which
can differ from 1/a by a prefactor) as

nE = a�

π

∫ π/a�−1

0
pk dk̂

= a�

π

∫ 1

0
pk dk̂︸ ︷︷ ︸

universal

+ a�

π

∫ π/a�−1

1
pk dk̂︸ ︷︷ ︸

nonuniversal

, (41)

assuming pk = p−k . In the next Sec. IV A, we identify the
only two parameters, controlling the dynamics and ultimately
the behavior of pk , which we approximate in the Secs. IV B 1
and IV B 3 from different perspectives. The role of different
�’s are discussed in Sec. VII.

A. Dimensional considerations

We identify the two dimensionless parameters v̂k and μ̂k ,
which also govern the analytically exact and approximate
solutions in the next subsections. The prototypical, ‘universal’
two-level Hamiltonian valid for k � � for the transverse XY
and similar models reads:

hk (t ) = (vkt n + Mk )σz + �kσx,

vk := v⊥ + v‖kl ,

Mk :=�0 + D0
l kl ,

�k := Dzk
z. (42)

This form is valid close to the critical point, reached at t = 0
[see again Eq. (26): z = 1 and l = 2 for the transverse XY
model]. To identify the two dimensionless parameters for such
a model, we can directly rescale the model Eq. (42), such
that the off-diagonal terms become 1 (similar in spirit to the
adiabatic-impulse approximation [56,75]), see also Table IV:

rescaled: h̄k = (
v̂kt̂ n

k + μ̂k
)
σz + σx,

eigenvalues: E (k, t̂ ) = ±
√(

v̂kt̂ n
k + μ̂k

)2 + 1,

t̂k := �kt, v̂k := vk

�n+1
k

, μ̂k := Mk

�k
. (43)

The only parameters left are v̂k and μ̂k (see also Refs. [81,82]
for the linear and quadratic case). As we will show in the
following, v̂k , a generalized ‘velocity,’ controls adiabaticity
and we call it the adiabaticity parameter. The simple but
decisive relation v̂k∗ ≈ 1 indicates the breaking of adiabatic-
ity (as long as μ̂k is negligible), which we will investigate
in the next subsections. For the given model v̂k and μ̂k
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TABLE IV. Couplings and scaling dimensions of the prototypical
model.

Couplings in the prototypical model

t τ̂ = Dz(k/�)zt�z

�0 �̂0 = �0

Dz
�−z dim[�0] = z = 1/ν

D0
l D̂0

l = D0
l

Dz
�l−z dim[D0

l ] = −(l − z)
v⊥ v̂⊥ = v⊥

Dn+1
z

�−(nz+z) dim[v⊥] = nz + dim[�0]

v‖ v̂‖ = v‖
Dn+1

z
�−(nz−(l−z)) dim[v‖] = nz + dim[D0

l ]

read:

v̂k = v̂⊥

(
�

k

)nz+1/ν

+ v̂‖

(
�

k

)nz+dim[Dl ]

,

μ̂k = �̂0

(
�

k

)1/ν

+ D̂0
l

(
�

k

)dim[Dl ]

, (44)

where the two terms in μ̂k are reminiscent of the scale-
dependent couplings from Eq. (30), especially dim[Dl ] < 0
being an irrelevant exponent. Similarly, v̂k entails the two
k-dependent velocity couplings. This is the main result of the
dimensional analysis.

B. Approximation schemes

We are interested in the evolution of the k-resolved excita-
tion density pk , especially for nonlinear, polynomial drives, to
be able to evaluate Eq. (40). For an arbitrary nonlinear drive
even the two-level evolution is not analytically solvable. The
necessity for the nonlinear cases results from z = 1 for the
transverse Ising model, which implies that a linear drive does
not allow one to make subleading scalings observable (see
Table III). Nevertheless, it allows us to consider (analytically
exact) a minimal fermionic model with z = 3 (see Sec. V). We
will consider drives starting in one of the phases at |ti| = ∞
and either ending at the transition at t f = 0 (used in Sec. VI)
or at |t f | = ∞ (used in Sec. V).

Due to the lack of exact solutions (for nonlinear drives),
we approximate pk and clarify the meaning of v̂k and μ̂k

on the breaking or restoring of adiabaticity. To this end,
we take two different perspectives. The first is the adiabatic
perspective. This includes the leading order of the adiabatic
perturbation theory [10,57,65,83], where the initial state is
one of the eigenstates and we assume a weak occupation of
the other (eigen)states and are interested in how v̂k and μ̂k

control this assumption. The role of μ̂k becomes prominent
for parallel drives, see Sec. VI C. Furthermore, for drives
from ti = −∞ to t f = ∞ nonanalytic contributions are dom-
inant, which includes the (adiabatic) Dykhne-Davis-Pechukas
(DDP) approximation [84–86] (Appendix B) and the analyt-
ically exact asymptotic Landau-Zener solution as a special
case. The analytically exact solution will be our starting point
in Sec. V. The second perspective is the adiabatic-impulse
approximation [56,75] (see Sec. IV B 3), rather based on the
physical intuition of the KZM. It complements the adiabatic

perspective by working accurately in the limit of v̂k � 1 and
strong occupation.7

1. Adiabatic approximations

First order adiabatic perturbation theory. The starting
point is the adiabatic representation as in Eq. (23) and Eq. (24)
of the state [but for the rescaled model Eq. (43)]. Our quantity
of interest is pk = |bk (t̂k )|2, which can first of all be approxi-
mated by a perturbative expansion. Assuming ak (t̂k,i ) = 1 and
a weak occupation of the excited state, the leading contri-
bution in powers of v̂k at t̂k, f = 0 for t̂k,i = −∞ is given by
[10,57]

pk ≈
(

n!

2n+1

)2

v̂2
k

1

(Ek (0))2(n+2)

∼
{

(v̂k )2 : μ̂k 	 1(
v̂k

μ̂n+2
k

)2
: μ̂k � 1

. (45)

As long as v̂k 	 1 this (first-order) approximation is self-
consistent, such that ε̂k∗ ≈ 1 gives an estimate of its break-
down (see also Ref. [4]).8 Nevertheless, it also encodes that
once μ̂k � 1 adiabaticity can be restored, as we will see in
Sec. VI C.

2. DDP approximation & Landau-Zener

In the limit t̂k, f → +∞ the leading contribution in the
limit v̂k → 0 stems from a nonanalytic contribution, which we
discuss in Appendix B and refer to as the DDP approximation.
For the linear case, the approximation actually yields the
exact asymptotic Landau-Zener-Majorana-Stückelberg
[76–78] result

pk = exp
(−π v̂−1

k

)
. (46)

The formula nicely shows the emergence of the adiabatic-
ity parameter as identified in Eq. (43). Once π−1v̂k � 1 the
k-resolved excitation density is O(1) in agreement with the
adiabaticity breaking. The formula guides the discussion in
Sec. V.

3. Adiabatic-impulse approximation

Based on the intuition of the KZM, the k-resolved exci-
tation densities pk can be approximated by separating the
evolution into an adiabatic part and a (frozen) impulse part
(adiabatic-impulse (AI) approximation [56,75]) for each two-
level system, which was already successfully applied to the
transverse Ising model [56]. We will mainly use the AI ap-
proximation for drives in the transverse XY model, which start
at ti = ∞ deep in the paramagnetic phase and end at t f = 0 at
the transition (or vice versa). Therefore, each single k-mode

7The ground state of the full model corresponds to the excited
states of the two-level systems, see again Eq. (22). Therefore, we are
interested in the (de)excitation probability for the two-level systems.
Nevertheless, this is not changing any of the arguments and we keep
referring to initial states as the ground states.

8For a more refined treatment beyond this first order see
Refs. [10,57,83].
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evolution has its ‘minimal’ gap at t = 0. Switching to the
rescaled model, this implies v̂kt̂ n

k � 0 [see again Eq. (43)]. The
basic intuition is that, starting from the ground state, the evo-
lution is initially adiabatic up to time t̂∗

k , where it essentially
freezes. The excitation density is accordingly approximated as

pk ≈ |〈−(0, k)| + (t̂∗
k , k)〉|2 = |〈−(t̂∗

k , k)| + (0, k)〉|2 (47)

(in both cases we stay on the paramagnetic side). The only
ingredients are the known eigenstates of the Hamiltonian as
well as the adiabaticity-breaking time t̂∗

k . To estimate the time
of adiabaticity breaking, we ask, if, at a given time t , the
necessary time to reach the ‘minimal’ gap is larger or smaller
than the characteristic time scale (inverse gap). Adiabaticity is
estimated to be broken, once the necessary time gets as small
as the characteristic time scale:

1

2E (k, t̂∗
k )

= 1

2
√(

v̂kt̂∗ n
k + μ̂k

)2 + 1
= αnt̂∗

k . (48)

There are two cases of interest: once μ̂k is negligible, t̂k = 0
corresponds to the anti-‘crossing’ center and αn can be fixed
by comparing to a diabatic expansion (see [56]). From this
point of view, the approximation is complementary to the
adiabatic expansion. This is reasonable, as it is expected that
the overall excitation density is dominated by the ‘fast’ modes
with v̂k � 1 [4]. This is the relevant scenario for the gener-
alized drives, as μ̂k → 0 in the critical region for k → 0 [see
Eq. (44) for �̂0 = 0]. The other, extreme, case corresponds to
a purely parallel drive with a fixed distance �̂0 > 0 to the crit-
ical line. Here μ̂k grows for k → 0 [see Eq. (44) for �̂0 > 0].
Combining Eqs. (47) and (48) we get that excitations can be
suppressed in this case, similarly to the adiabatic expansion in
Eq. (45). Nevertheless, the occupation is overestimated in the
AI approximation. We discuss this special case in Sec. VI C.

V. ANALYTICAL SOLUTION: FERMIONIC MINIMAL
MODEL

To demonstrate the emergence of two competing scales in
a model driven transversally as well as longitudinally close
to a second order phase transition, we first of all consider
an analytically solvable case (similar in spirit to the exactly
solvable model discussed in Ref. [53]). We show that similarly
to Eq. (4), also the excitation density is composed out of two
scales, which can both be observable by tuning the velocity:

ξ ∗ ∼ Min[ξ⊥, ξ‖] ⇔ nE ∼ Max[n⊥, n‖]. (49)

To extract these scales, we analyze the dominant contributions
of the k-resolved excitations pk in the (integrated) excitation
density nE .

A. Minimal model and generalized drive

The starting point is a minimal fermionic model, which
has a structure similar to transverse XY model but is in a
different universality class (z = 3, ν = 1/3). Then a linear
drive is enough to make the subleading scaling observable [see
Eq. (3)], and our mechanism can be shown to emerge within
an analytical analysis (see Sec. IV B 1). At this (exact) level
we can outline the general strategy, which will then be used

TABLE V. Couplings and scaling dimensions for the minimal
model.

�0 �̂0 = �0

D3
�−3 dim[�0] = 3

v⊥ v̂⊥ = v⊥
D2

3
�−6 dim[v⊥] = 6

D0
4 D̂0

4 = D0
4

D3
�1 dim[D0

4] = −1

v‖ v̂‖ = v‖
D2

3
�−2 dim[v‖] = 2

for the transverse XY model. The long wavelength model is
defined as (for N → ∞)

H =
∫ �

−�

dk

2π

[
(�0 + v⊥t )φ†

k φk + 1

2
D3k3[φ†

k φ
†
−k + φ−kφk]

+ (
D0

4 + v‖t
)
k4φ̂

†
k φ̂k

]
. (50)

It can be thought of as the expansion of a spin model
represented in Jordan-Wigner fermions, valid only up to some
UV cutoff �, which we chose to be 1/a for all plots. Actually,
a comparable spin model (‘extended quantum XY chain’)
was recently used in Ref. [14]. In rescaled, dimensionless
couplings the Hamiltonian of the two-level model is written
as (k̂ := k/�), see also Table V:

ĥk =
(

�̂(t ) + D̂4(t )k̂4 k̂3

k̂3 −(�̂(t ) + D̂4(t )k̂4)

)
. (51)

First of all, this model has a dynamical exponent of z = 3,
and a leading critical exponent given by ν = 1/3. This allows
us to make the scaling dimension of the first subleading term,
D4k4 with dim[D4], observable. To this end, we consider a
drive of the relevant �̂ parameter and the subleading k4 term,
which starts at ti = −∞ and ends at t f = +∞:

�̂(t̂ ) = v̂⊥t̂

D̂4(t̂ ) = v̂‖t̂

}
̂v =

(
v̂⊥
v̂‖

)
= v̂

(
cos(φ)
sin(φ)

)
. (52)

The RG prediction for the excitation density nE (v̂, φ) for such
a drive protocol yields [Eqs. (3) and (5)]:

KZM scaling: nE (v̂⊥ � v̂‖) ∼ v̂
1
6
⊥,

subleading scaling: nE (v̂‖ � v̂⊥) ∼ v̂
1
2
‖ .

(53)

The strategy now is to extract these scales from the exactly
known p(k̂, ̂v) from Eq. (46), and thereby nE (v̂, φ), from
Eq. (40). The exact k-resolved excitation density and (inte-
grated) excitation density read:

p(k̂, ̂v) = exp

(
−π

k̂6

v̂⊥ + v̂‖k̂4

)
= exp(−π v̂−1

k ),

nE (v̂, φ) = a�

π

∫ 1

0
p(k̂, v)dk̂. (54)

A remark on the integration range: Since by construction the
model is only valid up to k = � ⇔ k̂ = 1 the k integration
is restricted as well. Differently put, we only consider the
universal content and only use the first part in Eq. (41). This
is reasonable in the range, where we expect the KZM to
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E

FIG. 6. Plotted (log-log) are the excitation density nE (v̂, φ) and
the approximations in the different scaling regimes, given in Eq. (57),
for φ = π/2 − 10−4. Two different scaling regimes can be identified
with exponents 1

6 and 1
2 , corresponding to the KZM scaling and the

subleading scaling. The extent of both scaling regimes is indicated
by the colored boxes and depends on φ.

apply, especially towards smaller velocities. Nevertheless, it
limits the validity of the model towards larger velocities, in
particular once the density starts to saturate. An example of
the excitation density nE for different velocities v̂ for a general
drive ̂v is given in Fig. 6, saturating at nE → 1/π .

To gain more insight into the different (scaling) regimes
of nE , we approximate the full expression in multiple steps.
First of all, p(k̂, ̂v) has two different regimes for k̂ → 0 and
for larger k̂, determined by the asymptotic forms of the adia-
baticity parameter v̂k

p
(

k̂ 	 κ̂, ̂v
)

∼ exp

(
−π

k̂6

v̂⊥

)
,

p
(

k̂ � κ̂, ̂v
)

∼ exp

(
−π

k̂2

v̂‖

)
, (55)

where we introduced the crossover scale κ̂ := (v̂⊥/v̂‖)1/4.
Which of these forms will be observable in nE depends
strongly on which contribution will dominate. For v̂‖ = 0,
we get the expected KZM scaling, for v̂⊥ → 0 (and therefore
κ̂ → 0) we get the subleading scaling, see Eq. (53).

We see from Fig. 6 that the KZM scaling emerges for low
velocities, and that, for an intermediate range of velocities, the
subleading scaling becomes observable. For higher velocities
a nonuniversal regime is entered due to the saturation of the
excitation density. To better understand the general case, we
decompose the excitation density as [using that p(k, ̂v) is
symmetric in k]:

nE (v̂, φ) = a�

π

∫ κ̂

0
p
(

k, ̂v
)

dk̂ + a�

π

∫ 1

κ̂

p(k, ̂v)dk̂

≈ n⊥(v̂⊥) + n‖(v̂‖). (56)

A rough approximation involves using Eq. (55), setting all

integration boundaries back to the full width [0,1]:

n⊥(v̂⊥) ≈ a�

π

∫ 1

0
exp

(
−π

k̂6

v̂⊥

)
dk̂,

n‖(v̂‖) ≈ a�

π

∫ 1

0
exp

(
−π

k̂2

v̂‖

)
dk̂, (57)

and approximating nE (v̂, φ) ≈ Max[n⊥(v̂⊥), n‖(v̂‖)]. This be-
comes exact in the extreme cases κ̂ → 0 or κ̂ → 1. These
approximations are also shown in Fig. 6, where we can see
that the full excitation density has essentially two regimes,
one described by n⊥(v̂⊥) at very low velocities and n‖(v̂‖)
at higher velocities. Once the widths of the two k-resolved
excitation densities are much smaller than 1, we can roughly
write

n⊥(v̂⊥) ≈ b
a�

π
cos(φ)

1
6 · v̂

1
6 , b := �(7/6)

(π )1/6
,

n‖(v̂‖) ≈ 1

2

a�

π
sin(φ)

1
2 · v̂

1
2 . (58)

Therefore, the first term generates the KZM scaling and the
second the subleading scaling. The two identified scaling
regimes are separated by a crossover velocity v̂∗, which in-
dicates the crossing over from the KZM scaling at v̂ < v̂∗
and the subleading scaling at velocities v̂ > v̂∗. This scale
also depends on the critical exponents and was estimated in
Ref. [53] for a drive of the leading coupling and one sublead-
ing coupling ĝ j , where it is shown that:

|v̂∗ cos(φ)| 1
z+1/ν ∼ |v̂∗ sin(φ)|

1
z+dim[g j ] ,

φ → π/2 : v̂∗ ∼ |π/2 − φ|
z+dim[g j ]

1/ν−dim[g j ] .

(59)

Here we identify ĝ j = D̂4 with dim[D4] = −1 and we
expect from the RG prediction a scaling of the form
v̂∗ ∼ |π/2 − φ|1/2. Therefore, we are interested in extracting
the two scaling exponents (KZM and subleading) as well as
the crossover scale v̂∗ as a function of φ. In a first step,
we extract the crossover scaling analytically: At the level of
the explicit model at hand [Eq. (51)], this velocity scale can
be estimated from (once we are in the scaling regime, cf.,
also Fig. 6):

n⊥(v̂∗
⊥) ≈ n‖(v̂∗

‖ ). (60)

For φ → π/2 this expression can be evaluated analytically
based on Eq. (58) and gives

v̂∗(φ) ≈ (2b)3|π/2 − φ|1/2, (61)

which is in full agreement with the RG-predicted scaling. Be-
sides the analytical estimate given above, we can also extract
v̂∗(φ) by directly (numerically) fitting the full curve nE (v̂, φ)
for fixed φ, which is briefly described in Appendix C. A
typical set of curves for different φ is shown in Fig. 7(a); the
corresponding crossover velocity is plotted as a function of
|π/2 − φ| in Fig. 7(d). The direct fit shows good agreement of
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FIG. 7. (a) Set of curves nE (v̂, φ), as in Fig. 6, for the minimal fermionic model, and for different angles φ on a log-log scale. For low
velocities the KZM scaling results and the subleading scaling emerges for larger velocities up to some nonuniversal regime. The orange dots
indicate the crossover velocities. (b) Scaling exponents extracted from the full fit of the curves in (a) (up to the nonuniversal regime) on a
log-linear scale and the predicted exponents from the RG (dashed lines). The vertical line indicates φmin. (c) Overview of the different regimes
(log scale) for a wider range of φ. The new scaling is only well extractable for φ � φmin (denoted by the red dot). The nonuniversal regime,
indicated by the dashed line (v̂cut), is estimated from the saturation of nE . (d) Universal scaling of the crossover velocity on a log-log scale for
φ → π/2 that is estimated using Eq. (60) (orange dots) and a full fit (blue circles) of the curves in (a). Both sets are well approximated by the
analytical expression Eq. (61) (gray dash-dotted line) in agreement with the RG predictions.

the estimate Eqs. (60) and (61) and the RG-predicted scaling.
The crossover relation from the full fit approaches the RG
value for φ → π/2 and also fits well to the simple estimate.
Nevertheless, as we can already anticipate from Figs. 7(b)–
7(d), the velocity regime displaying subleading scaling gets
very narrow for intermediate to small φ, which makes it hard
to extract a sensible exponent, see especially Fig. 7(c). We
quantify this by the value φmin [red dot in Figs. 7(c) and 7(d)],
which we define as the angle for which the subleading regime
spans roughly one order of magnitude (to allow for a sensible
measurement of the exponent).

To finalize the discussion of the generalized drive at the
level of the minimal model, we compare the exact result to the
adiabatic-impulse approximation again for the case t̂i = −∞
and t̂ f = +∞, Fig. 8. In this case, the AI approximation takes
the form pk = |〈−(t̂∗

k , k)| + (−t̂∗
k , k)〉|2, with t̂∗

k from Eq. (48)
for μ̂k = 0. The agreement between the two results is quite
good, which is especially interesting as in the generalized
setting we have two competing (length and time) scales. This
opens the possibility to understand the RG results from this
more intuitive perspective.

B. Recovering the RG result

Due to the exact solvability and knowledge of p(k̂, ̂v) we
can recover the RG crossover-scaling result also from another
simple argument. Considering the minimal model above, we
already saw that κ̂ = (v̂⊥/v̂‖)1/4 separates the two regimes in

p(k̂, ̂v). The subleading contribution n‖ actually has the form

n‖ ≈
∫ 1

κ̂

p
(
k̂, v̂‖

)
dk̂ = v̂

1
2
‖

∫ 1/v̂
1
2
‖

κ̂/v̂
1
2
‖

p
(
k̄, 1

)
dk̄, k̄ := k̂/v̂

1
2
‖ .

(62)

The expression becomes proportional to v̂
1/2
‖ once the integral

is constant to a good approximation, requiring

κ̂/v̂
1
2
‖ 	 1, 1/v̂

1
2
‖ � 1. (63)

FIG. 8. Comparison of the adiabatic-impulse approximation (full
lines) of the excitation density and the exact result (dashed lines)
for the minimal model for angles φ = π/2 − 10−2, φ = π/2 − 10−5,
and φ = π/2 − 10−8 (from top to bottom) on a log-log scale.
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The first condition indicates the separation from the leading
KZM scaling and the second condition is the requirement not
to be in the nonuniversal regime. Setting the first inequality
to an equality recovers the predicted RG scaling: v̂∗(φ) ∼
|π/2 − φ|1/2. From the second condition we get that scaling
is visible for v̂‖ 	 v̂cut ≈ 1.

All these steps can be repeated for a more general setup
with some dynamical critical exponent z and scaling di-
mensions dim[g j] valid for variants of the Gaussian model
discussed here. First of all we have:

κ̂ ∼ (v̂⊥/v̂‖)1/(1/ν−dim[g j ]), (64)

and furthermore the conditions read

κ̂/v̂
1/(z+dim[g j ])
‖ 	 1, 1/v̂

1/(z+dim[g j ])
‖ � 1. (65)

The crossover velocity therefore is estimated as

φ → π/2 : v̂∗ ∼ |π/2 − φ|
z+dim[g j ]

1/ν−dim[g j ] . (66)

C. Purely parallel drive

An alternative to extract the subleading scaling is to con-
sider a purely parallel drive, where we fix �̂(t̂ ) = �̂0 and
only drive along the subleading direction D̂4(t̂ ) = v̂‖t̂ . The
excitation density reads for a linear drive with t̂i = −∞ and
t̂ f = +∞:

p(k̂, v̂‖) = exp

(
−π

k̂6

v̂‖k̂4

)
,

nE (v̂‖ 	 1) ≈ a�

2π

√
v̂‖, (67)

which is independent of �̂0. It allows us directly to extract
the predicted subleading scaling for low enough velocities,
which therefore makes this protocol a useful tool to extract the
subleading scaling. Nevertheless, this consideration is over-
simplified, as we can always shift out �̂0, such that it plays no
role in the asymptotic case of t̂i = −∞ to t̂ f = +∞. We resort
to a more refined discussion of parallel drives in Sec. VI C.
In particular, such drives include the case of driving along
the gapless line, discussions of this topic can be found in
Refs. [60–62,68] (in Sec. VI C 1 we derive the scaling law
found in [60] from the RG perspective).

VI. GENERALIZED DRIVES IN THE TRANSVERSE
XY MODEL

Due to z = ν = 1 in the transverse XY model, a linear
drive only allows us to observe the leading KZM scaling.
We need at least a drive of order 2 to make the scaling
of driven subleading couplings observable, therefore we will
consider drives of order n = 1, 2 (see also [12] for the nonlin-
ear transversal case). In these cases, we have the following RG
predictions listed in TableVI, where the empty entries corre-
spond to negative, meaning nonobservable, exponents without
fine tuning. In the next subsections we verify these universal
predictions for the scaling exponents of models for n = 1, 2 in
the Ising universality class and determine the (nonuniversal)
values v̂∗ for the transverse XY model, mainly based on the
AI approximation. To analyze scaling from further subleading

TABLE VI. Overview of the RG predictions for the Ising-
transition in the transverse XY model, where the exponents refer to
nE ∼ v̂α and to v̂∗ ∼ |π/2 − φ|β based on Eq. (3) and Eq. (59) for
the KZM case and the first and third subleading couplings.

3rd

1st

KZM

1 2 4
1
2

1
3

1

1
5

1
3

1

n
α

3rd

1st

2 4
1
2

3
2

1
4

n
β

couplings, like D4, a generalized XY model and a quartic drive
(n = 4) can be used by adding additional terms to the spin
model (see also Refs. [14,87,88]) like9

�H = − J2

2

∑
l

(σ x
l σ x

l+2 + σ
y
l σ

y
l+2)σ z

l+1

= − J2

∑
l

(c†
l cl+2 + H.c.) = −2J2

∑
k

cos(2ka)c†
kck .

(69)

A. Transverse XY: Linear drive

Since the transverse XY model Eq. (13) at the Ising
transition has z = 1, ν = 1 a linear drive only allows us to
make the transversal scaling (standard KZM) visible with
an exponent nE ∼ v̂

1/(z+1/ν)
⊥ = v̂

1/2
⊥ , see Tables III and VI.

This setup was solved analytically exact by Dziarmaga [54]
(transverse Ising), where a linear drive g(t )/J = −v̂gt̂ was
considered, starting from the ground state at ti = −∞ up to
t f = 0, see Fig. 9. From our perspective, this corresponds to
�̂ = −v̂⊥t̂ [with: D̂2(t̂ ) = D̂0

2], up to �̂(t̂ f ) = −2D̂0
2, defining

t̂ f . The velocities are related by v̂g = 2v̂⊥ (see Table II for
γ = 1). Strictly speaking, the Landau-Zener formula as given
in Eq. (46) is not directly applicable when t̂ f �= ∞. Neverthe-
less, for low momenta and velocities t̂ f � t̂∗, where t̂∗ is the
time of adiabaticity breaking, estimated by requiring v̂k∗ ≈ 1
or using the AI approximation. Therefore, t̂ f → ∞ will not
change the result, for more details see Ref. [54].

The asymptotic probability reads for small k in the univer-
sal regime:

p(k, v̂⊥) ≈ exp

[
−π

(ka)2

v̂⊥

]
,

nE (v̂⊥) = 1

π

∫ 1

0
d (ka)p(k, v̂⊥) ∼ 1

2π
v̂

1
2
⊥, (70)

which is valid for low velocities, and directly allows us to read
off the expected scaling from Table VI.

9The fermionic couplings (for k → 0) are related to the spin cou-
plings according to

M

⎛
⎝ g/γ

J/γ
J2/γ

⎞
⎠ ≈

⎛
⎝ �̂

D̂2

D̂4

⎞
⎠, M =

⎛
⎝1 −1 −1

0 1
2 2

0 − 1
24 − 2

3

⎞
⎠. (68)
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FIG. 9. Transversal drive in the transverse XY/Ising model con-
sidered in Ref. [54], (a) in the spin-coupling space and (b) the
fermionic coupling space.

B. Transverse XY: Higher-order drives

Following the same strategy as in the minimal model and
using the AI approximation as well as numerical integrations
of Eq. (22), we determine the different scaling exponents,
the crossover velocities, and the overall scaling regimes for
a quadratic drive. In this section, we consider a drive starting
deep in the paramagnetic phase and ending at the transition
(see also Ref. [59]). Alternatively, one can start from the
transition and drive into the phase, yielding the same result
(see, e.g., Refs. [4,56]), in which case the final excitations are
spin flips (see Sec. IV and Ref. [54]). The main reason for
this choice is that it enables us to apply analytic approxima-
tions while avoiding the ferromagnetic phase that has some
complicating features for the transverse XY model (see, e.g.,
Ref. [64] for a discussion how ‘noncritical’ modes can play a
role).

Formally, we consider the drive of the leading coupling
�̂ and a subleading coupling D̂ j , where once again for the
simplest case:

�̂(t̂ ) ≈ 2(g(t ) − J (t ))

2γ
= v̂⊥t̂ n,

D̂2(t̂ ) ≈ J (t )

2γ
= D̂0

2 + v̂‖t̂ n. (71)

One major difference compared to the minimal model is that
we need the constant D̂0

2 �= 0, as already indicated in Fig. 4
by the red dot. The reason is that we want to circumvent the
region in coupling space, where the |ka| = π and k = 0-gap
closing coalesce. We set D̂0

2 = 1 (corresponding to J/γ = 2
at the transition) in the following.

As discussed in Sec. IV B 1 and Sec. IV B 3 the approxima-
tions are closely connected to the adiabaticity parameter v̂k .
It was the simple structure of this parameter v̂k that allowed
us, in the minimal model, to decompose the excitation density
as nE ∼ Max[n⊥(v̂⊥), n‖(v̂‖)]. A similar logic applies for the

transverse XY model and an order-n drive. Here v̂k reads (for
an order-n drive, see Table II):

v̂k = v̂⊥ + 2v̂‖(1 − cos(ka))

sin(ka)n+1

≈ v̂⊥(ka)−(n+1) + v̂‖(ka)−(n−1). (72)

We can again introduce a crossover scale in k space:
κ̂ := (v̂⊥/v̂‖)1/2 to separate the regimes in Eq. (72), where
we identify the KZM and subleading scaling regime. A qual-
itative estimate of adiabaticity breaking and corresponding
scaling is given by

v̂k∗
!≈ 1 :

{
k̂∗ 	 κ̂ (KZM) : k̂∗ ∼ v̂

1
n+1
⊥ ,

κ̂ 	 k̂∗ 	 1 (sub) : k̂∗ ∼ v̂
1

n−1
‖ .

(73)

In a first step, we use the AI approximation to determine the
excitation density for small velocities and compare it to nu-
merical integrations of Eq. (33) (for a finite number of lattice
sites N) for a few cases.10 The results are in fair agreement,
as shown in Fig. 10(a). The system size is chosen such that
the length scale ξ ∗ ∼ n−1

E is smaller than the system size N .
Otherwise we expect finite-size effects to play a dominant
role.

In a second step, we determine the crossover scale v̂∗(φ),
which indicates the crossover from the subleading scaling
at higher velocities to KZM scaling at lower velocities. The
results are summarized in Fig. 10. We see a similar emerging
picture compared to the minimal model, as expected from the
scaling of the adiabaticity parameter Eq. (72): For φ → π/2
the subleading scaling regime becomes prominent over a few
orders of magnitude [Fig. 10(b)] and allows us to extract
the expected scaling exponents [Fig. 10(c)], as well as the
predicted scaling of the crossover velocities v̂∗, [Fig. 10(d)].
Also here intermediate angles smaller than φmin [red dot in
Fig. 10(d)] will not allow one to extract a sensible subleading
scaling exponent.

C. Transverse XY: Purely parallel drive

So far we have analyzed drive protocols, where the critical
point was reached during the drive. Here we consider the
situation of a purely parallel drive for a fixed distance to the
critical line �̂0 � 0, where only the subleading coupling is
driven as shown in Fig. 11. This situation is very different
from the standard KZM scenario, nevertheless the RG picture
suggests that the subleading scaling could be made observable
also for such a drive. In more physical terms, it implies that ex-
citations are created by any drive, which leads to adiabaticity
breaking. In particular, this intuition is valid for any direction
of drive, parallel or longitudinal to the phase boundary, as long
as the criterion nz + dim[g j] > 0 is fulfilled.

A first, very basic intuition is that once �̂0 is large, the
system will stay adiabatic for the whole drive. Only once
the �̂0 becomes small enough (in a sense we clarify in

10We use the adiabatic basis to solve the dynamics numerically.
The system is initially prepared at the critical point and is stopped at
J (t f )/(2γ ) ≈ 600.
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FIG. 10. (a) Set of curves nE (v̂, φ) (log-log scale) for the transverse XY model (quadratic drive (n = 2), starting deep in the paramagnetic
phase and stopping at the transition or vice versa), and for different angles π/2 − φ = 10−1, 5 × 10−3, 2 × 10−4, 10−5 (from top to bottom)
from numerical simulations (+, starting at the transition) and the AI approximation (orange lines; dashed line describes φ → π/2). (b) Ex-
tended set of curves using the AI approximation. For low velocities the KZM-scaling results and the subleading scaling emerges for larger
velocities up to some nonuniversal regime. The orange dots indicate the crossover velocities. (c) Scaling exponents extracted from the full fit
of the curves in (b) (up to the nonuniversal regime) and the predicted exponents from the RG (dashed lines). The vertical line indicates φmin.
(d) Universal scaling of the crossover velocity for φ → π/2 that is estimated using again Eq. (60) (orange dots) and a full fit (blue squares) of
the curves in (b). The extracted exponent β = 0.49 fits well to the RG prediction of 1/2.

the following) adiabaticity can be broken, signaled by a finite
excitation density nE . Therefore, one approach to extract the
subleading scaling is to fix a drive-velocity v̂‖ and perform

FIG. 11. Parallel drive in the transverse XY model in (a) the spin-
coupling space and (b) the fermionic coupling space for different
constant distances to the critical line.

drives for different �̂0 (Fig. 11). Once adiabaticity is broken,
we expect the excitation density to reach a constant finite
value. For �̂0 →, 0 this saturation of nE is directly observable
in Fig. 12. The pair (v̂, nE (�̂0 → 0)) can again be used to

FIG. 12. Excitation density (numerical: +; AI: full lines) for a
purely parallel drive (n = 2) as a function of the gap �̂ on a log-log
scale for v̂ = 1.0 × 100, 1.8 × 10−1, 3.2 × 10−2, 5.6 × 10−3, 1.0 ×
10−3 from top to bottom (N = 2 × 103; for the smallest velocity
N = 104). For �̂ → 0 a constant value is reached, which can be
used to determine the subleading scaling again, see Fig. 13. The
dashed lines correspond to the density obtained from using pk from
the first-order adiabatic perturbation result Eq. (45).
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FIG. 13. AI approximation for a purely parallel quadratic drive
for small fixed gaps �̂ = �̂0 on a log-log scale, the crosses are the
numerical values from Fig. 12 for the smallest gaps. The smaller
the gap, the more extended the subleading scaling regime (nE ∼ v̂1

‖)
becomes up to a scale ∼�̂0 indicated by the horizontal lines.

extract the subleading scaling exponent similarly to the dis-
cussions before, see Fig. 13.

Guided by the above picture, we compare a numerical inte-
gration11 for a drive (n = 2) starting at D̂2(ti ) ≈ J (ti )/(2γ ) =
1 and �̂(t ) = �̂0 with the AI approximation Eqs. (47) and
(48), see Fig. 12. We expect a reasonable fit in the nonadia-
batic (saturated) regime, but not in the adiabatic one. In the
latter regime the (perturbative) adiabatic approximation of pk ,
Eq. (45), works better (shown as the dashed lines), supporting
the idea of a crossover to an adiabatic evolution.

More in line of the discussion of the generalized drives, we
can also vary the velocity for a fixed gap. This allows us to
extract the subleading scaling, seen in Fig. 13. Nevertheless,
the window of clean algebraic scaling due to the subleading
term is limited to intermediate velocities. The size of the finite
gap sets a velocity scale, below which the behavior changes
(where adiabaticity is restored). The limiting case would be
the drive along the gapless line. Similar drives were already
used in the transverse XY model. An overview is given in
[60–62]. We discuss this case in Sec. VI C 1.

As we have seen in Fig. 12 for small enough gaps �̂0

the excitation density crosses over to a constant value for
�̂0 < �̂0∗, implying that adiabaticity is broken for the given
velocity. To connect this observation with the guiding idea of
competing length scales, we first of all associate the saturated
regime with the length scale induced by the drive: ξ‖ ∼ n−1

E .
The second scale is the equilibrium correlation length ξ ∼
(�̂0)−ν (for the transverse XY model the correlation length
is analytically known [73,74]).

Following the idea that only the smaller scale is observable,
the crossing of the two curves should give an estimate of �̂0∗,
separating the adiabatic from the nonadiabatic region (shown
in Fig. 14). A related scenario regarding the competition of
length scales was discussed in the case of a transversal drive
with a finite symmetry breaking bias (with an additional term
−g‖

∑
l σ x

l in the Hamiltonian) [63], which also allows one to

11We use the adiabatic basis to solve the dynamics numerically,
which is stopped at J (t f )/(2γ ) ≈ 600.

FIG. 14. Comparison of the ground state correlation length ξ (red
dashed) in the transverse XY model (for a fixed J close to D̂0

2 =
1) and the ‘excitation’ length scale ξ‖ on a log-log scale, defined
by the inverse excitation density (solid lines; same as in Fig. 12; +:
(inverted) numerical data from Fig. 12).

restore adiabaticity (see also [89] for an experimental investi-
gation of the KZM with a symmetry breaking bias). Here the
field g‖ is a second equilibrium relevant coupling, such that a
finite value induces a finite length scale, similar to �̂0.

This competition of (length) scales is reflected in the
competition of the two parameters v̂k and μ̂k : from the (per-
turbative) adiabatic side, adiabaticity breaking is suppressed
once μ̂k � 1 [see Eq. (45)]. The scale induced by μ̂kμ

≈ 1
has to be compared to v̂kv

≈ 1. Only if kv � kμ adiabaticity
breaking is possible. The equality gives a condition on the gap
size �̂0∗

�̂0∗ ∼ v̂
1/ν

nz+dim[Dl ]

‖
here= v̂1

‖, (74)

such that only �̂0 < �̂0∗ allow the evolution to be nonadi-
abatic. For larger gaps, the physical length scale should be
given by the ground state correlation length ξ as in Fig. 14.
Only once the velocity is large enough or the gap is small
enough, a nonadiabatic regime is entered and a direct extrac-
tion of the subleading scaling becomes possible, as in Fig. 13.

1. Transverse XY: Driving the γ coupling

The situations we have discussed so far have been the
drive of one leading (relevant in equilibrium) and one sub-
leading (irrelevant in equilibrium) coupling. To extract the
corresponding scaling dimensions, we chose to scale out D1,
which fixes the fixed point theory. This is only possible once
D1, as the leading derivative, is not driven. In Ref. [60] the
coupling γ (t ) was driven, which is effectively the same as
driving D1. The corresponding scaling of nE (v) can also be
quite easily explained from the generalized KZM perspective.
In this case, we actually deal with a different fixed point,
which is determined by the lowest nondriven derivative term
(assuming no further fine tuning). To this end, we scale out
D2, leading to different scaling dimensions and critical ex-
ponents z′ = 2 and ν ′ = 1/2. In particular, the D1 direction
is now a relevant direction with a positive scaling dimension
dim[D1] = +1. Therefore, a linear drive along the gapless line
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�̂0 = 0 leads to a scaling according to Eqs. (3) and (5)

nE (v̂‖) ∼ v̂
1

2+1
‖ , (75)

which is the exponent found in Ref. [60]. The generalized
expression for a model with an original dynamical exponent
z, which is driven along the otherwise scaled out direction is
given as follows. Before scaling out any of the couplings, we
have the lowest k term being ∝Dzkz and the next subleading
one ∝Dlkl with l > z. By driving the kz term, we have to scale
out Dl , which results in the proper dynamical exponent and
scaling dimension for an order-n drive:

z′ = l, dim[Dz] = l − z : nE (v̂‖) ∼ v̂
1

(n+1)l−z

‖ . (76)

This is exactly the generalized expression given in
Refs. [60,68], which therefore can be understood as well from
the RG perspective.

VII. MODEL DEPENDENCE OF NONUNIVERSAL SCALES

The minimal model and the transverse Ising model are
explicit examples of different universality classes, which are
defined by the dimensionality and symmetries only. So far, we
have demonstrated the emergence of the predicted new scaling
regimes for a generalized drive of leading and subleading cou-
plings, which should in principle be observable in all models
of a given universality class. This is indeed the case, but the
extent of the different scaling regions is not universal and will
lead to a different phenomenology for different models in the
same universality class. In particular, the dependence of the
crossover velocity v̂∗ on φ can vary widely.

Concretely, in the models considered so far, we find that
we need π/2 − φ very small to see the subleading scaling,
but this is nonuniversal and model-dependent. We illustrate
this model dependence with different versions of the minimal
model, which differ only by different cutoffs �. In the crit-
ical region, all models of a universality class are described
by a long-wavelength field theory, which for example for
the minimal model takes the Hamiltonian form in Eq. (50).
Given the dimensionful, microscopic velocities v⊥ and v‖, we
identified a crossover condition κ̂/v̂

∗1/2
‖ ≈ 1, separating the

KZM and the subleading scaling regime. Expressed in terms
of dimensionful velocities it reads:

v∗
‖ ≈ v

∗1/3
⊥ , (77)

represented in Fig. 15 by the thick line. In particular, the
crossover condition does not depend on the cutoff �. Nev-
ertheless, to have a clear scaling regime, we also have a
condition to obey on the largest possible velocities, fixed by
the requirement to avoid the nonuniversal regime:

v̂‖ 	 1, v‖ 	 �2, (78)

which is indeed cutoff dependent. The nonuniversal regimes
are indicated by the gray areas in Fig. 15 above the dotted
lines. Therefore, increasing the cutoff allows one to enlarge
the subleading scaling regime further (a similar logic applies
to the KZM regime). To relate this figure with the discussions
in the last sections, consider a protocol, where we fix φ� and
change v̂. In Fig. 15 this corresponds to one of the dashed

FIG. 15. Schematic scaling regimes (KZM and subleading) ex-
pressed with respect to the dimensionful velocities; the thick black
line separates the KZM scaling regime (below) from the subleading
one (above). The estimated nonuniversal regime is controlled by
the cutoff �. The two dashed lines indicate two trajectories for
two different but fixed φ1|2,� and varying v̂. Only for the φ1,� both
scalings are observable, as, e.g., in Fig. 6, with the dot indicating the
crossover. Only if the angle is large enough, the subleading regime
can be accessed.

lines. The subleading scaling regime in nE becomes only ob-
servable once the corresponding (orange) region in Fig. 15 is
passed (e.g., for φ1,�). We can directly see that the possibility
to observe subleading scaling is strongly cutoff dependent.

The discussion so far clearly separated the dimensionful,
microscopic velocities from the effect of the cutoff �. A sub-
tlety arises at the level of the angles: By changing the cutoff
also the angles change, even though we keep the dimensionful
velocities v‖ and v⊥ the same (we stay at the same dashed
lines in Fig. 15). The reason is that the angles φ� and the
dimensionless velocities v̂‖ and v̂⊥ are defined with respect
to �. To see this point, consider again the dimensionless
velocities

v̂⊥(�) = (
v⊥/D2

3

)
�−6,

v̂‖(�) = (
v‖/D2

3

)
�−2,

tan(φ�) = v̂‖(�)/v̂⊥(�). (79)

Therefore, the angles for different cutoffs are related by:

tan(φ�′ ) = tan(φ�)(�/�′)−4. (80)

For angles φ� close to π/2 this can be approximated by:

φ� → π

2
: φ�′ ≈ π

2
− (

�′/�
)−4

(π

2
− φ�

)
. (81)

This means that a larger cutoff �′ > � will lead to larger
angles. At the level of Fig. 15, changing � to a larger �′ there-
fore has two effects: First of all, the nonuniversal regime is
shifted to larger velocities [according to �2(�6) → �′2(�′6)
for the y(x) axis] and second, the labels of the (dashed)
trajectories are changed, e.g., φ1,� → φ1,�′ , where the trans-
formation is given by Eqs. (80) and (81).

VIII. CONCLUSION AND OUTLOOK

In this work, we have established the observable phe-
nomenology of the generalized KZM scenario in an exactly
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solvable and experimentally relevant model. The generaliza-
tion includes driving equilibrium irrelevant couplings, which
can be turned relevant and thus observable. Once the ferro-
magnetic coupling and the transverse field (for the transverse
XY model) can be tuned independently, extracting subleading
scaling due to equilibrium irrelevant operators is feasible and
becomes measurable at the level of the excitation density. In
the limit of large transversal fields, deep in the paramagnetic
phase, this density corresponds to the density of spin flips.
Therefore, the generalized KZM also fits into the observable
perspective of the traditional KZM.

We have outlined how a program can look like to construct
a proper drive and reveal the new scaling due to irrelevant
couplings for the transverse XY model. Besides its analytical
appeal, the transverse XY model is in reach of experimental
investigations like trapped ion experiments as in Refs. [48,49],
where the transverse Ising model was already analyzed, or
compressed quantum simulations [90–93]. In the case of
single trapped ions, driving multiple couplings should be pos-
sible in the very same framework. The reason is that the XY
model as well as the transverse Ising model, once mapped to
fermions, are described by a set of two-level Hamiltonians,
which can be cast into a Landau-Zener like form for each
momentum mode k (see Sec. IV A). For the general mecha-
nism we have explored here, two ingredients are crucial. The
first is the nonlinear character of the drive. Second, it must be
possible to control and keep the distance to the critical point,
measured by μ̂k , fixed. The second point becomes important
for drives parallel to the phase boundary, as we discussed in
Sec. VI C.

There are three further directions to explore this gen-
eralized KZM. A first one concerns the interplay of the
generalized KZM phenomenology and its relation to the
adiabatic RG. The RG picture applies quite generically to
interacting and nonintegrable theories with a Wilson-Fisher
fixed point, and more complicated critical exponent spectra.
Following a similar path as described here, different scalings
and crossover scales could be detected by numerical simu-
lations of models, where the fixed point geometry is well
understood by other means. An additional interesting aspect
arises in more complicated, interacting theories from the dy-
namics and possible decay of the quasiparticles or defects
beyond the time scale of adiabaticity breaking.

The second is in the direct vicinity of the XY model.
So far, we have focused on a particular corner of the phase
diagram, the paramagnetic phase, to cleanly study the physics
of the Ising critical point. Nevertheless, there are additional
features of the phase diagram like the incommensurate re-
gion in the ferromagnetic phase and multicritical points,
which lead to an even richer phenomenology. The multicrit-
ical points give another arena to apply the RG perspective.
Such drives have already been analyzed [61,64,67,94], and
indeed different scalings can be observed, depending on
the direction of approach to the critical point. This is in
line with the RG perspective, as the multicritical point is
characterized by multiple relevant couplings in equilibrium.
Therefore, a generic drive will lead to driving many of these
couplings.

The third direction is to turn to more complex models, from
the experimental as well as theoretical side. The perspective

of driving in different directions along a phase boundary also
turns condensed matter systems with a curved phase boundary
(e.g., Ref. [95]) into promising candidates to explore this
generalized KZM. For such systems, the critical line can be
approached with very different angles by varying a single pa-
rameter (e.g., temperature or pressure) and choosing different
fixed values for the other (even though these angles should
not be confused with the angles defined for the universal field
theory, see discussion in Sec. III A). This also allows for a
locally parallel drive.
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APPENDIX A: TRANSFORMATIONS AND SYMMETRIES
OF THE XY MODEL

1. Jordan-Wigner transformation

We introduce the Jordan-Wigner transformation, relating
spin and fermion operators, which is the essential step to
exactly solve the spin model. Early works on this topic in-
clude [96,97]. The Jordan-Wigner transformation [98] maps
spin operators σ x

l , σ
y
l , σ z

l (or σ±
l , σ z

l ) to fermionic creation
and annihilation operators cl , c†

l (see also Refs. [8,54,69–
71,74,80,87,88,99] and references therein). Here σ±

l are de-
fined as

σ+
l = 1

2

(
σ x

l + iσ y
l

)
,

σ−
l = 1

2

(
σ x

l − iσ y
l

)
, (A1)

and the operators fulfill the commutation relations[
σα

l , σ β
m

] = 2iεαβγ σ
γ

l δlm[
σ±

l , σ z
m

] = ∓2σ±
l δlm

(A2)

The fermionic creation and annihilation operators fulfill the
anticommutation relations:

{cl , c†
m} = δlm,

{cl , cm} = {c†
l , c†

m} = 0. (A3)

The transformation (or different representation), keeping the
commutation relations intact can be written as:

σ z
n = 1 − 2c†

ncn,

σ x
n = (c†

n + cn)
∏
m<n

(1 − 2c†
mcm),

σ y
n = i(c†

n − cn)
∏
m<n

(1 − 2c†
mcm),

σ+
n = cn

∏
m<n

(1 − 2c†
mcm),
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σ−
n = c†

n

∏
m<n

(1 − 2c†
mcm). (A4)

The backwards transformation reads

c†
l = σ−

l

∏
m<l

σ z
m,

cl = σ+
l

∏
m<l

σ z
m. (A5)

Some important relations are (using σ±
j σ z

j = ∓σ±
j )

c†
j c j+1 + c†

j+1c j = 1
2

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

]
,

c†
j c

†
j+1 + c j+1c j = 1

2

[
σ x

j σ
x
j+1 − σ

y
j σ

y
j+1

]
. (A6)

These relations show how controlling the ferromagnetic cou-
plings Jx and Jy in the transverse XY model allows one to
control the diagonal and off-diagonal sector of the fermionic
theory. Similarly, we get

c†
j c j+2 + H.c. = 1

2

[
σ x

j σ
x
j+2 + σ

y
j σ

y
j+2

]
σ z

j+1. (A7)

2. Symmetries of the Hamiltonian

The transverse XY model exhibits a Z2 symmetry (see,
e.g., Ref. [80]), meaning that the Hamiltonian commutes with
(tensor) product of all σ z operators[

H,

N∏
l=1

σ z
l

]
= 0. (A8)

In the paramagnetic phase, the ground state of the Hamilto-
nian shares the Z2 symmetry, nevertheless in the symmetry-
broken (ferromagnetic) phase the ground state does not. The
resulting fermionic Hamiltonian is quadratic in the c opera-
tors, implying that the parity operators

P± = 1

2

[
1 ±

N∏
l=1

σ z
l

]
(A9)

commute with the Hamiltonian as well (as the fermion number
is changed by either 0 or 2). Therefore, parity is a good
quantum number and the Hamiltonian can be split into the
two subspaces of even and odd parity [54,69]:

H = P+H+P+ + P−H−P−, (A10)

with boundary conditions in H−: c1 = cN+1 and in H+: c1 =
−cN+1.

APPENDIX B: ADIABATIC NONPERTURBATIVE
CONTRIBUTION

In the limit t̂k, f → +∞ the leading contribution in the
limit v̂k → 0 stems from a nonanalytic contribution from the
n complex zeros of the energy difference in the upper half-
plane:

E (t̂ c,l
k , k) = 0,

(
t̂ c,l
k

)n =
(−μ̂k ± i

v̂k

)
. (B1)

FIG. 16. Example of the numerical fits of nE (v, φ) from the
quadratic drive in the transverse XY on a (natural) log-log scale.
(a) Plot of nE (v, φ) (from the AI approximation) for four different
angles (orange dots) and the fits according to Eq. (C1) (gray lines).
(b) Parameter p for the different fittings in (a) [bigger dots; most left
is the uppermost curve in (a) etc.] and all other angles used in the
main text as well.

The excitation density for each k is approximated as [84,85]:

pk ≈
∣∣∣∣∣

n∑
l=1

σl exp
(
iD

(
t̂ c,l
k

))∣∣∣∣∣
2

,

D(t̂ c,l
k ) := 2

∫ t̂ c,l
k

0
E (τ ′)dτ ′,

σl = 4i lim
t̂k→t̂ c,l

k

(t̂k − t̂ c,l
k )γ (t̂k ) = ±1, (B2)

which we refer to as the DDP approximation. Rescaling
v̂kt̂ n

k = yn we get

D(t̂ c,l
k ) = v̂

− 1
n

k 2
∫ y(t̂ c,l

k )

0
E (y)dy =: v̂

− 1
n

k Il (μ̂k ), (B3)

where the second term in the last equation is an integral, which
only depends on μ̂k . Therefore, v̂k is the general adiabaticity
parameter (see also Ref. [82] for the quadratic case). For a
linear drive only one pole is relevant and the excitation density
for mode k reads

pk ≈ exp
(−2ImD

(
t̂ c
k

))
= exp

( − π v̂−1
k

)
, (B4)
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which is actually the exact asymptotic Landau-Zener-
Majorana-Stückelberg [76–78] result valid for t̂k,i = −∞ and
t̂k, f = +∞.

APPENDIX C: FITTING THE CROSSOVER

The mechanism we are investigating, different scaling be-
haviors in the excitation density with the velocity, makes it
necessary to identify the crossover velocity v∗. To be able to fit
the crossover and the different scaling regimes in the v scaling
of nE (v), we use an Ansatz of the form:

f (v) = A

((
1 +

( v

v∗
) a−b

p

)
v

b
p

)p

, (C1)

where v∗ is an estimate for the crossover scale. The exponents
a and b are directly related to the exponents

b = 1

nz + 1/ν
,

a = 1

nz + dim[g j]
. (C2)

The fitting procedure consists out of extracting the KZM ex-
ponent b for very small velocities (anticipating v 	 v∗) and
using this exponent to extract the subleading exponent as well
as the crossover velocity according to the function in Eq. (C1).
An example is given in Fig. 16, which shows fair agreement.
We keep the additional parameter p, as the crossover seems to
be fitted better by allowing p to be variable. A fixed p can also
be used, which might result in a ‘better’ result of the exponents
but a worse one for the crossover scale, where we prioritize the
better fitting of the crossover underlining that a clear scaling
only emerges for rather steep angles close to π/2. This choice
is also more consistent with the estimated crossover scales.
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