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physical processes and its implication
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The Loschmidt amplitude of the purified states of mixed-state density matrices is shown to have zeros when
the system undergoes a quasistatic, quench, or Uhlmann process. While the Loschmidt-amplitude zero of a
quench process corresponds to a dynamical quantum phase transition (DQPT) accompanied by the diverging
dynamical free energy, the Loschmidt-amplitude zero of the Uhlmann process corresponds to a topological
phase transition (TQPT) accompanied by a jump of the Uhlmann phase. Although the density matrix remains
intact in a quasistatic process, the Loschmidt amplitude can have zeros not associated with a phase transition.
We present examples of two-level and three-level systems exhibiting finite- or infinite-temperature DQPTs and
finite-temperature TQPTs associated with the Loschmidt-amplitude zeros. Moreover, the dynamical phase or
geometrical phase of mixed states can be extracted from the Loschmidt amplitude. Those phases may become
quantized or exhibit discontinuity at the Loschmidt-amplitude zeros. A spinor representation of the purified
states of a general two-level system is presented to offer more insights into the change of purification in different
processes. The quasistatic process, for example, is shown to cause a rotation of the spinor.
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I. INTRODUCTION

In recent years, two classes of phase transitions, the
topological quantum phase transitions (TQPTs) [1–4], where
nonanalytic behavior exists in the topology of the system,
and the dynamical quantum phase transitions (DQPTs) [5,6],
where nonanalytic behavior exists in the dynamics of the
system, have attracted broad research interest. Although the
literature mainly focuses on the ground-state transitions, gen-
eralizations of the two types of transitions to mixed states in
or out of equilibrium are challenges that need to be addressed
in order to provide a more complete picture of the physics
behind those transitions.

A TQPT of the ground state usually refers to a change
of a topological invariant associated with the Hamiltonian
mapping or the band structure [2–4]. Finding a proper topo-
logical invariant to characterize the TQPT of mixed states
may be more complicated. There have been attempts to use
various geometric phases to achieve the goal. For example,
the Uhlmann phase [7–10] is thought of as a generalization of
the Berry phase [11] to mixed states. Another example is the
interferometric geometric phase [12] inspired by the Mach-
Zehnder interferometry. Finite-temperature TQPTs have been
studied in some quantum systems in Refs. [13,14] by moni-
toring the dependence of the Uhlmann phase on temperature,
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where a qualitative change of the Uhlmann phase is claimed
to signify a finite-temperature TQPT. However, complications
may arise when dynamical processes are involved. Although
a quantum system described by a pure state can simultane-
ously acquire the geometrical Berry phase and the dynamical
phase during a single adiabatic process, Ref. [15] shows the
Uhlmann phase and the dynamical phase cannot be gener-
ated concurrently during a single dynamical process due to
the incompatibility between the Uhlmann process based on
the concept of parallel transport and the dynamical process
governed by the Hamiltonian.

On the other hand, the DQPTs reveal the nonanalytic
behavior in real-time dynamics of quantum systems. There
have been extensive studies [6,16–18] and progress in both
the theories [19–31] and experiments [32,33]. An important
tool in the study of DQPTs is the Loschmidt amplitude. The
DQPTs occur at the zeros of the Loschmidt amplitude, which
are called the Fisher zeros when the real time is complexified
on the complex plane. The Loschmidt amplitude provides an
analog of the partition function of the thermodynamic phase
transitions of quantum systems. While the majority of inves-
tigations of the DQPTs focuses on pure quantum states, there
have been generalizations to mixed quantum states [34–36]
and open systems [37,38]. There may be several ways to
generalize the concept of the Loschmidt amplitude to mixed
states [6,39]. Here we follow the generalization in which the
Loschmidt amplitude is defined as the overlap between the
purified states of the density matrices because this approach
also applies to the TQPTs, as will be shown later. We con-
sider systems with short-range interactions and mention that
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DQPTs of some systems with long-range interactions have
been studied in Refs. [29,40,41]. A common feature of the
zero-temperature TQPTs and DQPTs may be seen as follows.
The T = 0 TQPTs are usually characterized by topologi-
cal invariants [4]. Take the 1D Su-Schrieffer-Heeger (SSH)
model for example, the winding number is associated with
the 1D Berry phase, also known as the Zak phase [42]. Since
the Uhlmann phase approaches the Berry phase as T → 0,
a discontinuous geometric phase signifies the TQPT in the
SSH model. On the other hand, the zero-temperature DQPTs
correspond to the vanishing wave function overlap and cause
nonanalytic behavior in the dynamical phase [5,6].

Here we will address the question regarding whether the
TQPTs and DQPTs of mixed states share something in com-
mon by showing the transition points of the mixed-state
TQPTs and DQPTs are both zeros of the corresponding
Loschmidt amplitude of the purified states. The association
of the Loschmidt-amplitude zeros with TQPTs has not been
broadly recognized in the literature. Our approach not only
explains the change of the Uhlmann phase across a TQPT
[13,14] but also provides a physical picture of the under-
lying mechanism by the vanishing Loschmidt amplitude at
the TQPT. Moreover, we will illustrate that the Loschmidt
amplitude can have zeros in other dynamical processes by
analyzing the quasistatic process, which is a typical process
in thermodynamics [15,43]. Interestingly, the density matrix
remains the same in a quasistatic process, so there is no phase
transition. Nevertheless, the purified states may vary and lead
to vanishing Loschmidt amplitude even when the system fol-
lows a quasistatic process. A unified picture of the zeros of the
Loschmidt amplitude in different processes provides a deeper
understanding of the purification of density matrix and con-
nects the seemingly different DQPTs and TQPTs. Moreover,
we will unveil the mathematical structure behind the purified
states of a generic two-level system by showing a spinor repre-
sentation. The quasistatic process is equivalent to a rotation of
the spinor representing the purified state, which explains why
the Loschmidt amplitude may vanish even though the density
matrix remains the same.

There have been experimental realizations of some DQPTs
of the ground states [6] and excited states [44], and there have
been experimental implications of the TQPTs indicated by the
jump of the Uhlmann phase [45]. Nevertheless, there remain
many unsolved questions about the Uhlmann process and
dynamical process of mixed states, especially when it comes
to the internal structure of the density matrix and its geometric
properties. The unified view of the Loschmidt-amplitude zero
presented here may offer clues of a unified description of the
topology and dynamics of mixed states.

The rest of the paper is organized as follows. In Sec. II,
we give an overview of purification of a density matrix and
discuss the resulting amplitude and purified state, laying the
foundation for the rest of the paper. In Sec. III, we introduce
three physical processes that a mixed state can experience,
including the quasistatic, quench, and Uhlmann processes. In
Sec. IV, we give explicit examples to analyze the zeros of
the Loschmidt amplitudes in those three processes. In Sec. V,
we discuss a spinor representation of purification of two-level
systems. Section VI concludes our work.

II. PURIFICATION OF DENSITY MATRIX

A. Purification

The discussions of the TQPTs and DQPTs of mixed states
are based on the concept of purification of density matrices.
In general, a density matrix of a mixed quantum state can be
decomposed as

ρ = WW †, (1)

where W is called the amplitude of ρ. The amplitude of a
density matrix is not uniquely determined because the am-
plitude can be conversely expressed as W = √

ρU , where U
is a unitary matrix. If W is full rank, this polar decomposi-
tion of W is unique, and the corresponding density matrix is
called “faithful” [7]. In the rest of the paper we will focus on
full-rank density matrices unless specified otherwise. Thus,
the amplitude W plays the role of a wave function and U
is the generalization of the U (1) phase factor of the wave
function. The amplitudes form a Hilbert space HW , where a
scalar product, called the Hilbert-Schmidt product, is defined
as (W1,W2) := Tr(W †

1 W2) [8]. This is the overlap between two
amplitudes, which may also be referred to as the quantum
fidelity between two purifications. In the Hilbert space H
spanned by the eigenvectors of ρ, the amplitude is expressed
as W = ∑

i

√
λi|i〉〈i|U , where λi is the ith eigenvalue of ρ.

The purification can also be cast into the form of a pure
state by introducing an ancilla. The procedure introduces an
isomorphism between the spaces HW and H ⊗ H as follows.

W =
∑

i

√
λi|i〉〈i|U ↔ |W 〉 =

∑
i

√
λi|i〉 ⊗ U T |i〉, (2)

where U T is the transpose of U taken with respect to the
eigenbasis of ρ and acts on the aforementioned ancilla or the
second Hilbert space. The purified state can be constructed by
doubling the degrees of freedom via an auxiliary system with
an identical Hilbert space. Although the two terminologies,
purified state and amplitude, are usually used interchangeably
in most of the literature, we will use W exclusively for the
amplitude and |W 〉 for the purified state from the purification.
It can be shown that the inner product between two purified
states gives rise to the Hilbert-Schmidt product 〈W1|W2〉 =
Tr(W †

1 W2) = (W1,W2) [46]. The density matrix ρ can be re-
covered by tracing out the auxiliary degrees of freedom of the
enlarged space H ⊗ H. Explicitly,

ρ = Tr2(|W 〉〈W |), (3)

where Tr2 is the partial trace taken over the second Hilbert
space.

It can be shown that the expectation value of an arbitrary
observable O with respect to the purified state |W 〉 is the same
as its statistical average in the mixed state described by ρ =
WW †. Hence,

Ō ≡ 〈O〉 = Tr(ρO) = 〈W |O|W 〉. (4)

To verify the relation, we note that O acts on the first Hilbert
space of H ⊗ H. The trace in Eq. (4) is in fact Tr1, i.e., the par-
tial trace taken over the first Hilbert space. By using Eq. (3),
we have Tr1[OTr2(|W 〉〈W |)] = 〈W |O|W 〉. If ρ describes an

104305-2



UBIQUITY OF ZEROS OF THE LOSCHMIDT AMPLITUDE … PHYSICAL REVIEW B 102, 104305 (2020)

ensemble in thermal equilibrium with well-defined tempera-
ture, Eq. (4) shows that its purification is a thermal-vacuum
state [47,48].

B. Parallelity and orthogonality of pure and mixed states

In quantum information theory, the overlap between two
pure quantum states is called the quantum fidelity, which
is a measure of the difference between the two states [49].
Following Ref. [7], two pure states |ψ1〉 and |ψ2〉 are said to
be parallel to each other if

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 > 0, (5)

i.e., the associated fidelity is a positive real number. Under
this condition, the Fubini-Study distance between the two
states is minimized, indicating that the “difference” between
them is minimal. Physically, two parallel states have maximal
quantum fidelity because the fidelity provides a quantitative
measure of how close two states of a quantum system are to
each other. On the other hand, two pure states are said to be
orthogonal to each other if

〈ψ1|ψ2〉 = 0. (6)

In other words, the two states have minimal similarity since
any one of them contains no component of the other. In this
situation, the violation of the parallelity is maximal.

Both the parallelity and orthogonality relations between
pure states can be generalized to mixed states by using
〈W1|W2〉 = Tr(W †

1 W2). Two purified states are orthogonal to
each other if 〈W1|W2〉 = 0. However, this condition cannot
give a deterministic relation between ρ1 and ρ2. The general-
ization of the parallelity condition is more involved. It seems
a direct generalization to the condition (5) is

〈W1|W2〉 = 〈W2|W1〉 > 0. (7)

Instead, Uhlmann imposed a stronger condition: Two ampli-
tudes satisfy the parallel condition W1 ‖ W2 if

W †
2 W1 = W †

1 W2 > 0, (8)

where W †
1 W2 > 0 means the eigenvalues of W †

1 W2 are all
positive real numbers. This Uhlmann condition immediately
implies Eq. (7), and the spectrum of the operator (8) is an
invariant of the ordered pair ρ1, ρ2 [7]. Similar to the pure-
state case, the Hilbert-Schmidt distance between W1 and W2 is
minimized if they are parallel to each other.

III. LOSCHMIDT AMPLITUDE AND
PHYSICAL PROCESSES

Here we analyze selected physical processes that a mixed
state may experience, including two dynamical processes and
the Uhlmann process. The two types of dynamical processes
analyzed here are the quench process and the quasistatic pro-
cess. We show that the Loschmidt amplitude can exhibit zeros
in all three processes, but the implications and interpretations
of the zeros are different.

A. Dynamical processes

1. Quasistatic process

Among the physical processes discussed here, the qua-
sistatic process, where any intermediate state is an equilibrium
state, is probably the simplest one. The quasistatic process
is commonly assumed in thermodynamics textbooks [43].
For simplicity, we assume that a system evolves dynamically
according to a time-independent Hamiltonian H during a qua-
sistatic process. The time evolution of the density matrix is
described by the Heisenberg equation

ih̄ρ̇ = [H, ρ], (9)

which is formally solved by

ρ(t ) = e− i
h̄ Htρ(0)e

i
h̄ Ht . (10)

The quasistatic condition requires [ρ, H] = 0, implying the
density matrix remains unchanged. However, later we will
show that nontrivial results can emerge even in this simple
situation. Comparing Eq. (10) to Eq. (1), we have

W (t )W †(t ) = e− i
h̄ HtW (0)W †(0)e

i
h̄ Ht

= e− i
h̄ HtW (0)[e− i

h̄ HtW (0)]†. (11)

Thus,

W (t ) = e− i
h̄ HtW (0), (12)

which solves the Schrödinger’s equation of the amplitude,

ih̄Ẇ (t ) = HW (t ). (13)

Hence, W (t ) is indeed the amplitude of ρ(t ). As time elapses,
the corresponding purified state evolves according to

|W (t )〉 = e− i
h̄ Ht ⊗ 1|W (0)〉. (14)

Here e−iHt acts on the first Hilbert space and the identity
operator 1 acts on the second (auxiliary) Hilbert space. Note
that W (0)W †(0) = ρ(0) = ρ(t ) = W (t )W †(t ), i.e., W (0) and
W (t ) are two different amplitudes of the same density matrix
in the quasistatic process.

To extract information between the initial and final am-
plitudes in a physical process, we employ the Loschmidt
amplitude [6], defined as

Gρ (t ) = 〈W (0)|W (t )〉 = Tr(ρ(0)e− i
h̄ Ht ). (15)

The Loschmidt amplitude reveals the overlap between two
purified states, which can be viewed as a generalization of the
quantum fidelity to mixed quantum states. In general, Gρ is a
complex number, and its argument is the dynamical phase of
the corresponding process [15]:

θD(t ) = arg [Gρ (t )]. (16)

An interesting question is whether Gρ (t ) of a quasistatic pro-
cess can possess zeros and what is the physical meaning and
implication? We remark that if the zeros exist in a quasistatic
process, the same density matrix can have two (or more) dif-
ferent purified states orthogonal to each other. This implies the
purification allows the introduction of additional information
than the density matrix itself.
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2. Quench process

Different from the quasistatic process that keeps the sys-
tem in equilibrium at each instance, a sudden change of the
Hamiltonian is exerted in the beginning of a quench process.
We assume the system is initially prepared in a mixed state
described by the density matrix ρ(0). The initial state may
be a nonequilibrium mixed state or an equilibrium ensemble
with well-defined temperature. At time t = 0+, the Hamilto-
nian is suddenly switched to a new Hamiltonian Hf and the
system evolves according to the new Hamiltonian. In general,
[ρ(t ), Hf] 
= 0, making the quench process different from the
quasistatic process.

Similar to the analysis of the quasistatic process, we as-
sume Hf is time independent. By replacing H by Hf in
Eq. (10), the time evolution of the density matrix follows the
expression

ρ(t ) = e− i
h̄ Hftρ(0)e

i
h̄ Hft . (17)

Following a similar derivation of Eq. (11), the amplitude is
shown to evolve according to

W (t ) = e− i
h̄ HftW (0), or equivalently , ih̄Ẇ = HfW. (18)

The Loschmidt amplitude has been defined in Eq. (15) and
can be applied to the quench process as well [6]. It has been
argued that the Loschmidt amplitude can be thought of as
the real-time generalization of the partition function of an
equilibrium ensemble. Similar to the quasistatic process, the
argument of the Loschmidt amplitude is the dynamical phase
of the corresponding process, given by θD(t ) = arg [Gρ (t )].

The zeros of the Loschmidt amplitude correspond to the
DQPTs by the analogy between the Loschmidt amplitude and
the partition function [6]. At the critical point of a DQPT, the
purified state after the quench shares the minimal similarity to
the initial purified state. Since a quench process is generically
a nonequilibrium process, the conventional definition of the
thermodynamic free energy does not apply here. Nevertheless,
the dynamical free-energy density of a dynamic process may
be defined as

f (t ) = − lim
L→∞

1

L
lnLρ (t ), (19)

where Lρ (t ) = |Gρ (t )|2 is the Loschmidt echo [6], and L is
the overall degrees of freedom of the system. From this point
of view, the DQPTs at the zeros of Gρ (t ) correspond to the
nonanalytic points of the dynamical free-energy density. We
emphasize that both f (t ) and θD exhibit nonanalytic behavior
at a DQPT. Explicit examples will be presented later.

B. Uhlmann process

Our discussions of the TQPTs will be focused on selected
topological systems going through the Uhlmann processes.
Here we summarize the Uhlmann process and its associ-
ated Uhlmann phase with minimal reference to the complex
mathematical language of fiber bundles. Instead, we use
the previously introduced concept of the parallelity between
quantum states [15]. An Uhlmann process is a cyclic process,
during which the amplitude of the density matrix is parallel
transported. Here a cyclic process means ρ(0) = ρ(τ ), where
τ marks the end of a cycle of the Uhlmann process. However,

the parallel transport may cause W (τ ) to deviate from W (0).
From the difference between the two amplitudes, the Uhlmann
phase can be extracted and represent a generalization of the
Aharanov-Anandan phase for mixed states [50]. We remark
that the Uhlmann process is a process incompatible with the
dynamical process governed by the Hamiltonian [15]. If we
parametrize the Uhlmann process by a variable, it should
not be identified as the time. Therefore, we will use s as
the parameter of an Uhlmann process, and τ should not be
misunderstood as a period of time.

To clarify the physical meaning of the parallel transport,
we set W1 ≡ W (0) and W2 ≡ W (0+) in Eq. (8) and obtain the
differential form of the parallel-transport condition [15]

Ẇ †W = W †Ẇ , (20)

where Ẇ ≡ dW (s)
ds . The expression can be cast into the form of

an “anti-Hermitian Schrodinger equation”

ih̄Ẇ = H̃W, (21)

where H̃ = ih̄ẆW −1 is an anti-Hermitian matrix. Note that
H̃ is the generator of the “evolution” during the Uhlmann
processes. Moreover, note that

Ẇ †W = i

h̄
W †H̃†W = − i

h̄
W †H̃W = W †Ẇ . (22)

Thus, it follows from ρ = WW † that

ρ̇ = ẆW † + WẆ † = − i

h̄
{H̃, ρ}. (23)

The nonhermiticity of H̃ indicates that the normalization
Trρ(s) = 1 may be violated when 0 < s < τ and there may
be other complications [51]. Therefore, the Uhlmann process
cannot be achieved in a closed quantum system. This is in
stark contrast to the dynamical processes discussed previ-
ously.

During an Uhlmann process, the amplitude of the density
matrix is parallel transported according to Eq. (20). An inter-
esting question is if W2 is obtained by a parallel transport of
W1 along a path through a finite distance, is W2 still parallel
to W1? Note that Eq. (8) defines a binary relation. However,
it is not an equivalence relation since it possesses reflexivity
and symmetry but lacks transitivity. In other words, W1 ‖ W2

and W2 ‖ W3 � W1 ‖ W3. This is because the space, where the
amplitudes live, is the Uhlmann bundle, which is generally a
curved space. The existence of the Uhlmann curvature leads
to the failure of the transitivity.

Here is a question regarding the Uhlmann process: Is it
possible that the parallelity between the amplitudes can be
completely lost during an Uhlmann process? If it is possi-
ble, the Loschmidt amplitude GU

ρ (T, τ ) ≡ 〈W (0)|W (τ )〉 will
have zeros. For an Uhlmann process, one can infer from
Refs. [7–9] that

GU
ρ (T, τ ) = Tr(ρ(0)Pe− ∮

τ
AU ), (24)

where P is the path-ordering operator, and AU is the Uhlmann
connection given by

AU = −
∑

i j

|i〉 〈i|[d
√

ρ,
√

ρ]| j〉
λi + λ j

〈 j|. (25)
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The argument of GU
ρ (T, τ ) is the Uhlmann phase:

θU = arg Tr(ρ(0)Pe− ∮
τ

AU ). (26)

Note that the incompatibility between the dynamical process
and Uhlmann process actually resolves the puzzle regarding
how one can differentiate the geometrical phase from the dy-
namical phase when the phase is extracted from the argument
of the Loschmidt amplitude after going through a single phys-
ical process. For pure states, a simultaneous generation of the
dynamical phase and Berry phase are allowed [15]. For mixed
states, the incompatibility between the Uhlmann and dynam-
ical processes ensures that the argument of the Loschmidt
amplitude can only contribute to one type of phases: Either the
dynamical phase or the Uhlmann phase will be accumulated,
depending on the process that the system undergoes.

Finally, we want to point out that the Uhlmann phase
carries the geometrical information of the associated system
since the initial and final amplitudes are connected by an
Uhlmann holonomy element [7,14]. Therefore, GU

ρ and θU

in general do not depend on the “length” of τ as long as
the cycle is completed. We also caution that the Uhlmann
bundle is trivial [52], limiting the type of topological invari-
ants of the bundle. The Uhlmann phase may be considered
as the geometric phase acquired by the purified state when
the system follows the Uhlmann process, during which the
purified state is parallel transported [13,53]. By mapping out
the density matrix and reconstructing the overlap [45], the
Uhlmann phase may be measured experimentally.

IV. EXAMPLES OF LOSCHMIDT-AMPLITUDE ZEROS OF
MIXED STATES

After showing the universal mechanism of vanishing
Loschmidt amplitude behind the DQPTs and TQPTs of mixed
states, we will use generic two-level and three-level systems
to demonstrate the ubiquity of the zeros of the Loschmidt am-
plitude of mixed states after the systems undergo a quasistatic,
quench, or Uhlmann process. The examples will also answer
the questions posed in previous sections.

A. Two-level system

1. Quasistatic process

We first consider a generic two-level system experienc-
ing a quasistatic dynamical process. The Hamiltonian has

the form H = R · �σ , where R is a real-valued vector and
�σ = (σx, σy, σz )T are the Pauli matrices. During a quasistatic
process, the system remains in equilibrium at each instance
and thus has a well-defined temperature. Let β = (kBT )−1 and
we will choose kB = 1. We define R = |R|, R̂ = R/R, and
ω = R

h̄ . The time-evolution operator and initial density matrix
are, respectively, given by

e− i
h̄ Ht = cos(ωt ) − i sin(ωt )R̂ · �σ , (27)

ρ(0) = 1
2 (1 − tanh(βR)R̂ · �σ ). (28)

By substituting those results into Eq. (15), the Loschmidt
amplitude becomes

Gρ (T, t ) = cos(ωt ) + i sin(ωt ) tanh(βR). (29)

The expression only becomes zero if the temperature goes to
infinity, or β → 0. Moreover, the zeros occur when

t∗ =
(
n + 1

2

)
π

ω
= h̄

(
n + 1

2

)
π

R
, (30)

where n is an integer. We caution that the zeros of Gρ from
a quasistatic process do not correspond to a phase transition.
This is because the system, being in equilibrium in each in-
stance, has a well-behaved thermodynamic free energy F =
− 1

β
ln Z that has no nonanalytic behavior at those zeros of Gρ .

Nevertheless, the zeros from a quasistatic process do reveal
some interesting aspects of the representation of the purified
state of a mixed state, which will be discussed later.

The dynamical phase may look ill defined when Gρ van-
ishes. However, one must be careful when evaluating θD

because the limit should only be taken in the last step. A
careful calculation shows that

lim
T →∞

θD

(
T, t =

(
n + 1

2

)
π

ω

)
= (−1)n π

2
. (31)

Moreover, the dynamical phase can be shown to always take
discrete values at infinite temperature. The time t∗ of the
zeros are called the “resonant points” in Ref. [15], where
the dynamic phase at infinite temperature exhibits quantized
jumps. When t 
= t∗, or the “ordinary points” in Ref. [15], the
dynamical phase takes the following two constant values at
infinite temperature:

lim
T →∞

θD

(
T, t 
=

(
n + 1

2

)
π

ω

)
=
{

0 if ωt ∈ (2nπ − π
2 , 2nπ + π

2

)
,

π if ωt ∈
[
(2n − 1)π, 2nπ − π

2

)
∪
(

2nπ + π
2 , (2n + 1)π

]
.

(32)

The analysis above gives a positive answer to the question
in Sec. III A 1 on whether the Loschmidt amplitude can have
zeros in a quasistatic process. However, there is no phase
transition associated with the zeros. We note that the time
evolution of a quasistatic process is a unitary transformation
of the amplitude of the density matrix, but the density matrix is
unchanged. Thus, the initial purification can lose its character-
istics in a quasistatic process while the succeeding purification

becomes maximally different from the initial one at t∗ when
the Loschmidt amplitude vanishes.

Our analysis of the Loschmidt-amplitude zeros of qua-
sistatic processes suggests that purification may carry more
information of a mixed state than its density matrix. In-
terestingly, it is known that different mixed states may be
represented by the same density matrix [54]. In Sec. V, we
will give a detailed study of the representation of purification
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for two-level systems. The purified states can be thought of as
spinors, and the quasistatic process is equivalent to a rotation
acting on the spinors.

2. Quench process

The quench process has been extensively studied because
of the DQPTs [6], including two-level systems at finite tem-
peratures [35,36]. Here we briefly discuss a two-level system
through a quench process. The initial density matrix is as-
sumed to have the form

ρ(0) = 1
2 (1 + R0 · �σ ). (33)

In general, the expression describes a nonequilibrium mixed
state, so the temperature may not be well defined. At t = 0+,
the Hamiltonian is changed to Hf = R · �σ , and [ρ(0), Hf] 
=
0 (i.e., R0 ∦ R). The final density matrix is usually differ-
ent from the initial density matrix, marking an important
difference from the quasistatic process. Following the same
convention as before and using Eq. (15), we get

Gρ (t ) = cos(ωt ) − i sin(ωt )R0 · R̂. (34)

When R0 · R̂ = 0, the Loschmidt amplitude possesses zeros at

t∗ = (n+ 1
2 )π

ω
. It has been shown that DQPTs occur at the zeros

of the Loschmidt amplitude [6]. A special case is R0 = 0,
which corresponds to ρ(0) = 1

2 12×2. This can be recognized
as the mixed state at infinite temperature.

If the initial mixed state is an equilibrium state, it has a
well-defined temperature even though the temperature may
no longer be well defined in the quench process. We assume
the eigenvalues of the initial Hamiltonian are ±E . The initial
density matrix is then given by

ρ(0) = 1

Z (0)
[cosh(βE ) − sinh(βE )σz]. (35)

Taking the eigenvectors of the initial Hamiltonian as the basis,
we assume that the quenched Hamiltonian is Hf = R · �σ . The
Loschmidt amplitude is then given by

Gρ (T, t ) = 1

Z (0)
Tr

[(
e−βE 0

0 eβE

)
e−iR̂·�σωt

]

= 2

Z (0)

[
cosh(βE ) cos(ωt )

+ i
Rz

R
sinh(βE ) sin(ωt )

]
. (36)

In the zero-temperature limit, the system reduces to the pure-
state case, which has been studied thoroughly and summarized
in Ref. [6].

While a conventional phase transition occurs when the
thermodynamic free energy exhibits nonanalytic behavior, a
DQPT occurs when the Loschmidt amplitude vanishes [6].
One may wonder if there is a DQPT at finite temperature.
An analysis of Eq. (36) shows that the Loschmidt-amplitude
zeros of a two-level system in a quench process can occur

at t∗ = (n+ 1
2 )π

ω
but only when β = 0. Therefore, a two-level

system can only have DQPTs at infinite temperature but not
finite temperature, consistent with the result of Ref. [35].
The reason a zero of the Loschmidt amplitude corresponds

to a DQPT is because the dynamical free energy density,
defined by

f (t ) = − lim
L→∞

ln |Gρ (T → ∞, t )|2, (37)

is singular as the Loschmidt amplitude vanishes. The dy-
namical free energy of a dynamical system is an analog of
the thermodynamic free energy of an equilibrium system [6].
Moreover, the dynamical phase at t∗ is θD = sgn( Rz

R )(−1)n π
2 .

3. Uhlmann process

For the Uhlmann process, we consider a fermionic two-
band system in 1D since some results are known [13]. The
Hamiltonian is expressed in terms of the Nambu represen-
tation �k = (ak, bk )T , where ak and bk denote the fermionic
operators of two species, and k is the 1D crystalline momen-
tum living in a Brillouin zone with the geometry of S1. The
Hamiltonian has a quadratic form H = ∑

k �
†
k Hk�k , where

Hk = �k

2
n̂k · �σ (38)

with �k determining the size of the energy gap. The density
matrix is obtained by assuming the system is in equilibrium,
so ρ = ∏

k ρk with

ρk = 1

2

(
1 − tanh

(β�k

2

)
n̂k · �σ

)
. (39)

The 1D momentum k itself can serve as the parameter s for
constructing the cyclic Uhlmann process.

There are two types of TQPTs involved here, one from the
topology of the Hamiltonian mapping of the two-level system
and the other from the topology of the Uhlmann process of the
two-level system. We first discuss the TQPT associated with
the Hamiltonian mapping. After ρk is parallel transported as k
traverses the Brillouin zone, the system acquires an Uhlmann
phase. During the Uhlmann process, n̂k also varies. If the
movement of n̂k is restricted on a plane, its tip lies on a circle,
defining a mapping from S1 → S1. Thus, we can write n̂k as
n̂(k), which explicitly defines the map. The winding number
from the mapping is given by

ω1 = 1

2π

∮ (
∂kni

k

n j
k

)
dk. (40)

Here ni, j
k are two nonzero components of nk . In general, the

winding number ω1 may take any integer values, depending
on the explicit models. Here we consider two simple possibil-
ities ω1 = 1 and ω1 = 0. A TQPT of the ground state occurs
when ω1 changes its value. At finite temperatures, the Hamil-
tonian mapping does not take into account the distribution
function, and it is no longer an indicator of a TQPT.

On the other hand, there is a topology from the Uhlmann
phase of a two-level system in an Uhlmann process. The
Loschmidt amplitude GU

ρ of the general two-band system (38)
in an Uhlmann process can be inferred from Ref. [13]. Explic-
itly, we have

GU
ρ (T ) = cos (πω1) cos

[∮ (
∂kni

k

2n j
k

)
sech

( �k

2kBT

)
dk

]
.

(41)
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A derivation is given in the Appendix. Moreover, GU
ρ (T ) is

real valued for the two-level system, so the Uhlmann phase
θU can only take the quantized values 0 or π . Given θU =
arg[Tr(W †(0)W (τ ))], the Uhlmann phase corresponds to the
relative phase between the initial and final amplitudes. Since
the Uhlmann process is a cyclic process, the parameter s
traverses a loop in the parameter space and the Uhlmann phase
ends up being 0 or π after one cycle. Thus, the Uhlmann phase
indicates whether the topology of the change of the purifi-
cation is similar to a cylinder (with θU = 0 representing the
identity element) or a Mobius strip (with θU = π representing
a twist). Therefore, a TQPT of mixed states occurs when the
Uhlmann phase changes its value, which is possible when
GU

ρ (T ∗) = 0 at some critical temperature T ∗ because GU
ρ (T )

is a continuous function of T . Therefore, the zero of the
Loschmidt amplitude of the Uhlmann process represents the
boundary between the two different topological regimes, and
the definition applies to finite-temperature TQPTs. If GU

ρ = 0,
θU becomes ill defined. Thus, θU jumps from one value to
another when crossing the critical temperature T ∗, serving as
an indicator of the finite-temperature TQPT. In Ref. [14], the
Uhlmann phase is said to be like a topological kink. Interest-
ingly, the Matsubara formalism of finite temperature theory
introduces the inverse temperature by a Wick rotation of the
time [55]. Here we also have the correspondence β h̄ ∼ it .
Hence, the TQPTs may be recognized as the zeros of the
Loschmidt amplitude with imaginary time while the DQPTs
as the zeros of the Loschmidt amplitude with real time.

We notice that in the 1D two-level system, the zero-
temperature TQPT characterized by ω1 affects the finite-
temperature TQPT characterized by the zeros of the
Loschmidt amplitude. The boundary of the finite-temperature
TQPT is at the zeros of Eq. (41). If T → 0, then
sech ( �k

2kBT ) → 0, and the argument of the second cosine func-
tion on the right-hand side of Eq. (41) is 0. If T → ∞, then
sech ( �k

2kBT ) → 1, and the argument of the second cosine func-
tion becomes

lim
T →∞

∮ (
∂kni

k

2n j
k

)
sech

( �k

2kBT

)
dk = πω1. (42)

Thus, the answer depends on ω1. When ω1 = 1, the range of

the continuous function
∮

( ∂kni
k

2n j
k

) sech ( �k
2kBT )dk is [0, π ) since

T ∈ [0,∞). As a consequence, there must be at least an
intermediate temperature T ∗ such that∮ (

∂kni
k

2n j
k

)
sech

( �k

2kBT ∗
)

dk = π

2
. (43)

At T ∗ (or β∗), GU
ρ (T ∗) = 0, which signifies a finite-

temperature TQPT. The Uhlmann phase θU changes from π

(a topologically nontrivial phase) to 0 (a topologically trivial
phase) if T crosses T ∗. On the other hand, when ω1 = 0, the
map n̂(k) is topologically trivial and the above argument fails.
In this regime, there is no guarantee of the existence of any
Loschmidt-amplitude zero at finite temperature.

Since the Uhlmann process is cyclic, ρ(0) = ρ(τ ) but in
general ρ(0) 
= ρ(s) if 0 < s < τ . Here we emphasize again
that the parameter s can be chosen as k. Thus, τ is the “size”
of the 1D Brillouin zone, which is usually 2π in the suitable

unit. At the finite-temperature TQPT transition point T ∗, the
zero of the Loschmidt amplitude thus implies

Tr(W †(0)W (2π )) = 〈W (0)|W (2π )〉 = 0. (44)

Here W (0) and W (2π ) are two amplitudes of the same density
matrix. The situation is thus similar to the quasistatic process.
The result also answers the question raised in Sec. III B be-
cause the final purification of a density matrix can maximally
lose its similarity to the initial purification by showing or-
thogonality between the initial and final purified states, even
though the purified state is parallel transported in the Uhlmann
process.

It is important to address how the finite-temperature TQPT
approaches zero temperature and its relation with the zero-
temperature TQPT. As T → 0, Eq. (41) indicates that the
Loschmidt amplitude and the Uhlmann phase take the forms

GU
ρ (T → 0) = cos (πω1),

θU (T → 0) = arg [cos (πω1)]. (45)

It is clear that no matter if ω1 takes the value 0 or 1, GU
ρ

does not vanish. Therefore, the finite-temperature TQPT does
not cover the T = 0 point. However, θU = 0 when ω1 = 0
and θU = π when ω1 = 1, showing that the T → 0 Uhlmann
phase changes value according to the zero-temperature TQPT.
Although the Uhlmann phase approaches the Berry phase as
T → 0, the Uhlmann bundle requires full-rank density matri-
ces and does not cover the pure states at T = 0 [53]. Hence,
the critical line of the finite-temperature TQPT terminates at
a zero-temperature TQPT, but the two types of TQPTs are not
compatible as they merge.

To illustrate the two types of TQPTs explained above, we
present an explicit example by analyzing the periodic Creutz
ladder [13,56]. Here we will elucidate the physics from the
point of view of the Loschmidt amplitude. The system is a
two-legged ladder with cross stitches, and the Hamiltonian is

HCL =
L∑

i=1

[K (e−i�a†
i+1ai + ei�b†

i+1bi + b†
i+1ai + a†

i+1bi )

+ Ma†bi + H.c.], (46)

where ai and bi, respectively, denote the spinless fermionic
annihilation operators on the ith site of the upper and lower
chains, � ∈ [−π

2 , π
2 ] is the magnetic flux, K (>0) is the

hopping parameter along the horizontal and diagonal links,
and M (>0) is the hopping parameter along the vertical links.
Introducing the parameter m = M

2K , HCL can be cast into the
form (38) with

n̂k = 2

�k
(m + cos k, 0, sin � sin k)T , (47)

�k =
√

(m + cos k)2 + sin2 � sin2 k (48)

in units of 2K = 1 [13]. Here we require that � 
= 0 to ensure
that n̂k has at least two nonzero components. We mention
that quench dynamics of the Creutz ladder from a zero-
temperature initial state has been analyzed in Ref. [57], for
example.

To analyze the finite-temperature TQPT, we will show
that the Uhlmann phase jumps at the zeros of the Loschmidt
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amplitude. The jump of the Uhlmann phase agrees with that
in Ref. [13]. The zero of the Loschmidt amplitude leads to
nonanalytic behavior of the dynamic free energy density. Be-
fore presenting the results, we point out some subtleties of the
Uhlmann process. The Loschmidt amplitude is obtained by
assuming the system is in equilibrium as indicated by Eq. (39),
but it is known that the Uhlmann process is incompatible
with the dynamical process governed by the Hamiltonian [15].
Therefore, the system needs to be in contact with a reservoir
to keep it in equilibrium during an Uhlmann process. More-
over, the thermodynamic free energy is well defined for a
thermally equilibrium state and does not exhibit nonanalytic
behavior when the Loschmidt amplitude crosses a zero in
the Uhlmann process. To characterize the TQPTs signified
by the Loschmidt-amplitude zeros, we follow the definition
of the thermodynamic free energy in the quench process and
define its analog, the geometrical generating function, as

g = − lim
L→∞

1

L
ln
∣∣GU

ρ (T )
∣∣2. (49)

Here the temperature is introduced as the imaginary time. The
analogy allows one to see that, as the thermodynamic free
energy exhibits nonanalytic behavior at a conventional phase
transition, the geometrical generating function exhibits non-
analytic behavior at a TQPT when the Loschmidt amplitude
vanishes.

We show the numerical results of the Creutz ladder in
Fig. 1. The upper panel shows the geometric generating func-
tion g as a function of temperature and m according to Eq. (49)
for selected values of � = π

3 , π
8 , respectively. One can see

that g exhibits nonanalytic behavior as the temperature crosses
T ∗, justifying the occurrence of a finite-temperature TQPT.
Across the critical temperature, the value of the Uhlmann
phase jumps from π to 0, as shown in the phase diagram in
the lower panel. The value θU = π in the red shaded area
indicates the topologically nontrivial regime, where the am-
plitude of the purification exhibits the topology of a Mobius
strip after a cycle. The value θU = 0 in the green area indicates
the topologically trivial regime and the topology is a cylinder.

An interesting feature in the upper panel of Fig. 1 is the
merge of the two critical lines as T → 0. One can infer the lo-
cation of the merging point from the middle panel as m = 1.0.
However, m = 1.0 is the critical point of the zero-temperature
TQPT, where the value of the winding number (40)
of the Hamiltonian mapping changes. Therefore, m = 1.0 cor-
responds to the TQPT of the ground state determined by the
homotopy group of the Hamiltonian mapping. Importantly,
the energy spectrum becomes gapless if m = 1.0, according
to Eq. (48). The ground-state TQPT at m = 1.0 only concerns
the band structure and applies to the system in a pure state
or equivalently at zero temperature. However, the analysis of
Eq. (45) shows that the Loschmidt amplitude does not van-
ish as T → 0. Therefore, the zero-temperature TQPT of the
ground state is different in nature from the finite-temperature
TQPT of mixed states indicated by the zeros of the Loschmidt
amplitude. Moreover, the winding number (40) only concerns
the Hamiltonian and does not vary with temperature. Hence,
we use a dashed line to denote m = 1.0, which corresponds to
a TQPT of the ground state at T = 0, and a solid line to denote
the TQPT of mixed states, where the Loschmidt amplitude

FIG. 1. (Top panel) The geometrical generating function (49)
versus T and m for the Creutz ladder going through an Uhlmann
process, showing diverging peaks at the finite-temperature TQPTs.
The surface with peaks on the right (left) corresponds to � = π

3 and
π

8 , respectively. (Bottom panel) The Uhlmann phase as a function of
T and m for � = π

3 . Here θU = π in the red shaded (lower) region
and θU = 0 in the blue (upper) region. The dashed line at m = 1.0
indicates where the winding number ω1 jumps from 1 to 0.

vanishes. At finite temperatures, θU jumps at the TQPT of
mixed states, not at the m = 1.0 line. From the analysis of the
Cruetz ladder, we see that the zero-temperature TQPT point is
the endpoint of the mixed-state TQPT line, but the two types
of TQPTs have different characteristics.

B. Three-level system

1. Quasistatic process

Our previous example of the two-level system in a qua-
sistatic process has shown that the Loschmidt amplitude can
only have zeros at infinite temperature. A natural question is
whether the Loschmidt amplitude of a quasistatic process can
have zeros at finite temperature. In the following, we present
a positive answer by expanding the previous two-level model
to a three-level system with the Hamiltonian

H = R
(
σz 0
0 1

)
= R

(1 0 0
0 −1 0
0 0 1

)
. (50)
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We set ω = R
h̄ again, and the Loschmidt amplitude is

Gρ (T, t ) = Tr(ρ(0)e− i
h̄ Ht )

= (2e−βR + eβR) cos(ωt ) − i(2e−βR − eβR) sin(ωt )

Z (0)
.

(51)

When 2e−βR = eβR, or equivalently β = ln 2
2R , the Loschmidt

amplitude possesses zeros at a later time t∗ = (n+ 1
2 )π

ω
. Hence,

the initial amplitude of the density matrix W (0) is orthogonal
to the succeeding amplitude W (t ) at times t = t∗ and tempera-
ture Tq = 2R

kB ln 2 . We emphasize again that the system is always
in equilibrium and the density matrix does not change during
a quasistatic process. At time t∗ and temperature Tq, W (t )
becomes orthogonal to W (0) as indicated by the Loschmidt-
amplitude zero.

The dynamical phase becomes ill defined when the
Loschmidt amplitude vanishes at t∗ and Tq for the three-level
system in a quasistatic process. In fact, when the temperature
goes from 2R

kB ln 2 + 0− to 2R
kB ln 2 + 0+, θD jumps from (−1)n+1 π

2

to (−1)n π
2 at t∗ = (n+ 1

2 )π
ω

. The behavior is different from
that of θD of the two-level system in a quasistatic process at
infinite temperature discussed previously because one cannot
cross the infinite temperature. However, it is similar to the
behavior of the Uhlmann phase of the two-level system since
the Uhlmann phase jumps at the critical temperature T ∗ cor-
responding to a TQPT.

2. Quench process

Next, we ask whether there exist finite-temperature DQPTs
in a quench process? Here we emphasize again that the tem-
perature of a quench process refers to the initial state in
equilibrium. After the quench starts, the system is out of equi-
librium and temperature is no longer well defined. By slightly
modifying the previous example of the three-level system,
we will provide a positive answer. The initial Hamiltonian
is assumed to be the same as Eq. (50), and the initial state
is in equilibrium with temperature T = 1

kBβ
. Thus, the initial

density matrix is given by

ρ(0) = 1

Z (0)

⎛
⎝e−βR 0 0

0 eβR 0
0 0 e−βR

⎞
⎠, (52)

where Z (0) = Trρ(0). At time t = 0+, the Hamiltonian is
suddenly quenched and becomes

Hf =
(R · �σ 0

0 R

)
= R

( cos θ sin θe−iφ 0
sin θeiφ − cos θ 0

0 0 1

)
, (53)

where R = R(sin θ cos φ, sin θ sin φ, cos θ )T . A straightfor-
ward calculation shows

Gρ (T, t ) = 1

Z
[cos(ωt )(2e−βR + eβR)

+ i sin(ωt )((−1 − cos θ )e−βR + cos θeβR)].
(54)

FIG. 2. Dynamical free energy density f , defined in Eq. (37), as
a function of t and T for the three-level system in a quench pro-
cess. The diverging peaks show where the finite-temperature DQPTs
occur. The brown and blue surfaces correspond to θ = π

5 and 2π

5 ,
respectively.

The details can be found in the Appendix. If
(−1 − cos θ )e−βR + cos θeβR = 0, i.e., β = ln(1+secθ )

2R , then

Gρ (T, t ) possesses zeros at times t∗ = (n+ 1
2 )π

ω
with n being an

integer. To ensure the temperature is positive, it is required
that θ ∈ [0, π

2 ). Thus, the DQPTs of the three-level system
occur at temperature Th = 2R

kB ln(1+secθ ) . After some algebra,

the dynamical phase can be shown to jump from (−1)n+1 π
2 to

(−1)n π
2 at t∗ = (n+ 1

2 )π
ω

as the temperature crosses the critical
value Th.

To visualize the results, we plot the dynamical free energy
density f , defined in Eq. (37), of the three-level system in the
quench process as a function of time and temperature in Fig. 2
with two selected values of the parameter θ . One can see that
f diverges at a series of values of t∗ and finite temperature Th,
indicating the occurrence of finite-temperature DQPTs. When
the temperature crosses the divergent points of f , the value of
the dynamical phase jumps by π , as pointed out previously.

3. Uhlmann process

We analyze a three-level system undergoing an Uhlmann
process to compare with the Cruetz ladder. The three-level
system has the Hamiltonian given by Eq. (53), but the Hamil-
tonian is time independent for the Uhlmann process. The
parameter space is determined by (θ, φ), corresponding to a
2D sphere. To evaluate the Loschmidt amplitude according to
Eq. (24), we consider the case where the system traverses a
simple loop in the parameter space described by the circle
of latitude with θ = π

2 . Under this condition, the Uhlmann
connection takes a simple form and the path-ordered integral
in Eq. (24) can be explicitly evaluated. A tedious but straight-
forward evaluation by using Eq. (25) then gives

AU = i

2

e−βR + eβR − 2

e−βR + eβR

(
σz 0
0 0

)
dφ. (55)
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FIG. 3. The geometrical generating function g (49) of the three-
level system as a function of T . The red dotted and blue solid lines
correspond to R = 0.5 and 1.0, respectively. The diverging peaks
indicate where the finite-temperature TQPTs occur. The inset shows
the jump of the Uhlmann phase at the critical temperature.

The system is assumed to start from φ = 0. The initial density
matrix is then given by

ρ(0) = e−βH (0)

Z (0)
= 1

Z (0)
exp

[
−βR

(
σx 0
0 1

)]
. (56)

Substituting those into Eq. (24), the Loschmidt amplitude is
given by

GU
ρ (T ) = 1

Z (0)

[
−2 cosh(βR) cos

(
π

cosh(βR)

)
+ e−βR

]
,

(57)

which possesses a zero at T ∗ ≈ 0.7338 R
kB

. The zero of the
Loschmidt amplitude indicates a finite-temperature TQPT of
the three-level system.

To better understand the result, we plot the geometrical
generating function g, defined in Eq. (49), versus temperature
in Fig. 3. One clearly sees that g diverges at T ∗, indicating the
finite-temperature TQPT. Interestingly, the Uhlmann phase,
which is the argument of GU

ρ (T ) as shown in Eq. (26), jumps
from π to 0 when the temperature goes from T ∗ + 0− to
T ∗ + 0+. The inset of Fig. 3 shows the jump of the Uhlmann
phase. Similar to the two-band Creutz ladder discussed previ-
ously, the three-level system has a topological phase at low
temperature with a quantized Uhlmann phase and topolog-
ically trivial phase at high temperature. Therefore, the zero
of the Loschmidt amplitude provides a general description of
finite-temperature TQPTs. In contrast to the periodic peaks of
the DQPTs of the three-level system shown in Fig. 2, there
is only one finite-temperature TQPT of the three-level system
with a fixed set of parameters because the Hamiltonian is time
independent through the Uhlmann process.

V. REPRESENTATION OF PURIFICATION OF
TWO-LEVEL SYSTEMS

A. Purified states as spinors

Here we clarify, in a more concrete way, the role of the
amplitude of a density matrix in purification by using the two-
level system as an example. The Hamiltonian is H = R · �σ
and the corresponding density matrix in thermal equilibrium
is given by Eq. (28). We introduce � = 2R, which determines

the energy gap between the two levels. The density matrix can
be rewritten as ρ = 1

2 (1 − tanh( β�

2 )�σ · R̂). We will use the
properties of the Fermi distribution function nf(x) = 1/(eβx +
1) to find the square root of ρ with respect to the outer product.
One can show that

nf(�) + nf(−�) = 1,

nf(�) − nf(−�) = − tanh
(β�

2

)
. (58)

Hence, the density matrix is a linear combination of the two
projection operators

P± = 1

2

(
1 ± �σ · R̂

) = 1

2

(
1 ± H

R

)
(59)

that project into the states | ± R〉. Explicitly,

ρ = nf(�)P+ + nf(−�)P−. (60)

We remark that P± are indeed projectors since P2
+ = P2

− = 1
and are orthogonal to each other since P+P− = P−P+ = 0.

The two energy levels may be parameterized by

| + R〉 =
(

cos θ
2

sin θ
2 eiφ

)
, | − R〉 =

(
sin θ

2

− cos θ
2 eiφ

)
. (61)

A straightforward evaluation shows

P+ = 1

2

(
1 + cos θ sin θe−iφ

sin θeiφ 1 − cos θ

)
= | + R〉〈+R|,

P− = 1

2

(
1 − cos θ − sin θe−iφ

− sin θeiφ 1 + cos θ

)
= | − R〉〈−R|. (62)

Hence, P± are actually the density matrices of the pure
states | ± R〉. On the other hand, | ± R〉 also represents P±
in the Bloch-sphere representation of the density matrices of
two-level systems [58]. Equation (60) indicates that the eigen-
values of ρ are nf(±�). According to Eq. (2), the purified state
|W 〉 of ρ can be written as

|W 〉 = 1√
eβ� + 1

|W+〉 + 1√
e−β� + 1

|W−〉, (63)

where

|W+〉 = | + R〉 ⊗ | + R〉 = 1

2

⎛
⎜⎝

1 + cos θ

sin θeiφ

sin θeiφ

(1 − cos θ )e2iφ

⎞
⎟⎠,

|W−〉 = | − R〉 ⊗ | − R〉 = 1

2

⎛
⎜⎝

1 − cos θ

− sin θeiφ

− sin θeiφ

(1 + cos θ )e2iφ

⎞
⎟⎠. (64)

To clarify the physical role of |W 〉, we extend the unit
vector R̂ to a Minkowski 4-vector Rμ = (1, R̂). The intro-
duction of a relativistic structure actually helps us find the
square roots with respect to the outer product, which will
be shown shortly. The Minkowski metric tensor is taken as
ημν = ημν = diag(1,−1,−1,−1). Hence, the norm of Rμ is
zero since RμRμ = 0. To further simplify the notations, we
define σμ = (1, �σ ) and σ̄ μ = (1,−�σ ). Then, P+ = 1

2 Rμσ̄μ
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and P− = 1
2 Rμσμ. In other words, P± are two matrix repre-

sentations of the zero-norm 4-vector Rμ and satisfy

det P+ = det P− = 1
4 RμRμ = 1

4 (1 − R̂2) = 0. (65)

In the 2 × 2 matrix representation of 4-vectors, only those
with zero norm allow a square-root decomposition [59,60].
Since P± can be “factorized” as P± = | ± R〉〈±R|, mathe-
matically | ± R〉 can be thought of as the “square roots” of
the zero-determinant matrices P± [59,60], respectively. We
remark that the square root discussed here is based on the
operation of the outer product of the vectors. Symbolically,
this implies that | ± R〉 are the two “square roots” of Rμ in the
sense that P± form a matrix representation of Rμ. Moreover,
since |W±〉〈W±| = P± ⊗ P± is a reducible matrix representa-
tion of Rμ, |W±〉 are also the two square roots of Rμ in higher
dimensions by the same reasoning.

Finally, the role of |W 〉, given in Eq. (63), needs a more
careful investigation. Symbolically, the square root of a vec-
tor, or more precisely, “half of a vector” [60] with respect
to the direct product, is recognized as a spinor. Therefore,
| ± R〉 and |W±〉 are both spinors. |W±〉 are four-component
spinors that are reducible since |W±〉 = | ± R〉 ⊗ | ± R〉. On
the other hand, | ± R〉 are two-component spinors that are
irreducible. We remark that the reason a zero-norm 4-vector
has two square roots in the 2D matrix representation is be-
cause of the mathematical proposition SO(1, 3) = SU(2) ×
SU(2)/Z2 [59].

We now come back to the density matrix of an arbitrary
mixed state given by Eq. (60) and analyze the role of its
square root. Since det ρ = 1

4 sech2( β�

2 ) > 0, ρ cannot be the
2D matrix representation of any zero-norm 4-vector. This
is consistent with the fact that ρ of nonpure states has no
two-component square roots, i.e., ρ 
= |ψ〉〈ψ |. However, if
we introduce the 4-vector R̃μ = (1, tanh( β�

2 )) with a nonzero
norm, then ρ is the 2D matrix representation of R̃μ because
ρ = 1

2 R̃μσ̄μ. Thus, ρ (or R̃μ) only has four-component square
roots manifested by ρ = Tr2(|W 〉〈W |). Here |W 〉 is a four-
component spinor given by Eq. (63), which cannot be reduced
to a two-component spinor.

To summarize, if ρ denotes the density matrix of a pure
state, it is a matrix representation of a 4-vector with zero norm.
Hence, its purification is a four-component spinor, which can
be further reduced to a two-component spinor. This is consis-
tent with the fact that its purification is a separable state. On
the other hand, if ρ is the density matrix of a nonpure mixed
state, it is a matrix representation of a 4-vector with nonzero
norm. Thus, its purification is a four-component irreducible
spinor. This is consistent with the observation that its purifi-
cation results in an entangled state.

It is possible that purification of the density matrix of
systems with more than two energy levels may be represented
by some kind of spinors of higher dimensions. However, a
rigorous proof of the proposition is beyond the scope of the
paper and awaits future research.

B. Quasistatic processes as rotations

We give an example of how the spinor representation of a
two-level system helps us visualize the evolution by showing

that the purified state rotates as the two-level system under-
goes a quasistatic process. The purification evolves during
a quasistatic process according to Eq. (14), and the time-
evolution operator can be expressed as

e−iHt ⊗ 1 = e−iRiσit ⊗ 1 = e−iRit (σi⊗1) = e−iRit�i . (66)

Here �i ≡ σi ⊗ 1 are the gamma matrices (with σi ⊗ 1 being
a representation of the gamma matrices). Hence, the qua-
sistatic process introduces a rotational operator acting on the
four-component spinor of the purified state. Physically, the
purification of the same density matrix is rotated like a spinor
by the operator e−iHt during a quasistatic process. Note the
density matrix changes during a quench or Uhlmann process,
so those processes do not fit the situation considered here.

If the initial purified state |W (0)〉 is given by Eq. (63) and
we apply Eq. (27), the succeeding purified state at time t is
given by

|W (t )〉 = e−iωt

√
eβ� + 1

|W+〉 + eiωt

√
e−β� + 1

|W−〉. (67)

It is still a purification of the initial density matrix, i.e.,

Tr2(|W (t )〉〈W (t )|) = Tr2(|W (0)〉〈W (0)|) = ρ(0) (68)

since Tr2(|W+〉〈W−|) = Tr2(|W−〉〈W+|) = 0. The Loschmidt
amplitude of the quasistatic process is then given by

Gρ (T, t ) = 〈W (0)|W (t )〉 = e−iωt

eβ� + 1
+ eiωt

e−β� + 1
. (69)

One can verify that only at infinite temperature, β → 0,

Gρ (T, t ) = cos(ωt ) and has zeros at t∗ = (n+ 1
2 )π

ω
with integer

n. It implies that |W (t )〉 has been rotated to an orthogonal state
of |W (0)〉 at t∗. This description complements our previous
discussions, and the spinor representation of purification of
two-level systems offers a picture for visualizing the physics.

VI. CONCLUSION

The ubiquity of the zeros of the Loschmidt amplitude of
mixed quantum states undergoing different physical processes
has been demonstrated via the concept of purification, the
overlap of the purified states, and the dynamical or geomet-
rical phase of the corresponding process. For a quasistatic
process, the purified state becomes orthogonal to the initial
one at the Loschmidt-amplitude zero, and the dynamical phase
jumps despite the fact that both states purify the same density
matrix. The well-defined thermodynamic free energy in a
quasistatic process, however, rules out the association of the
Loschmidt-amplitude zero with a phase transition.

Nevertheless, the DQPT of a quench process occurs at
the zero of the Loschmidt amplitude due to the nonanalytic
behavior in the dynamical free energy, accompanied by
a jump of the dynamical phase. While DQPTs at infinite
temperature have been proposed in two-level systems, we
demonstrate a finite-temperature DQPT of a three-level
system. Finally, for an Uhlmann process, there may be two
types of TQPTs, one at zero temperature associated with
the topology of the Hamiltonian mapping and the other at
finite temperature associated with the zeros of the Loschmidt
amplitude. For the Cruetz-ladder model, the critical line of
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the finite-temperature TQPT terminates at the critical point
of the zero-temperature TQPT. The Uhlmann process of the
three-level system also exhibits a finite-temperature TQPT.
Moreover, the Uhlmann phase jumps when the system crosses
the Loschmidt-amplitude zeros.

The phase transitions in thermodynamics occur because of
nonanalytic behavior of the thermodynamic free energy. The
generalizations of the concept to nonanalytic behavior of the
overlap between quantum states offer a framework for con-
necting the seemingly different dynamical and geometrical
processes from zero to infinite temperatures. The spinor rep-
resentation of the purified states of two-level systems further

elucidates the structure behind purification in different phys-
ical processes. Applications of the framework and concept to
more complicated systems may bring forth more examples
that bridge the descriptions of quantum phenomena in and out
of equilibrium.
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APPENDIX: DETAILS OF THE LOSCHMIDT AMPLITUDE

A derivation of Eq. (41) is outlined here. The Loschmidt amplitude in an Uhlmann process is given by

GU
ρ (T ) = 〈Wk(0)|Wk(1)〉 = Tr[W †

k(0)Wk(1)]

= Tr[ρk(0)Pe− ∮ AU ], (A1)

where {k(t )}1
t=0 denotes a closed path in the Brillouin zone, and AU is given by Eq. (25). To find the expression of GU for the

general two-level system, we plug Eq. (38) into Eq. (39) and get

ρk =
(

nf(�k ) + coth β�k

2 sin2 θk
2

1
2 coth β�k

2 e−iφk sin θk

1
2 coth β�k

2 eiφk sin θk nf(�k ) + coth β�k

2 cos2 θk
2

)
, (A2)

where n̂k = (sin θk cos φk, sin θk sin φk, cos θk )T . To simplify the calculation, the closed path {k(t )}1
t=0 is chosen so that n̂k

stays on a plane. A simple choice is either φk = 0 or θk = π
2 . Here the former is adopted. By using Eq. (25), a lengthy but

straightforward calculation leads to

GU
ρ (T ) = cos

[1

2

∮
dθk − 1

2

∮
sech

β�k

2
dθk

]
. (A3)

Note that

ω1 = 1

2π

∮
dθk = 1

2π

∮ (
∂kni

k

n j
k

)
dk (A4)

is the winding number shown in Eq. (40). Then sin(πω1) = 0 because of the quantization of the winding number. Thus, Eq. (A3)
finally leads to Eq. (41).

For the three-level system undergoing a quench process, the quenched Hamiltonian given by Eq. (53) can be diagonalized as

Hf = S

(R 0 0
0 −R 0
0 0 R

)
S−1, (A5)

where

S =

⎛
⎜⎝

cos θ
2 sin θ

2 0

sin θ
2 eiφ − cos θ

2 eiφ 0

0 0 1

⎞
⎟⎠,

S−1 =

⎛
⎜⎝

cos θ
2 sin θ

2 e−iφ 0

sin θ
2 − cos θ

2 e−iφ 0

0 0 1

⎞
⎟⎠, (A6)

and the initial density matrix has been shown in Eq. (52). From those expressions, the Loschmidt amplitude is given by

Gρ (T, t ) = 1

Z (0)
Tr

⎡
⎣ρ(0)S

⎛
⎝e− i

h̄ Rt 0 0
0 e

i
h̄ Rt 0

0 0 e− i
h̄ Rt

⎞
⎠S−1

⎤
⎦

= 1

Z

[(
cos2 θ

2
e−βR + sin2 θ

2
eβR
)

e−iωt +
(

sin2 θ

2
e−βR + cos2 θ

2
eβR
)

eiωt + e−βRe−iωt
]

= 1

Z
[cos(ωt )(2e−βR + eβR) + i sin(ωt )((−1 − cos θ )e−βR + cos θeβR)]. (A7)
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