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Optical method to detect the relationship between chirality of reciprocal space chiral multifold
fermions and real space chiral crystals
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The chirality of chiral multifold fermions in reciprocal space is related to the chirality of crystal lattice
structures in real space. In this study, we propose a strategy to detect and identify multifold fermions of opposite
chirality in nonmagnetic systems using second-order optical transports. Chiral crystals related with inversion
operations cannot be made to overlap with each other via any experimental operation. Further, chiral multifold
fermions within such crystals host opposite chiralities corresponding to a given k point. A change in chirality is
indicated by a corresponding change in the sign of the second-order charge current dominated by chiral fermions.
This property can be exploited to study the relationship between chiralities in reciprocal and real spaces by
utilizing bulk transport.
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I. BACKGROUND AND INTRODUCTION

Multifold massless fermions with nonzero topological
charge have garnered significant attention in the field of
topological materials. In contrast with fourfold degenerate
Dirac fermions and doubly degenerate Weyl fermions, which
have directly analogous fundamental particles in high-energy
physics, multifold fermions do not follow the Poincaré sym-
metry. Instead, they follow crystal symmetry; hence, they do
not have counterparts among real particles [1,2]. More inter-
estingly, multifold fermions in chiral crystals can host nonzero
topological charges with Chern numbers greater than 1, which
induces both nontrivial topological surface states and exotic
bulk transport properties [2].

Since multifold fermions are located at high-symmetry
points, they guarantee long surface Fermi arcs spanning the
entire Brillouin zone (BZ) [3–6]. In addition to the wide
separation between opposite topological charges in the mo-
mentum space, the absence of mirror symmetry also leads to
their large separation in energy space, providing an ideal plat-
form for the study of quantized circular photogalvanic effects
(CPGE) [3,5,7,8]. Following their theoretical predictions,
long Fermi arcs, high-order degenerated band crossings, and
topological CPGE were soon observed in the expected chi-
ral crystals via angle-resolved photoemission spectroscopty
(ARPES) [9–13], scanning tunneling microscopy (STM) [14],
and optical measurements [15–17].
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Recently, based on ARPES and STM measurements, a
sign change was detected in the Fermi velocity of surface
Fermi arcs in semimetals possessing chiral multifold fermions
and crystals of opposite chiralities. This implied a deep re-
lationship between chiral lattices in the real space and chiral
fermions in the momentum space [13,14,18]. This relationship
offers a degree of freedom to modulate chiral fermions and
their corresponding physical properties. Hence, it is important
to understand the relationship between chiralities in real and
reciprocal spaces as well as any associated phenomena. In
the present study, based on symmetry analyses and numerical
calculations, we provide a strategy to detect the interactions
between chiral fermions and chiral crystals from the per-
spective of transport measurement. Since crystal structures
of the same compound with opposite chiralities are related
by an inversion operation, the relationship between chiral
fermions and chiral crystals can be detected by means of
nonlinear optical and electrical transports. Indeed, the extra
magnetic field has also been used to tune the linear and non-
linear optical response in magnetic systems, especially the
sign change [19–23]. Here we mainly focus on nonmagnetic
systems.

To date, all experimentally verified materials with chiral
multifold fermions have been observed to belong to the space
group P213. For a crystal in the space group P213, based
on the twofold screw rotation symmetries (s2x = {c2x|( 1

2
1
2 0)},

s2y = {c2y|(0 1
2

1
2 )} and s2z = {c2z|( 1

2 0 1
2 )}), the corresponding

glide mirror operations can be obtained via a simple inversion.
Therefore, chiral crystals in the space group P213 with oppo-
site chiralities are related via a simple inversion operation, as
depicted in Fig. 1(a) and 1(b). In any other crystal structure
without rotation c2 or screw s2 symmetry, a mirror operation
can serve as the equivalent of an inversion operation in combi-
nation with an experimental c2 rotation or s2 screw operation
as samples can be rotated by any angle in experiments.
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FIG. 1. Inversion of chirality in a chiral crystal structure leads to
the inversion of chirality in associated chiral multifold fermions. (a),
(b) Crystal lattice structures of semimetals with opposite chiralities
in the space group P213 with chiral multifold fermions, considering
RhSi as an example. (c), (d) Schematics of fourfold degenerate
fermions with spin-3/2 excitation at the � point. (e), (f) Schematics
of Double threefold degenerate fermions with spin-1 excitation at the
R point. The local effective Hamiltonians around the crossing points
can be expressed by H = −k · S4×4, H = k · S4×4, H = −k · S3×3,
and H = k · S3×3 for (c)–(f), respectively. We use h̄vF = 1 and
h̄vF = 2 for H1

3−fold and H2
3−fold, respectivley. The parameter φ = π/2

in H3−fold. We use h̄vF = 1 and x = arctan(−3) for H4−fold Further
details of the effective model can be found in Ref. [2,7].

In compounds belonging to the space group P213, the
chiral multifold fermions located at � and R exhibit four-
and sixfold degeneracies, respectively [1–6]. Similar to Weyl
fermions, these two types of chiral multifold fermions can
be described in a unified form using the Hamiltonian H =
χk · S, with χ = ±1 [2] and the following pseudospin matrix:
[Si, S j] = iεi jkSk . The fourfold degeneracy at the point, �, is
a spin-3/2 excitation with a 4 × 4 pseudospin matrix

H4−fold

=

⎛
⎜⎜⎜⎝

akz 0 − a+3b
4 k+ −

√
3(a−b)

4 k−
0 bkz

√
3(a−b)

4 k− − a+3b
4 k+

− a+3b
4 k−

√
3(a−b)

4 k+ −akz 0

−
√

3(a−b)
4 k+ − a+3b

4 k− 0 −bkz

⎞
⎟⎟⎟⎠

(1)

with a = h̄vF cos x, b = h̄vF sin x, and k± = kx ± iky, and the
topological charge has a Chern number of ±4 when the two
lower bands are occupied. The sixfold degeneracy at the R can
be constructed by double spin-1 Weyl fermions and a doubly
degenerate quadratic bands. Hence, a 3 × 3 pseudospin matrix

H3−fold = h̄vF

⎛
⎝ 0 eiφkx e−iφky

e−iφkx 0 eiφkz

eiφky e−iφkz 0

⎞
⎠ (2)

can be used to describe this sixfold degeneracy in the form of

H6−fold =
(

H1
3−fold 0
0 H2

3−fold

)
(3)

as depicted in Fig. 1(e). Since spin-1 Weyl fermions have a
Chern number of ±2, the corresponding topological charge
for double spin-1 Weyl fermions is ±4, inducing the whole
system to follow a “no-go theorem.” For both spin-1 and
spin-3/2 excitations, the sign of the topological charge is
dependent on the sign of the prefactor, χ . Under an inversion
operation, H (k) is converted to H (−k). While retaining the
form of energy dispersion, chirality changes the sign, as de-
picted schematically in Figs. 1(c)–1(f).

Though the chirality of a multifold fermion is reversed by
the inversion operation, time-reversal symmetry induces a net
zero Berry flux in the entire BZ. Therefore, the anomalous
Hall effect cannot be used to investigate the change in chiral-
ity. However, the second-order responses are odd with respect
to inversion, which suggests a possible method to detect the
sign change in chirality.

II. NONLINEAR HALL EFFECTS

There are mainly two types of transports based on second-
order responses: nonlinear optical effects and nonlinear Hall
effects caused by Berry curvature dipoles [24–28]. The spe-
cific crystal symmetry of P213 implies that the off-diagonal
elements of the nonlinear Hall conductivity tensor are zero
and that there is only one independent diagonal element. How-
ever, owing to time-reversal symmetry,∫

f0(Dxx + Dyy + Dzz )dkxdkydkz

=
∫

f0(
∂�x

∂kx
+ ∂�y

∂ky
+ ∂�z

∂kz
)dkxdkydkz

=
∫

(�x
∂ f0

∂kx
+ �y

∂ f0

∂ky
+ �z

∂ f0

∂kz
)dkxdkydkz

=
∫

(� · ∂ f0

∂k
)dkxdkydkz

=
∫

δ(E − EF )� · dk

= 0 (4)

implies that the trace of Berry curvature dipole is zero.
Consequently, nonlinear Hall effects induced by the Berry
curvature dipole vanish in materials belonging to the space
group P213. Therefore, we consider second-order optical
transports, CPGE, linear photogalvanic effects (LPGE), and
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second-harmonic generation (SHG) to investigate responses
to the reversal of chirality of multifold fermions.

III. SYMMETRY AND MICROSCOPIC ANALYSIS

In crystals without inversion centers, polarized light can
generate DC photocurrent and second-harmonic dipoles in
the material [24–26,29–37]. In contrast to the photovoltaic
effect in p-n junctions, the photovoltaic effect induced by
polarized light is dependent solely on the bulk band struc-
ture and is not limited by the band gap. Therefore, the
polarized-light-induced photoelectric effect is also called the
bulk photovoltaic effect. Depending on the polarization of
the incident light, the generated DC photocurrent can be
classified into two types: an injection current induced by
circularly polarized light d ja

dt = χC,a
bc (0, ω,−ω)Eb(ω)Ec(−ω)

and a shift current induced by linearly polarized light ja =
χL,a

bc (0, ω,−ω)Eb(ω)Ec(−ω) [26], where Ei( j,k)(ω) denotes
an electrical field with i, j, k = x, y, z.

First, we check the response of the local k-space distri-
bution of these two nonlinear optical conductivities to the
inversion of chirality. The CPGE tensor is purely imaginary
and can be expressed as [26]

χC,a
bc (0, ω,−ω) = e3π

h̄V

∑
k

∑
m,n

f k
nm�a

k,mn

[
rc

k,mn, rb
k,nm

]

× δ(h̄ω − Ek,mn), (5)

and the LPGE tensor is real and can be expressed as [26]

χL,a
bc (0, ω,−ω) = ie3π

h̄V

∑
k

∑
m,n

f k
nm

(
rb

k,mnrc;a
k,nm

+ rc
k,mnrb;a

k,nm

)
δ(h̄ω − Ek,mn), (6)

with

ra
k,nm = i〈n|∂ka|m〉 = va

k,nm

iωk,nm
(7)

and

ra;b
k,nm = ∂kbra

k,nm + (〈n|∂kb|n〉 − 〈m|∂kb|m〉)ra
k,nm

= i

ωk,nm

⎡
⎣va

k,nm�a
k,nm + vb

k,nm�b
k,nm − ωab

k,nm

+
∑

p�=n,m

(
va

k,npv
b
k,pm

ωk,pm
− vb

k,npv
a
k,pm

ωk,np

)⎤
⎦, (8)

where f k
k,nm = f k

n − f k
m denotes the difference between two

bands of the Fermi-Dirac distribution, Ek,mn = Ek,n − Ek,m

denotes the energy difference between the bands, va
k,nm =

1
h̄ 〈n|∂aĤ |m〉 denotes the velocity matrix, �a

k,nm = va
k,nn −

va
k,mm denotes the difference in Fermi velocity between

the bands, and ωab
k,nm = 1

h̄2 〈n(k)|∂2
abH |m(k)〉. For the con-

venience of analysis of the microscopic relationship be-
tween the band structure and second-order conductivity,

we set

χ̃C,a
bc (k; 0, ω,−ω) =

∑
m,n

f k
nm�a

k,mn

[
rc

k,mn, rb
k,nm

]

× δ(h̄ω − Ek,mn) (9)

and

χ̃L,a
bc (k; 0, ω,−ω) =

∑
m,n

f k
nm

(
rb

k,mnrc;a
k,nm + rc

k,mnrb;a
k,nm

)

× δ(h̄ω − Ek,mn). (10)

An inversion operation changes the position (x, y, z) →
(−x,−y,−z) in real space and (kx, ky, kz ) → (−kx,−ky,−kz )
in reciprocal space. Therefore, ra

k,nm is odd with respect to
inversion. Similarly, the term �a

k,nm is also odd with respect to

inversion. Another critical term, ra;b
k,nm, changes the sign twice

under inversion. As a result, it is even with respect to inver-
sion. Therefore, for a second-order response, ja = χa

bcEbEc,
the sign of the conductivity, χ , will become negative upon
inversion of each of its coordinate indices. For the specific
space group P213, the screw s2 symmetry s2z changes the sign
of the optical conductivity tensor, with the z index appear-
ing an even number of times, making them zero. Similarly,
when the x or y index appears an even number of times, the
elements with that index vanish because of s2x or s2y, respec-
tively. Further, owing to the D2 subgroup, the three indices
yield the identical optical conductivity, and only one nonzero
independent tensor element of each index remains for both
second-order CPGE and LPGE: χC(L),x

yz = χ
C(L),y
zx = χC(L),z

xy .
Thus, considering the sixfold degeneracy at the point, R, as an
example, we analyze the variation in the distribution functions
of χ̃C(L),x

yz (k; 0, ω,−ω) with respect to the inversion operation.
To perform the numerical analysis, we use the reported

tight-binding model for RhSi [3]

H (k) = H0(k) +
∑

i=1,2,3

(Vr,i(k) + Vs,i(k)) (11)

with

H0(k)=v1

[
τ x cos

(
kx

2

)
cos

(
ky

2

)
+τ xμx cos

(
ky

2

)
cos

(
kz

2

)

+μx cos

(
kz

2

)
cos

(
kx

2

)]
+ vp

[
τ yμz cos

(
kx

2

)

× sin

(
ky

2

)
+ τ yμx cos

(
ky

2

)
sin

(
kz

2

)

+μy cos

(
kz

2

)
sin

(
kx

2

)]
, (12)

Vr1(k)=vr1

[
τ yμzσ y cos

(
kx

2

)
cos

(
ky

2

)
+ τ yμxσ z cos

(
ky

2

)

× cos

(
kz

2

)
+ μyσ x cos

(
kz

2

)
cos

(
kx

2

)]
, (13)

Vr2(k) = vr2

[
τ yσ z cos

(
kx

2

)
cos

(
ky

2

)
+ τ xμyσ x cos

(
ky

2

)

× cos

(
kz

2

)
+ τ zμyσ y cos

(
kz

2

)
cos

(
kx

2

)]
, (14)
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FIG. 2. Energy dispersion of the tight binding model Hamilto-
nian along high symmetry lines.

Vr3(k) = vr3

[
τ yμzσ x sin

(
kx

2

)
sin

(
ky

2

)
+ τ yμxσ y sin

(
ky

2

)

× sin

(
kz

2

)
+ μyσ z sin

(
kz

2

)
sin

(
kx

2

)]
, (15)

Vs1(k) = vs1

[
τ xσ x sin

(
kx

2

)
cos

(
ky

2

)
+ τ xμxσ y sin

(
ky

2

)

× cos

(
kz

2

)
+ μxσ z sin

(
kz

2

)
cos

(
kx

2

)]
, (16)

Vs2(k) = vs2

[
τ xσ y cos

(
kx

2

)
sin

(
ky

2

)
+ τ xμxσ z cos

(
ky

2

)

× sin

(
kz

2

)
+ μxσ x cos

(
kz

2

)
sin

(
kx

2

)]
, (17)

Vs3(k) = vs3

[
τ xμzσ z cos

(
kx

2

)
sin

(
ky

2

)
− τ yμyσ x cos

(
ky

2

)

× sin

(
kz

2

)
+ τ zμxσ y cos

(
kz

2

)
sin

(
kx

2

)]
. (18)

The corresponding energy dispersion along high symmetry
directions have been illustrated in Fig. 2.

We first check the Berry curvature distribution in k space.
Considering the �z component as an example, the local dis-
tribution of �z was computed based on the aforementioned
tight-binding model by following

�z = 2Im
∑

n<nocc

〈n(k)|v̂x|m(k)〉〈m(k)|v̂y|n(k)
〉

(Ek,n − Ek,m)2
. (19)

The calculated results have been depicted in Fig. 2(a).
As discussed previously, the chirality of the chiral fermions

change the sign of corresponding crystal structures with op-
posite chirality. Accordingly, since chiral fermions are Berry
curvature monopoles, the Berry curvature at any k point
around R changes sign after inversion operation.

Similarly, the local distribution of χ̃C,x
yz (k; 0, ω,−ω) and

χ̃L,x
yz (k; 0, ω,−ω) are computed based on the tight- binding

model. The chirality of the Berry curvature is also related
to the correlation between the band structure and polarized
light. As depicted in Figs. 3(b) and 3(c), when the Fermi
level is equal to the linear crossing point, two transitions
exist for a selected transition energy on the kz = 0 plane.

FIG. 3. Local distribution of �z, χ̃CPGE ,x
yz (k; 0, ω,−ω), and

χ̃LPGE ,x
yz (k; 0, ω,−ω) around R points from numerical calculations

based on a tight binding model of RhSi. (a) Inversion-operation-
induced sign change for the local Berry curvature (�z) distribution
around multifold chiral fermions. (b) Light excitation between
the lower and upper cones of multifold fermions. The green
rings represent the transition path corresponding to a given fre-
quency. The light excitation from the hot ringlike distribution for
(c) χ̃CPGE ,x

yz (k; 0, ω, −ω) and (d) χ̃LPGE ,x
yz (k; 0, ω,−ω). χ̃CPGE ,x

yz and
χ̃LPGE ,x

yz change the sign via the inversion operation on the crystal
structure. The plot lies on the kz = π plane around the point, R.
The color bars are expressed in arbitrary units. The left panel of
(a) and the upper panels of (b)–(d) correspond to the crystal structure
depicted in Fig. 1(a). The right panel of (a) and lower panels of
(b)–(d) correspond to the crystal structure depicted in Fig. 1(b).

These two transitions form two hot rings for both the dis-
tribution functions, χ̃C,x

yz (k; 0, ω,−ω) and χ̃L,x
yz (k; 0, ω,−ω),

as depicted in the upper panels of Figs. 3(c) and 3(d). The
positions of the hot rings remain constant after inversion, but
their signs are switched, as illustrated in the bottom panels of
Figs. 3(c) and 3(d).

IV. PROPOSED EXPERIMENTAL SETUP FOR
DETECTING SIGN CHANGE OF PHOTOCURRENTS

The second-order conductivity tensors calculated by inte-
grating the local distribution over the entire BZ are completely
consistent with the symmetry analysis. Owing to the large
separation between opposite-chirality fermions in the energy
space, the trace of CPGE is a quantized value in units iπ e3

h2 .
In Fig. 4(a), the transition-energy-dependent CPGE for χC,x

yz
has been depicted, corresponding to βxx in Ref. [8]. Since
we consider only one component of the trace, a third of the
quantized value exists in the range ∼0.1 to ∼0.8 eV. On
inverting the crystal structure to its counterpart with opposite
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FIG. 4. Frequency-dependent second-order conductivity for (a) CPGE and (d) LPGE based on numerical calculations based on the tight-
binding model of RhSi. The red and blue curves correspond to opposite chiralities of the chiral fermions. The signs of all three conductivities
change with the switch in chirality of the crystal structure. Schematic of the experimental setup to identify multifold fermions in crystals with
opposite chiralities by (b), (c) CPGE and (e), (f) LPGE. CPL in (b), (c) represents circularly polarized light, and LPL in (e), (f) represents
linearly polarized light. The calculations were performed based on the tight-binding model reported in Ref. [3] with the parameters v1 = 1.0,
vp = −1.0, vr1 = 0.0, vr2 = −0.01, vr3 = 0.01, vs1 = −0.01, vs2 = 0.0, and vs3 = 0 and an on-site term v0 = 0.01 to translate the degeneracy

at the point, R, to the Fermi level. β0 = iπ e3

h2 in (a). (b) and (e) correspond to the crystal structure depicted in Fig. 1(a). (c) and (f) correspond
to the crystal structure depicted in Fig. 1(b).

chirality, the sign of CPGE changes. Therefore, for circularly
polarized light with a specific helix, the generated voltage
drop is opposite for the same type of chiral fermions with left-
and right-handed chirality.

Based on symmetry and numerical analyses, we present a
schematic setup for the experimental measurement of χC,x

yz ,
as an example. The incidence of circularly polarized light
along the x direction, with its electrical field locked on the
y − z plane, induces an injection current along −x. When the
same circularly polarized light is transmitted along the same
direction in the same compound with opposite chirality, the
sign of the injection current changes, as depicted in Figs. 4(b)
and 4(c). Though the LPGE is not quantized, a strong shift
current is expected in this class of chiral crystals because of
the existence of strong inversion-symmetry breaking [38]. The
incidence of linearly polarized light along the same direction
induces a shift current along x, and the sign corresponding to
its counterpart with opposite chirality is changed, as depicted
in Figs. 4(d)–4(f). The sign change of the strong signal of the
shift current can be easily detected.

V. SECOND-HARMONIC GENERATION

In addition to the second order DC photocurrent, the
polarized light can also induce a second-harmonic dipole,
Pc(2ω) = ε0χ

SHG,c
ab (ω)Ea(ω)Eb(ω), where ε0 denotes the

vacuum permittivity, and χSHG,c
ab (ω) denotes the second-order

susceptibility, which can be computed from two terms of
χSHG,c

ab (ω) = χSHG,c
ab,e (ω) + χSHG,c

ab,i (ω). These two terms can
be expressed as [39]

χSHG,c
ab,e (ω) = e3

2h̄2

∑
k

∑
nml

ra
nm

(
rb

ml r
c
ln + rc

ml r
b
ln

)
ωln − ωml

×
(

2 fnm

ωnm − 2ω
+ fln

ωln − ω
+ fml

ωml − ω

)
(20)

and

χSHG,c
ab,i (ω) = ie3

2h̄2

∑
k

∑
nm

fnm

(
2ra

nm

(
rb;c

mn + rc;b
mn

)
ωmn(ωmn − 2ω)

+ ra;c
nm rb

mn + ra;b
nm rc

mn

ωmn(ωmn − ω)
+ ra

nm

(
rb

mn�
c
mn + rc

mn�
b
mn

)
ω2

mn

×
(

1

ωmn − ω
− 4

ωmn − 2ω

)

− rb;a
nm rc

mn + rc;a
nm rb

mn

2ωmn(ωmn − ω)

)
. (21)

The calculated SHGs are depicted in Fig. 5, from which
one can also observe the sign change for both the real and
imaginary parts of the second-order susceptibility when the
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FIG. 5. Frequency dependent second-order susceptibility χSHG,x
yz for the (a) real and (b) imaginary part, respectively. The red and blue

curves correspond to the crystal structures depicted in Fig. 1(a) and Fig. 1(b), respectively. (c) The magnitude of χ SHG,x
yz .

crystal structure is inverted. Since the experimental measure-
ments for SHG primarily focus on the magnitude [consult
Fig. 5(c)], the modality of the sign change of SHG for the
separated real and imaginary parts is relatively complicated
compared to the measurement of DC photocurrent.

VI. SUMMARY

In summary, the switch in chirality of chiral multifold
fermions is related to the sign change of charge currents gen-
erated by second-order electrical and optical responses. This
relationship provides an effective bulk-transport approach to
experimentally identify the chirality of chiral fermions of the
same type, as well as the relationship between the chirality

of chiral fermions in reciprocal space and crystal structures in
real space.
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