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Large linear magnetoelectric effect induced by an external magnetic field
in the collinear antiferromagnet DyCrO4
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A microscopic theory of the interaction of Cr spins with electric and magnetic fields in DyCrO4 is described.
The derived effective energy operator allows calculating the electric polarization vector using information about
the magnetic structure. The calculated linear electric polarization in electric and magnetic fields at H < 3 T
is consistent with the available experimental data. The electric field is induced by an odd crystalline field on
chromium ions and the charge transfer process from the nearest oxygen ions. The enhancement of the magnetic
field is associated with magnetic susceptibility, mainly due to dysprosium ions.
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I. INTRODUCTION

Transition-metal compounds with magnetoelectric cou-
pling attract significant interest in modern science as they
can find applications in new technical devices. They are also
of considerable importance for fundamental science [1–4].
Experimental searches for substances with electromagnetic
properties are continuing. Relevant recent reviews are given
in Refs. [5,6]. The development of a microscopic theory of
magnetoelectric coupling is also highly desirable. Recently,
an anomalously large increase in electrical polarization when
an external magnetic field is applied was discovered (with no
clear origin) in DyCrO4 [7]. An overview of the currently
under discussion mechanisms of magnetoelectric coupling is
given in Ref. [6]. Magnetic moments of both Dy3+ and Cr5+

ions at T < 20 K are ordered antiferromagnetically [8,9] and
lie in the ab plane of the crystal [10,11]. Strict antiparallel or-
dering of spins means that the known mechanisms of coupling
of exchange-coupled spins with an electric field containing a
vector product of spins (such as the inverse Dzyaloshinskii-
Moriya mechanism and others [5,6]) are not related to the
origin of the linear magnetoelectric effect in DyCrO4.

As for other possible mechanisms which do not include
the vector product of spins, such as Arima’s mechanism [12],
the influence of magnetic field arises from changing the
spin’s direction. However, this effect is relatively weak. So
according to Ref. [13], the growth of electric polarization in
(Cu,Ni)B2O4 is about 1.2 μC/m2 when the magnetic field is
increased by 3 T.

The observed linear magnetoelectric effect in DyCrO4 is
anomalously large [7]. When an external field of 1 T is ap-
plied, the electric polarization reaches P ≈ 45 μC/m2. When
the magnetic field increases to 2 T, it becomes equal to
90 μC/m2. Below we present a quantum theory to explain this
anomalously large linear magnetoelectric effect and demon-
strate how it can be explained by the joint action of spin-orbit
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interaction and electromagnetic fields induced inside the crys-
tal by external E and H fields.

II. ENERGY LEVELS OF THE LOW-LYING Cr5+ STATE

Cr5+(3d) ions are placed in the tetrahedral sites of oxygen
ions (see Fig. 1). In the unit cell, there are two types of frag-
ments, Cr(1)O4 and Cr(2)O4, which are rotated with respect
to each other by 90◦ around the c axis. The operator of the
crystal electric field (CEF) is written as

Hc f =
∑
k,q

B(k)
q C(k)

q , (1)

where

C(k)
q =

√
4π

2k + 1

∑
i

Yk,q(ϑi, ϕi ) (2)

are CEF operators acting on 3d electrons. The coefficients
B(k)

q can be calculated in the superposition model [14,15] as
follows:

B(k)
q =

∑
j

a(k)(Rj )(−1)qC(k)
−q (� j,� j ). (3)

The index j runs over the ions that surround the CrA1 position
of the crystal lattice. a(k)(Rj ) are the so-called intrinsic CEF
parameters. Their three key contributions are

a(k)(Rj ) = a(k)(p.c.) + a(k)(kl ) + a(k)(ex). (4)

The first one is due to the point charges of the lattice ions and
is given by the expression [16]

a(k)(p.c.) = − Zje2

Rk+1
j

〈rk〉, (5)

where Rj is the distance to ion j, Zj is the electric charge of ion
j in units of |e|, and 〈rk〉 are averages calculated with radial
functions of 3d electrons.

The electrostatic field from the spatial distribution of the
electron density of the 2s and 2p electrons of the ligand ions
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FIG. 1. A fragment of the Cr(1)O4 structure. Cr is in the position
(1/2, 1/4, 3/8). The local coordinate system xy is rotated around the
crystallographic c axis by an angle ϕ = −8.94◦. Oxygen ions are
located at the vertices of a tetrahedron, which is slightly shortened
along the c axis. Here cos(ϑ ) = ±0.5073; that is, it is larger than
in the case of a regular tetrahedron, where it is ±0.5774. The dis-
tances between the chromium and oxygen ions are the same and at
T = 1.2 K are equal to 1.702 Å.

(oxygen) was calculated using the following equations [17]:

a(2)(kl ) = 〈3d0|V |3d0〉 + 〈3d1|V |3d1〉 − 2〈3d2|V |3d2〉,
a(4)(kl ) = (9/5)〈3d0|V |3d0〉 − (12/5)〈3d1|V |3d1〉

+ (3/5)〈3d2|V |3d2〉. (6)

Matrix elements are calculated for a separate Fe2+-O2( j) pair
in local coordinate systems with a common z axis directed
along the pair axis. The expression for the potential energy of
a 3d electron V is written as [17]

V (r) = e2

r

∑
piexp(−γir

2). (7)

Here, r = 0 corresponds to the position of the jth nucleus of
the oxygen ion. The importance of this contribution, which
substantially suppresses the CEF of point charges, was first
pointed out by Kleiner [18]. In this regard, we denote it as
a(k)(kl ). The values of pi and γi were determined in Ref. [17].

The exchange and covalence contributions related to the
overlap of the wave functions of Fe ions with those of the
nearest oxygen ions were calculated as [19]

a(2)(ex) = G2e2

Rj

(
S2

3dσ + S2
3ds + S2

3dπ

)
,

a(4)(ex) = 9G4e2

5Rj

(
S2

3dσ + S2
3ds − 4

3
S2

3dπ

)
, (8)

where G2 and G4 are the fitting parameters of the exchange
charge model [19]. They are determined by comparing theo-
retical and experimental data. The quantities S3dσ , S3ds, and
S3dπ are the overlap integrals for a separate Fe2+-O2−( j) pair
in local coordinate systems with a common z axis directed
along the pair axis. We evaluated these integrals using the
Hartree-Fock wave functions of free ions [20,21], previously
expanded in Gaussian orbitals. The calculated values of a(k)

for the nearest-neighbor oxygen ions (R = 1.702 Å and G2 =
G4 = 9) are given in Table I.

TABLE I. Calculated values of a(k) (in cm−1).

a(k)(p.c.) a(k)(ex) a(k)(kl ) Sum

a(2) 14192 7239 −15042 6389
a(4) 2783 6682 −4836 4629

Summing (3) over lattice ions, we have (in cm−1)

B(2)
0 = −2911, B(4)

0 = −5562, B(4)
4 = −5340. (9)

It should be noted that the contribution to the parameter
B(2)

0 associated with lattice ions at a distance of R > 1.702 Å
is equal to 844 cm−1. The corresponding contributions to B(4)

0

and B(4)
4 are relatively small.

The energy levels of a 3d electron are (in cm−1)

Eϑ = 2

7

(
B(2)

0 + B(4)
0

) = −2420,

Eη = Eξ = 1

7
B(2)

0 − 4

21
B(4)

0 = 1438,

Eζ = −2

7
B(2)

0 + 1

21
B(4)

0 + 5

3

√
2

35

∣∣B(4)
4

∣∣ = 2695,

Eε = −2

7
B(2)

0 + 1

21
B(4)

0 − 5

3

√
2

35

∣∣B(4)
4

∣∣ = −1561. (10)

Here, |ϑ〉 = |3z2 − r2〉, |ε〉 = |x2 − y2〉, |η〉 = |xz〉, |ξ 〉 =
|yz〉, and |ζ 〉 = |xy〉 are the orbital states of the 3d electron.
Note that the case of an undistorted tetrahedral crystal field

can be considered if B(2)
0 = 0 and B(4)

±4 = ±
√

5
14 B(4)

0 in (10).

The energy level scheme of the Cr5+ ion in DyCrO4 has
not yet been experimentally studied. According to the optical
conductivity spectra of FeCr2O4, the energy interval between
the 5T and 5E Fe2+ states in the tetrahedral position is
≈3300 cm−1 [22].

Neutron diffraction studies [10,11] revealed that at T =
1.2 K the magnetic moments of chromium in DyCrO4 lie in
the ab plane, and their values are relatively small (μx,y =
0.99μB ± 0.12μB). We calculated the following components
of the g tensor for the ground state:

gx,y = 2 − 6λ

Eη,ξ − Eϑ

∼= 1.71, gz = 2. (11)

Qualitatively, this result (gx,y < 2) confirms our conclusion
that the ground state of Cr5+ is indeed |ϑ〉 = |3z2 − r2〉.
However, perhaps, the calculated value of Eη,ξ − Eϑ is overes-
timated. In (11), λ is the parameter of the spin-orbit coupling.
Its value, determined from the energy level scheme of the free
Cr5+(3d) ion [23], is 188 cm−1.

III. INTERACTION ENERGY OF A 3d ELECTRON
WITH ELECTRIC AND MAGNETIC FIELDS

In the superposition model, the energy of the MeO4 frag-
ment is determined by the sum of energies of separate Me-O
pairs. The basic electronic configuration of the metal ion is
Cr5+(3d), and that of the oxygen ion is O2−(1s22s22p6).
The lowest excited configurations of opposite parity in the
chromium-oxygen pair are Cr5+(4p) O2−(1s22s22p6), and
the so-called charge transfer configurations are Cr4+(3d2)
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O1−(1s22s22p5) and Cr4+(3d2) O1−(1s22s12p6). The pro-
cesses of electron transfer from ligands to the unfilled shell
of a metal ion play an important role in the theory of the
electronic structure of complexes and paramagnetic centers.
Usually, they are taken into account by the method of linear
combinations of atomic orbits [16]. However, in our case, the
method of superposition of configurations is preferable since
it allows one to consider structural fragments with arbitrary
symmetry and to use the operator technique of atomic spec-
troscopy [24].

The development of the theory of interaction between elec-
tronic configurations of opposite parity nlN and nlN−1n′l ′
was stimulated by the problem of explaining parity-forbidden
electric dipole transitions between multiplets of the nlN

configuration in crystals without an inversion center. A cal-
culation method based on the technique of irreducible tensor
operators was first developed in Refs. [25,26].

The effective operator of electric dipole transitions was
obtained in the second order of the perturbation theory by
combining the operator of an odd crystal field with the op-
erator of the energy of interaction of electrons with an electric
field. It is useful to write it as follows:

HE =
∑
p,t,k

{E (1)U (k)}(p)
t D(1k)p

t . (12)

Here, the curly brackets denote the Kronecker product of the
spherical components of the electric field

E (1)
0 = Ez, E (1)

±1 = ∓(Ex ± iEy)/
√

2, (13)

and U (k)
q = ∑

i u(k)
q (i) are the components of the unit ir-

reducible tensor operator, acting on 3d electron states.
Single-electron matrix elements of operators u(k)

q are calcu-
lated through 3- j symbols,

〈lm|u(k)
q |lm′〉 = (−1)l−m

(
l k l

−m q m′

)
. (14)

The quantities D(1k)p
t are evaluated, in the case of a spherical

electron density distribution on the ligands, by the expression

D(1k)p
t =

∑
j

d (1k)p(Rj )(−1)tC(p)
−t (ϑ jϕ j ), (15)

where C(p)
−t (ϑ j, ϕ j ) are the components of the spherical tensor

that determines the orientation of the selected metal-ligand
pair ( j is the ligand number) with respect to the crys-
tallographic coordinate system. The contribution to d (1k)p

j

associated with mixing of nlN and nlN−1n′l ′ configurations
are evaluated as follows:

d (1k)p
j (1) = 2|e|〈r〉ll ′

|�ll ′ |
√

2p + 1
(2k + 1)(l||c(1)‖l ′)

× (l ′‖c(k)‖l )

{
1 k p
l l ′ l

}(
ε′ + 2

3

)
a(k)

(
Rj

)
,

(16)

where ε′ is the real part of the dielectric permittivity. The
Lorentz correction factor (ε′ + 2)/3 was originally omitted in
the Judd-Offelt expressions. Later, it was included in the the-
ory and plays an important role in our case. Thus, according
to the experimental data [7], ε′ for DyCrO4 is approximately

equal to 13, and therefore, the Lorentz factor enhances the
action of the electric field by about 5 times.

With expression (16) derived, the operator of an odd crystal
field (k is an odd number) is written similarly to (1), i.e.,

Hcr =
∑
k,q

B(k)
q C(k)

q , (17)

where C(k)
q are spherical tensor operators whose single-

electron matrix elements are calculated by the Wigner-Eckart
theorem:

〈lm|c(k)
q |l ′m′〉 = (−1)l−m

(
l k l ′

−m q m′

)

× (l‖c(k)‖l ′). (18)

In our case, l = 2 and l ′ = 1. From the selection rules of the
reduced matrix element (l||c(k)||l ′) it follows that k can be
equal to 1 or 3. Operator (12) is Hermitian at odd values of p.
The 6- j symbol limits the possible values of p: p can be equal
to 1, 3, or 5.

In the case of spherically symmetrical ligands, the param-
eters of the odd crystal field are determined by an equation
similar to (3). The structure of the CrO4 fragment is shown
in Fig. 1. Group symmetry at the chromium position is the
S4 point symmetry. Invariant combinations of spherical com-
ponents can be constructed only for k = 3. In this case, the
lattice sums converge rapidly, and only the contribution of
four nearest oxygen ions can be taken in to account to estimate
them. In the local coordinate system, as in Fig. 1, the structure
factor is equal to∑

j

C(3)
±2 (ϑ j, ϕ j ) = ∓2.1069i. (19)

To numerically evaluate a(3) and a(5), we used the follow-
ing expression:

a(k)(Rj )ll ′

= − Zje2

Rk+1
j

〈rk〉ll ′ + (2k + 1)

(l||c(k)||l ′)

∑
(−1)l−m

×
(

l k l ′
−m 0 m

){
Gj e2

Rj
〈nlm|n jl jm〉〈n jl jm|n′l ′m〉
+〈nlm|Vj (rb)|n′l ′m〉

}
.

(20)

Here, the first term takes into account the field of point charges
of the lattice ions. The second term approximates the effect
of the overlapping of the electron shells of metal ions with
the nearest ligands (oxygen). 〈nlm|njl jm〉 are the overlap in-
tegrals of the nl states of electrons with wave functions 2s and
2p of oxygen electrons. Gj is a parameter of the exchange
charge model. Vj (r) is the energy of interaction of an nl
electron with the electrostatic field of spatially distributed 2s
and 2p electron shells of oxygen [as in (7)].

The results of our calculation of the overlap integrals for
the Hartree-Fock wave functions Cr5+(3d) and O2−(2s, 2p)
(taken from [27,20], respectively) at Rj = 1.702 Å are equal
to

〈3d0|2p0〉 = −0.0704, 〈3d1|2p1〉 = 0.0496,

〈3d0|2s0〉 = −0.0661. (21)
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Since the radial Hartree-Fock wave functions for the ex-
cited state of Cr5+(4p) have not yet been obtained, we
used the wave functions of the excited configuration of the
Fe3+(3d44p) ion from [27]. The overlap integrals required for
our numerical estimations are equal to

〈4p0|2p0〉 = −0.1745, 〈4p1|2p1〉 = 0.3070,

〈4p0|2s0〉 = −0.4363. (22)

The calculation by formula (8) with G = 9 and Rj =
1.702 Å yields (in cm−1)

a(3)
d p = 9350 + 26 120 − 11 758 = 23 712. (23)

Taking 〈r〉d p = 0.55 a.u. calculated in Ref. [28] using the
Hartree-Fock radial functions of 3d and 4p electrons and
the values of the energy interval between the main 3d6 and
excited configuration 3d54p of the Fe3+ ion from Ref. [27],
we obtained in D unit (1 debye = |e|Å)

d (12)3(1) = 0.130, d (14)3(1) = 1.058. (24)

We now proceed to assess the role of covalence and
nonorthogonality of the wave functions of the 3d electron and
the wave functions of oxygen. The effective Hamiltonian of
interaction with an electric field, which takes into account
the nonorthogonality of the wave functions and the mixture
of excited configurations with charge transfer, i.e., 3dN+1L−1

to the ground 3dN L configuration, in its tensor structure co-
incides with the operator (11). In this case, the contribution
to the quantities d (1k)p

j appearing in (1) is determined by the
following equations:

d (1k)p(Rj ) = ε′ + 2

3

∑
q

(−1)1−k+q
√

(2p + 1)

×
(

1 k p
−q q 0

)
d (k)

q (Rj ), (25)

d (k)
q (Rj ) = |e|

∑
(−1)l−m(2k + 1)

×
(

l k l
−m q m′

)
〈nlm|r jc

(1)
q |nlm′〉,

(26)

〈nlm|raC
(1)
q |nlm′〉 = λmκ〈κ|rC(1)

q |ρ〉λρn′

− 〈nlm|rC(1)
q |ρ〉λρm′

− λmκ〈κ|rC(1)
q |nlm′〉, (27)

λρm′ = γρm′ + Sρm′ . (28)

For brevity of notation, in (27) and (28) we used γρm′ for
covalence parameters and Sρm′ for the overlap integrals of
metal ligands per one metal-ligand pair. The sets of quantum
numbers corresponding to the ligand electrons are denoted κ

and ρ. One the right-hand side of (27), we assume summa-
tion over the quantum numbers κ and ρ. Two-center matrix
elements are specified in local coordinate systems with z axes
directed along the axis of a metal-ligand pair.

Equations (11) and (25)–(27) are derived by mixing
electronic configurations with a nonorthogonal basis of
single-electron wave functions. The main stages of calculation
are as follows. At the beginning of the perturbation theory

with a nonorthogonal basis of many-electron functions, for
separately selected pairs of metal ligands, an effective oper-
ator was constructed that operates in the states of the basic
electronic states of configuration 3dN L. Then, an equivalent
new effective operator is constructed in the basis of the prod-
uct of the wave functions of the metal ion and the surrounding
metal ligands. In the final stage, all pairs of metal ligands were
summed up (approximation of independent bonds). It was
assumed that each of the pairs has axial symmetry with respect
to the local z axis directed along the axis of the metal-ligand
connection line.

When numerically evaluating d (1k)p from (2) using
Eqs. (25)–(28), we take the covalence parameters defined
for Ni-O and Cr-O pairs in oxides by magnetic resonance
methods [29–31]: γσ � −0.230, γs � −0.027, γπ � 0.216.
The calculation of two-center matrix elements was carried
out using the Hartree-Fock wave functions of Fe2+ [21] and
O2− [20] ions, which were decomposed into Gaussian-type
orbitals. As a result, the following values were obtained
(in debyes):

d (12)3(2) = −0.983, d (14)3(2) = 0.273,

d (14)5 = −0.263. (29)

It is interesting to note that, in contrast to (20), in (25) there
is a contribution with p = 5. The corresponding structure
factor is ∑

j

C(5)
±2 (ϑ j, ϕ j ) = ∓0.1109i. (30)

The total value of d (12)3 included in expression (11) is
determined by the sum of two contributions:

d (1k)p
j = d (1k)p

j (1) + d (1k)p
j (2). (31)

Comparing (25) and (20), we note that contributions to
d (12)3 are associated with the odd crystal field (1), as well
as with the overlap and charge transfer (covalence) (2) of
opposite signs, with the latter factor being dominant.

As a result, by substituting (24), (33), and structure factors
(19) and (30) into expression (15), we obtained (in debyes)

D(12)3
±2 = ±1.797i, D(14)3

±2 = ∓2.804i,

D(14)5
±2 = ±0.029. (32)

It should be noted that if we neglect the distortion of the tetra-
hedral fragment along the c axis (Fig. 1), all D(14)5

q become
equal to zero.

As for the Cr(2)O4 fragments that are rotated by 90◦
relative to Cr(1)O4 around the c axis of the crystal, their corre-
sponding values of D(1k)p

t are obtained from (32) by changing
the sign. This can be easily deduced from expression (15).

At the end of this section, we turn to a discussion of the
interaction of Cr5+(3d) with a magnetic field. The operator of
interaction is written as follows:

HM = μB(l + 2s)B, (33)

where the magnetic induction is given by B = (1 + 4πχ )H.
Here, χ is the tensor of magnetic susceptibility per cubic cen-
timeter. The measured values of the magnetic susceptibility
in the field-culled regime at T < 20 K are about 40 emu/mol
[32,33]. Turning to CGSE units, we find that (1 + 4πχ ) ≈ 7;
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TABLE II. Two-center matrix elements of rc(1)
q (in a.u.) at

R = 1.702 Å.

Matrix elements Values

〈3d0|rc(1)
0 |2p0〉 −0.1400

〈3d1|rc(1)
0 |2p1〉 0.0949

〈3d0|rc(1)
0 |2s0〉 −0.1425

〈3d1|rc(1)
0 |2s0〉 −0.0513

〈3d2|rc(1)
0 |2p1〉 0.0610

〈3d1|rc(1)
0 |2p0〉 −0.0649

〈3d0|rc(1)
0 |2p − 1〉 −0.0050

that is, the effective magnetic field H on the orbital momen-
tum is significantly enhanced. The physical reason for this
effect is the large value of the magnetic moment of the Dy3+

ion. Studies on neutron scattering [10–12] have shown that the
magnetic moment of the dysprosium ions is �9 times greater
than the magnetic moment of chromium ions.

IV. ORIGIN OF LINEAR
MAGNETOELECTRIC COUPLING

Having the energy level scheme (Sec. II) and operators
of interaction with electric and magnetic fields (Sec. III),
we proceed to the derivation of the magnetoelectric coupling
operator for the ground 2Eϑ state of chromium. To derive
the effective operator Heff , we use the following expression
corresponding to the third order of the perturbation theory:

〈α|Heff |α′〉 =
∑
β,τ

〈α|H1|β〉〈β|H1|τ 〉〈τ |H1|α′〉
(Eβ − Eα )(Eτ − Eα )

, (34)

where the perturbation operator H1 is the sum of three opera-
tors,

H1 = HE + HM + λsl, (35)

and symbols |β〉 and |τ 〉 denote |ε〉 = |x2 − y2〉, |η〉 = |xz〉,
|ξ 〉 = |yz〉, and |ζ 〉 = |xy〉. We assume the presence of spin
wave functions |σ = ±1/2〉, |α〉 = |ϑ, σ 〉. Since Eη = Eξ , it
is convenient to take |d,+1〉 and |d,−1〉 instead of the wave
functions |η〉 = |xz〉, |ξ 〉 = |yz〉 in the calculation process.

The scheme of virtual excitation explaining the mechanism
of magnetoelectric coupling is shown in Fig. 2. It is interesting
to note that the magnetoelectric coupling arises due to the
interaction of the orbital moment of the electron with the mag-
netic field, while the interaction of the spin with the magnetic
field does not play any role in this scheme.

The resulting effective operator in the basis of spin states
|2Eϑ ,±1/2〉 is

Heff = 4
λμB

�ε�
ReD1(SxBx − SyBy)Ez

− 4
λμB

�ζ �
ImD1(SxBy + SyBx )Ez

+ 6
λμB

�2
ReD2(SxBx − SyBy)Ez

− 6
λμB

�2
ImD2(SxBy + SyBx )Ez. (36)

-1 

 ζ 

  +1 

 θ 

 ε 

(a) (b) (c)

FIG. 2. Examples of virtual excitation schemes. Operator L− en-
ters in either the spin-orbit interaction or the interaction of orbital
moment with a magnetic field.

Here, �ε, �ζ , and � = �η = �ξ are the energy intervals
between the ground and excited states |ε〉, |ζ 〉, and |±1〉,
respectively. Bx, By, and Bz, as in (33), are the components
of the effective magnetic field. For brevity, we introduce the
following quantities:

D1 =
{

2

√
1

35
D(12)3

2 −
√

1

21
D(14)3

2 +
√

1

15
D(14)5

2

}
,

D2 =
{√

1

35
D(12)3

2 + 2

3

√
1

21
D(14)3

2 − 2

3

√
1

15
D(14)5

2

}
. (37)

Since ReD1 and ImD2 transform similarly to x2 − y2 and
xy under rotation around the z axis, it can be seen from (36)
that the contributions from the DyCr(1)O4 and DyCr(2)O4

fragments to the total magnetoelectric energy are equal.
In the coordinate system shown in Fig. 1, we obtained

(in D)

ImD1 = 1.212, ImD2 = −0.099. (38)

Let’s now discuss what follows from Eq. (36). First, there
is no electric polarization in zero magnetic field. The next
important consequence is that the electric polarization along
the z axis increases only when the spins and the magnetic
field lie in the ab plane. This is exactly what was observed
in Ref. [7] at H < 3 T.

Since all quantities included in expression (36) have been
determined, we can numerically estimate the linear magneto-
electric effect driven by an external magnetic field. Taking the
derivative of the effective energy operator (36) with respect
to the electric field component Ez and setting 〈Sx〉 = 1/2, we
obtain the electric polarization [in (μC/m2) T]:

Pz = λμB

�

(
2D1

�ζ

+ 3D2

Im�

)
× (1 + 4πχ )NHy = 42.05Hy, (39)

where N is the number of Cr ions in samples with a volume
of 1 m3. According to experimental data [7], the proportional-
ity coefficient between electric polarization and the magnetic
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field is about 45 μC/m2. Thus, the calculated value is in
agreement with the experimental data.

Note that an operator form similar to (36) can certainly
be obtained from symmetric considerations. This problem
was discussed by Ham in 1961 when he investigated the
effect of electric fields on the spectra of electron paramag-
netic resonance in dilute paramagnets [34,35]. Of course, it
was not possible to obtain microscopic expressions for the
interaction parameters at that time since the real mechanism
of interaction of spins with the electric field was not estab-
lished. An operator form similar to (36), within the framework
of the phenomenological approach for the antiferromagnet
Bi2CuO4, was proposed in Ref. [36]. In Bi2CuO4 there is
also no electrical polarization in zero magnetic field. When
the magnetic field increases by 1 T, the electrical polarization
along the c axis increases (see [36], Fig. 13(b)) by about
0.3 μC/m2. One of the obvious reasons for such a strong
difference from DyCrO4 is that the factor (1 + 4πχ ) entering
before the magnetic field is relatively small in Bi2CuO4. In
Bi2CuO4 there are no magnetic ions with such a large g factor
as the Dy ion has in DyCrO4.

Finally, it should be noted that above we assumed that
the magnetic field is sufficiently weak and does not violate
collinearity in the direction of antiferromagnetically ordered
spins and does not change their orientation. According to [7],
at H > 3 T, a metamagnetic transition is observed in DyCrO4.
In a strong magnetic field, the spin orientations become non-
collinear. In this case, operators (36) should be supplemented
with terms containing vector products of exchange-coupled
spins, similar to those discussed in the review in [19] and
in [37,38] for noncollinear ferrimagnets. A discussion of the
magnetoelectric properties of DyCrO4 in a strong magnetic
field is beyond the scope of this paper.

V. CONCLUDING REMARKS

In this paper, we contributed to the microscopic theory of
magnetoelectric coupling of spins with electric and magnetic
fields in a collinear antiferromagnet DyCrO4. A simple an-
alytical expression for magnetoelectric coupling energy was
derived. The calculated linear electric polarization with re-
spect to the electric and magnetic fields is consistent with
the experimental value [16] in order of magnitude. The most
important features of the nature of the anomalously large
linear magnetoelectric effect are given below.

(1) The electric field at orbital degrees of freedom of
chromium ions is enhanced by the odd crystal field from the
lattice ions, as well as by the influence of covalent bonds of 3d
electrons with the nearest oxygen ions, located at the vertices
of the tetrahedron.

(2) The magnetic field acting on the spins of chromium
ions is enhanced by the factor 1 + 4πχ � 7. The dominant
contribution to spin susceptibility is associated with dyspro-
sium ions, as they have a large magnetic moment (9.7μB).

(3) The action of electric and magnetic fields on orbital
degrees of freedom of 3d electrons is transmitted to spins
of chromium ions through spin-orbital interaction of 3d elec-
trons.

The described scenario of linear coupling of the electric
and magnetic fields with spins is applicable to a wide class of
compounds with magnetic ions located in positions without
inversion symmetry.
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